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Exterior Calculus: Economic Growth Dynamics

Troy L. Story

Abstract—Mathematical models of dynamics employing exterior
calculus are mathematical representations of the same unifying
principle; namely, the description of a dynamic system with a
characteristic ~ differential one-form on an odd-dimensional
differentiable manifold leads, by analysis with exterior calculus, to a
set of differential equations and a characteristic tangent vector
(vortex vector) which define transformations of the system. Using
this principle, a mathematical model for economic growth is
constructed by proposing a characteristic differential one-form for
economic growth dynamics (analogous to the action in Hamiltonian
dynamics), then generating a pair of characteristic differential
equations and solving these equations for the rate of economic
growth as a function of labor and capital. By contracting the
characteristic differential one-form with the vortex vector, the
Lagrangian for economic growth dynamics is obtained.
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I. INTRODUCTION

O construct mathematical models of complex economic

systems, some economists employ Hamiltonian
mechanics, thermodynamics and statistics ([1], [2], [3], [4]
and [5]); recent thermodynamic developments use differential
forms. In the present investigation, exterior calculus and its’
main tool (differential forms) are used to construct a
mathematical model of economic growth dynamics. This
approach makes use of a principle previously used ([6], [7],
[8], and [9]) to construct mathematical models for
Hamiltonian mechanics, geometric optics, irreversible
thermodynamics, Black hole dynamics, classical
electromagnetism, classical string mechanics, and Navier-
Stokes dynamics. The principle states that:

Mathematical models of dynamics employing exterior
calculus are mathematical representations of the same
unifying principle; namely, the description of a dynamic
system with a characteristic differential one-form on an odd-
dimensional differentiable manifold leads, by analysis with
exterior calculus, to a set of differential equations and a
characteristic tangent vector which define transformations of
the system [8]. The origin of this principle is Arnold’s [6] use
of differential forms to define Hamiltonian geometry.
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As a prelude to applications of this principle, section II
contains a discussion of differential forms. Then, in section
II1, it is shown how differential one-forms are used to develop
a model for a dynamic system. With this preparation, the
model for dynamics on a differential one-form is applied to
economic growth dynamics (section IV). This model allows
computation of the rate of economic growth as a function of
the capital and labor; these results are entirely dependent on
the use of this differential geometric approach.

II. DIFFERENTIAL ONE-FORMS

The exterior derivative of a scalar function f'(a differential
one-form df) has the same effect on f as the exact

differential df in conventional calculus; namely, it represents
an infinitesimal change in a function f induced by an
arbitrary displacement of a point. However, df is already a
scalar, whereas df must be contracted with a tangent vector v

to become a scalar. The operation of contraction, denoted by
df (v), thus removes the arbitrariness in the direction of the

displacement, where this direction is the same as that of the
tangent vector v (tangent vectors and the exterior derivative
operator are denoted by boldface symbols and a boldface d,
respectively). In this setting, consider an n-dimensional
differentiable manifold M with n local coordinates x*. At
every point of M,

(a) there exists a basis set of tangent vectors {E) / 8x"} for an

n-dimensional vector space of tangent vectors v belonging to
tangent space TM _ and

(b) there exists a basis set of differential one-forms {dx"} for

an n-dimensional vector space of differential one-forms df’

on tangent space TM .

The tangent bundle TM (=UTM ) and cotangent bundle
T*M(: UT*MX)Where T"M, isthe dual of TM , have the
natural structure of a differential manifold of dimension 2n
with local coordinates {xk,dxk (v)} and {xk,df(a/@x" )},
respectively. Differential one-form dS on 7°M_ is defined
by the contraction dS(£)=df(v) where QET(T*MX);

hence,

dS=df(0/0x")dx* (1)
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1. DYNAMICS

In Arnold’s treatment [6] of Hamiltonian mechanics and in
the present case of economic growth as a dynamic system, a

temporal coordinate x° is introduced as an additional local
M, TM and T"M ,
TM and T"M into odd-dimensional manifolds. As a result, an
additional term d f (8/8x°)dx° is added to (1), where

coordinate  for thereby  changing

df (8/ 8x°)dx° is defined as a function of all (2n +1)
coordinates; hence, d f (8/ ox’ )d.x0 describes the phase flow

on this extended cotangent bundle. Using b, for

df([‘)/@xk) and Qdx* for df(@/c?xo)dxo, the equation

for dS becomes

dS =bdx* + Q(x",..x",b ...

n

)dx’ )

In Hamiltonian mechanics &,,{) and x° are represented by

the momenta, Hamiltonian and time, respectively, but for the
example discussed in section IV, other variables will play the

role of b,,Q2 and x°, as well as of Sandx’. Hence, for the

remainder of this section the geometry of extended phase
space is presented in a general setting that not only applies to
Hamiltonian mechanics (which defines this geometry),
geometric optics, irreversible thermodynamics, black hole
dynamics, and Navier-Stokes dynamics, but also to economic
growth dynamics.

