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Abstract—Adaptive Genetic Algorithms extend the Standard Gas 

to use dynamic procedures to apply evolutionary operators such as 
crossover, mutation and selection. In this paper, we try to propose a 
new adaptive genetic algorithm, which is based on the statistical 
information of the population as a guideline to tune its crossover, 
selection and mutation operators. This algorithms is called Statistical 
Genetic Algorithm and is compared with traditional GA in some 
benchmark problems. 
 

Keywords—Genetic Algorithms, Statistical Information of 
the Population, PAUX, SSO.  

I. INTRODUCTION 
DAPTIVE Genetic Algorithms [1] extends Standard Gas to 
use dynamic procedures to apply evolutionary operators 

such as crossover, mutation and selection. These methods 
cause these operators to behave differently with respect to 
population structure and genetic algorithm's age.  

One of the main methods that are used in Adaptive Genetic 
Algorithms is based on statistical information of the 
population. It means that we can use this statistical 
information to alter behavior of crossover, mutation and 
selection operators to improve their performance. This 
information can be used in some different manners: for 
example we can use them to tune involved probabilities such 
as crossover probability or can be used as a guide line for new 
operators to act optimally. In our previous researches, we used 
the later method to produce two new operators: Pattern-based 
Adaptive Uniform Crossover (PAUX) [1] and Stochastic 
Selection Operator (SSO) [2]. 

In this paper, we are going to propose a new genetic 
algorithm which is completely based on population's patterns 
which uses pattern based operators as main evolutionary 
operators and uses stochastic information of population to 
drive necessary probabilities such as crossover probability. 
This algorithm is introduced in this paper and is called 
"Statistical Genetic Algorithm" or SGA. In this paper SGA is 
completely described and compared with traditional GA and 
simple GA which uses PAUX or SSO separately in some 
benchmark problems. 

Rest of this paper is organized as follows: in the next 
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sections, we briefly describe some other relevant works on 
Adaptive GA, then we describe SSO and PAUX in brief and 
then SGA is described in detail. After that, we describe details 
of benchmark problem selection procedure and benchmark 
problems, and at last, SGA is compared with simple GA and 
GA with PAUX and SSO, the results are then discussed and 
summarized. 

II. RELEVANT WORKS ON ADAPTIVE GA 
In this section, some of the most important researches that 

are recently dome about adaptive genetic algorithms, using 
adaptive operators, adaptive rates or fuzzy controllers are 
presented. 

In [3], author mentions that through the population, GAs 
implicitly maintain the statistics about the search space. This 
implicit statistics can be used explicitly to enhance GA's 
performance. Inspired by this idea, a statistics-based adaptive 
non-uniform crossover (SANUX) has been proposed. 
SANUX uses the statistics information of the alleles in each 
locus to adaptively calculate the swapping probability of that 
locus for crossover operation. A simple triangular function has 
been used to calculate the swapping probability. In this paper 
two new functions, the trapezoid and exponential functions, 
are proposed for SANUX instead of the triangular function. 
Experiment results show that both functions further improve 
the performance of SANUX 

In [4], authors propose a technique for adapting the 
operator rates, as well as a technique for adapting the 
parameter values of the operators in a genetic algorithm. They 
show how these two techniques can be integrated into a single 
evolutionary system, which is called Integrated-Adaptive 
Genetic Algorithm (IAGA). The IAGA exibit fewer input 
parameters to adjust than the original GA, while being able to 
automatically adapt itself to the particularities of the 
optimization problem it tackles. They present a proof-of-
concept implementation of this technique for royal-road 
functions and the experimental results.  

In [5], author provided an extension of their previous work 
on adaptive genetic algorithm [6]. Each individual encodes the 
probability (rate) of its genetic operators. In every generation, 
only one operator modifies each individual. This operator is 
selected according to its encoded rates. The rates are updated 
according to the performance achieved by the offspring 
(compared to its parents) and a random learning rate. The 
proposed approach is augmented with a simple transposition 
operator and tested on a number of benchmark functions. 

In [7], authors analyze the Fuzzy Adaptive GAs in depth. 
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First, they describe the steps for their design and present an 
instance, which is studied from an empirical point of view. 
Then, they propose taxonomy for FAGAs, attending on the 
combination of two aspects: the level where the adaptation 
takes place and the way the Rule-Bases are obtained. 
Furthermore, FAGAs belonging to different groups of the 
taxonomy are reviewed. Finally, they identify some open 
issues, and summarize a few new promising research 
directions on the topic. From the results provided by the 
approaches presented in the literature and the experimental 
results achieved in this paper, an important conclusion is 
obtained: the use of fuzzy logic controllers to adapt genetic 
algorithm parameters may really improve the genetic 
algorithm performance. 