The general procedure begins by taking the exterior
derivative of dS to get the following differential two-form:

dw = db, Ndx*
o). . [o0 a0 3)
+ dx* 4| =——|db, +|—|dt|Adt
[axk] [8bk] g [at]

where w=4dS.If x* and b, are to describe mappings of the
temporal coordinate onto the direction of the system phase
flow, then (a) x* and b, must be functions of x° alone and
(b) the following contraction must be satisfied at each point

(bk L xk, xo) of the transformation:

dw (&, n) =0 4)
where the tangent vector & is given by
db, | O ) o 0
=t ||t = 5
¢ [dx° J 0b, [abc0 ] ox* ox° ®)

and v is an arbitrary vector. dw is a mapping of a pair of

vectors onto an oriented surface; if the contraction
dw(&,n)zo, then the mapping is defined only if the

coordinates db, /dx’ and dx" /dx" of ¢ have the values
dx* /dx" =—(0Q/0b,) and db, /dx’ =(0Q/0x")  (6)

By substituting the coordinate values from (6) into (5) the
vortex vector R is obtained, as given by
Q Q
Rl o (o 0
Ox* )ob, \0b, )Ox"  Ox

The foregoing discussion leads to the following two points:
first, contraction of dS with the vortex vector, now called
R, gives

dS(R)=—b, (0Q/0b,)+Q (8)

where dS (R) is the Lagrangian on extended tangent space

(xk,dx" /dxo,xo). Secondly, note that for (4) (where the

exterior derivative of a characteristic differential one-form is
contracted on a pair of tangent vectors and set equal to the
unique scalar zero), the analysis refers to vortex tubes which
do not end. For vortex tubes which end in an elementary
volume, dw(&,n) is set equal to a unique scalar other than

zero. A previous application [8] of the present model to the
source dependent Maxwell equations illustrates the difference
in procedure required for such vortex tubes.

These results lead to the following proposal for all physical
processes assumed to proceed in a characteristic direction:
Mathematical models of dynamics employing exterior
calculus are mathematical representations of the same
unifying principle; namely, the description of a dynamic
system with a characteristic differential one-form on an odd-
dimensional manifold leads, by analysis with exterior calculus
to a set of differential equations and a vortex vector which
define transformations of the systems.

IV. ECONOMIC GROWTH DYNAMICS ON A
DIFFERENTIAL ONE-FORM

The principle described in sections II and III is now
illustrated with applications to economic growth dynamics. In
analogy with Hamiltonian dynamics, the present investigation
proposes a differential one-form for economic growth
dynamics on an odd-dimensional differentiable manifold. It is
then shown that the use of exterior calculus predicts a pair of
differential equations and a characteristic tangent vector (the
vortex vector) for economic growth dynamics. This pair of
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equations is solved for the rate of change of economic growth
as a function of labor L (t) and capital K, (t) . By

contracting this differential one-form with the vortex vector,
the Lagrangian is obtained.

A. Differential one-form for economic growth dynamics
Y ; Dynamics
Using as a starting point the growth function Y (K,. , L, t) s

the differential one-form proposed for economic growth
dynamics Y is

dS =KdL —Ydt )

where S  plays the role of the action in Hamiltonian
mechanics, Y(K,. , L, t) is the growth function (the Omega
function, e.g., the Hamiltonian), K, is the capital, L is the
labor, and ¢ is the time. K'(z) (compare to momentum in

Hamiltonian mechanics) is conjugate to the “position”
variable L' (1), as indicated by the following conditions for

conjugacy:
(a) K, =dS ((’)/ or ) = contraction of dS with 8/0L

(b) K, =K, (1) and L =L \r)
(c) Y=Y(K, L.
(10)

Using the symbol w=dS, the exterior derivative of dS is

do=dK, AdL
_ 11
_||or dL’—&-[a—Y]dKi-l—[a—Y]dt rae Y
oL, oK' ot

Following the procedure of Story ([7], [8] and [9]), consider
the vectors ﬁ,neT(T*ML) , where T(T*ML) is the

tangent of the cotangent space at point L' along the L -axis
and where vector ¢ and arbitrary vector v are

dkK,\ 0  [dL')| & 8
=l—|=—+|—|==+= 12
: [dt]@K’+[dt]6E +8t (12
0 0 0
= — 0, —+= 13
il 6[(, oK' BL oL o1 (13)

Employing the mapping dw: (g,n) — dw(&,n) , note that this

this mapping and the contraction

dw(&,m)=0 (14)

i

are defined only it the coordinates — and —— of ¢
dt dt
have the values
! dK,
di:—&—ﬂ and —‘:—a—Y_ (15)
dt oK, dt oL

for arbitrary tangent vector 1. These equations define the
dK, dL

relationship between coordinates 7 ,;,1 and coordinate
—-0Y 0Y .
values W,87,1 for tangent vector £ at each point of the

transformation; hence, the arbitrariness in the coordinates of
¢ is removed. The characteristic tangent vector obtained by

from (12) with the

coordinate values defined by the two differential equations
(15), is called the vortex vector (section IVC). This vector
gives the direction (the vortex direction) of the system phase
flow, with the vortex lines (integral curves of the differential
equations passing through points of a closed curve) called the
vortex tube.

replacing the coordinates for &

B. Solutions
The differential equations are now examined with the
focus of obtaining a positive economic growth rate with
respect to the time-rate of change of capital and labor.
Focusing on the differential equation aK; _ —[SZ

, hote that a
dt

decrease in the rate of capital dj‘ implies a positive

economic growth with respect to labor; hence, a decrease in
capital can be offset by increased labor. Focusing on the
oY
K,

differential equation ddL[ =+ , it is noted that an increase

in the rate of labor ‘Z—L implies a positive economic growth
t

rate with respect to capital.
Consider the solutions to these characteristic differential

equations. The equation ax __ g—z/ , has the solution
aY . .
K =- E + constant of integration (16)

By plotting K, vs t, a straight line is predicted with a slope
*[g% ; thus, the rate of change of economic growth with

respect to labor can be computed from (Kl., t) data.
. . dL Y
Following the same procedure for the equation i vl I

leads to the solution
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; oY . .
L =—|——| + constant of integration (17)
oK,
In this case the straight line predicts a slope of 6—;] ; hence,

the rate of change of economic growth with respect to capital
can be computed from (L’, t) data. These solutions therefore

provide a quantitative measure of economic growth based on
observations of capital and labor as functions of time.

C. Vortex vector, Lagrangian

By substituting the coordinate values from %:7

Y }
oL

and ilLt = +[Q into (12), the vortex vector is obtained as
oY) 0 oY | 9 0
R=—|—|—+|—|—+— 18
[aL’ ] oK' |\0K,)oL Ot (1%

The Lagrangian of the system is obtained [8] by contracting
the characteristic differential one-form dS with the vortex
vector R, giving for the Lagrangian,

oY
dS(R)=K, [a_K,.]_Y (19)

D. Integral Invariant of economics
Let ~, and -, be two closed in a (2n + 1)-dimensional

manifold M>""" . The vortex lines passing through points of
~, and -, form a vortex tube for the extended phase space

(K,.,L’,t) with ~, —, =00, where o is a section of the
vortex tube and Jo is the boundary of o . The vortex lines
of w (= dS) on the extended phase space give a one-to-one

projection onto the ¢ - axis. By Stokes’ formula,

fﬁw—fﬁw:fw:fdw (20)

do

However, in a previous discussion it was shown that the
equations

dr’ _+[ay] 1)

dK, _7[8Y]
dt | 0K,

dar U

arrive only when dw (&, n) = 0. Hence, the integral of dw

is zero, implying

jnggng (22)

IV. CONCLUSION

The principle applied in this paper is identical to the one
applied in other areas of Hamiltonian geometry (optics,
thermodynamics, Black holes, classical electromagnetism,
classical string theory, and Navier-Stokes dynamics). By
applying exterior calculus to economic growth dynamics, a set
of differential equations and a characteristic tangent vector for
economic growth are constructed. Since a critical and
quantitative means of measuring economic growth as a
function of capital and labor is an extremely useful societal
tool, it is expected that the results presented here will focus
more attention to this area of mathematical economics and to
other applications of this differential geometric model of
dynamics.
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