At last, in [8], a fuzzy adaptive search method for genetic 
algorithms has been proposed, which is able to tune the 
genetic parameters according to the search stage by the fuzzy 
rule. In this research, a fuzzy adaptive search method for 
parallel genetic algorithms is developed, in which the high-
speed search ability of fuzzy adaptive tuning by FASGA is 
combined with the high-quality solution capacity of parallel 
genetic algorithms. The proposed method offers improved 
search performance, and produces high-quality solutions. 
Simulations are performed to confirm the efficiency of the 
theoretic results, which is shown to be superior to both 
ordinary and parallel genetic algorithms. 

III. STOCHASTIC SELECTION OPERATOR 
In this section, we are going to introduce a pattern based 

selection operator that was introduced for the first time in [2]. 
This operator’s design is based on two main ideas: it tries to 
select the best chromosomes in each iteration to carry out 
them to the next generation, and to preserve genotypic 
contents and diversity in the population. This operator is 
called Statistical Selection Operator, SSO. 

The main idea behind this operator is to extract hidden 
genotypic information from the population and to let the entire 
genetic material of population to survive as long as possible. 
As mentioned in some basic researches [9], premature 
convergence is one of the major problems in GA area.  This 
problem relates to the uniformity of the population’s 
genotypic content and inability of evolutionary process to 
produce new genetic material when it reaches local optima. 
This problem occurs because after producing some good 
chromosomes (with respect to their phenotypic material or 
fitness) they try to distribute their genotypic content using 
selection and recombination operators. So, other 
chromosomes have been deleted from the population after 
some iterations (it depends on their fitness or phenotypic 
material). In the traditionally GAs, there exist only two 
solutions to produce new genetic content: using mutation or 
recombination to produce new chromosome with better fitness 
than the current best one to carry out the population from 
current local optima. 

Selection operators use fitness as the only criterion to select 

chromosomes for the next generation. However, in SSO, each 
chromosome is evaluated using two parameters: fitness and a 
new measure based on its distance form the best chromosome 
in the population. We call this measure Genetic Advantage 
Criterion (GAC). 

The main motivation to introduce GAC is to preserve 
genotypic content of the population. Therefore, it was 
assumed that if one chromosome has different genotypic 
content than the other ones in the population, then it is one of 
the valuable individuals. In the SSO, we compare genotypic 
structure of that chromosome with genotypic structure of the 
best individual in the population. To measure their 
differences, we use Hamming Distance as the measuring tool 
to compare those chromosomes but it is notable that any other 
distance function can be used to produce different versions of 
SSO. However, GAC is calculated using HD(C, Best), where 
C is current chromosome and Best is the best chromosome of 
the population.  

After calculating GAC, Survival Probability (SP) of each 
chromosome is calculated using (1): 

             FITwGACwSP 21 +=  (1) 
It is clear that SP is a balanced equilibrium between 

genotypic (GAC) and phenotypic (FITness) evaluation of the 
current chromosome. It is notable that w1 and w2 are chosen 
experimentally for each problem and are used to control the 
importance of genotypic and phenotypic content of the current 
chromosome. After calculating SP, SSO uses roulette wheel 
method [9] to produce new generation of chromosomes.  It is 
interesting point that we can use any other selection method 
for SSO such as tournament or proportionate selection, the 
only needed modification is to use SP instead of fitness to 
select winner chromosomes. 

IV. PATTERN-BASED ADAPTIVE UNIFORM CROSSOVER 
In this section, we are going to describe our pattern based 

operator, that was called PAUX, which is introduced in [1] for 
the first time. PAUX is designed as an adaptive crossover 
operator that is based on statistical pattern of the entire 
population. PAUX is designed using both selection 
mechanism and crossover methods. It means that in the case 
of crossover action, both fitness and crossover criteria are 
considered to produce offspring. PAUX’s architecture is 
based on uniform crossover operator. The Uniform Crossover 
operator uses a constant called Pu as the probability of bit 
swapping between two parents to produce offspring [9]. The 
first modification to develop PAUX is to change Pu to a 
variable probability for each crossover action that is calculated 
using (2): 

            )/( 211 fffPu +=  (2) 
Where f1 is fitness of the first parent and f2 is second ones. 

This value is used as the probability of exchanging bits 
between parents. This mechanism allows parents with higher 
fitness to contribute more of their genetic makeup to their 
offspring. Besides, PAUX uses a new concept called 
Template. Template is used to reflect population statistical 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

327

 

 

information in behavior of crossover operator. In PAUX, 
Template is a generated chromosome which is constructed 
using the entire population with respect to fitness and genetic 
distribution of population. This generation is done using the 
following procedure: in each position of the generated 
chromosome, the entire population is traced and average 
fitness between all chromosomes with the same gene at that 
position is calculated, then the gene with highest average 
fitness, as winner gene, is inserted in the same position of the 
generated Template. For example, consider Fig. 1: 

 

Fig. 1 Template Generating in PAUX 
 

After generating Template, crossover action begins. In 
PAUX, parents and Template are involved in the crossover 
procedure and offspring are generated using the following 
method: after selecting two parents for crossover and finding 
suitable crossover probability using (1), both genes at the first 
position in both parents are compared with each other. If they 
were not the same, a constant value called Padd is added to 
probability of selecting the offspring’s first gene form the 
parent that its first gene agrees with the first gene of Template. 
If both first genes of parents agreed with each other and were 
not equal to the first gene of Template, then with probability 
of Pth the first gene of offspring comes from Template. 
Moreover, if both first genes of the parents were the same and 
agreed with the first gene of Template, then the first gene of 
offspring will be the first gene of Template. For example, 
consider Fig. 2: 

 
Fig. 2 Swapping Probability Calculation in PAUX 

 
Using this method, statistical information of population is 

also involved to produce new generations. This involvement 
can help us to improve GA performance as shows in [1]. In 
addition, with respect to this fact that bit selection is biased 

using Avg. fitness of chromosomes with the same gene, 
premature convergence can be avoided or recognized rapidly. 
This is because only one chromosome with different gene 
structure and higher fitness than the local minima can produce 
many offspring similar to it and can change Template in to 
produce more similar offspring. 

V. STATISTICAL GENETIC ALGORITHM (SGA) 
In this section, we are going to provide detailed description 

to SGA's structure. To describe a genetic algorithm operator 
we must describe these subjects: chromosome representation 
method, selection operator, crossover operator, mutation 
operator, and fitness calculation method and operator 
applications. 

Chromosome Representation Method: Chromosome 
representation method in SGA is similar to Simple GA and is 
binary representation. Further information about this 
representation can be found in [9]. 

Involved Operators: SGA uses pattern based operators: 
SSO as selection operator and PAUX as crossover operator. 
Due to the nature of PAUX which is described in previous 
sections that can produce new offspring with an external gene 
that could be found in none of its parents, we can assume that 
PAUX implements and implicit mutation procedure so there is 
no explicit mutation operator in SGA. 

Operator's Application: The best way to describe 
operator's application in SGA is to describe a life cycle of this 
algorithm. 

At first pattern is generated for PAUX as described in 
previous sections. Then two chromosomes are selected 
randomly from mating pool and apply PAUX to them with the 
probability of Pc to produce new offspring. This procedure is 
done till number of produced offspring reaches mating pool's 
numerosity. Then next generation is selected from the 
population of parents and offspring using SSO. This procedure 
is repeated till SGA solves the problem or reaches the 
maximum number of iterations. 

Another important point is the calculation procedure of Pc. 
To describe this procedure, at first we describe the aim of 
using crossover operators in Genetic Algorithms. Due to [9], 
crossover operators are used to propagate genetic material of 
good chromosome through the entire population. So if the 
entire population seems to be good then crossover is not very 
necessary but in the other hand if population seems to be bad 
the crossover operator is highly recommended to propagate 
genetic materials in the population. Also, another reason to 
use crossover operator is to escape from local optima where 
the entire population are going to be genetically uniform 
around a wrong chromosome. So crossover operator must be 
apply more times when the population are going to be 
genetically uniformed to escape from local optima.  

Due to this information, we propose a simple model to 
calculate crossover probability that is presented using (3): 

           2/)(1
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Where MD is mean of hamming distance of all 
chromosomes with the best one (with respect to fitness), MF is 
mean of fitness, FBest is best fitness in the population and 
DWorts is the greatest distance between chromosomes and the 
best one (using hamming distance). 

Fitness Calculation Procedure: Fitness calculation 
procedure in SGA is completely similar to fitness calculation 
procedure in simple GA. 

VI. DESIGN OF EXPERIMENTS 
In this section, we briefly describe benchmark problems 

that are used in this paper and test procedure. This problems 
are chosen with respect to the proposed criteria in [10] and 
[11] from three families of simple and hard problems. These 
problems are described here: 

 
One Max Problem: This problem is one of the well-known 

GA problems, for a binary string x of length l, this is the 
problem to maximizing below equation: 

              }1,0{,
1

∈∑
=

i

l

i
i xx  (4) 

One-Max is a classical test to confirm that one is able to 
artificially evolve to a solution starting from a given initial 
population. 

Modified Royal Road Problem: The `Royal Road' 
function(s). In this problem each chromosome is regarded as 
being composed o regularly-spaced non-overlapping blocks of 
bits, separated by a number of irrelevant bits. Various 
parameters control the scoring: b, g, and m* are integers and 
u*, u and v are real numbers. The low-level blocks are of size 
b bits, with g irrelevant bits making up a gap between each. 
Each low-level block scores 0 if completely filled or mv if it 
contains m bits and m ـ، m*, or –mv if there are more than m* 
bits set but the whole block is not filled. Thus the low-level 
blocks are mildly deceptive. In addition there is a hierarchy of 
completed blocks which earn bonus points. The hierarchy has 
a number of levels; level 1 is the lowest, and level (j + 1) has 
half the number of blocks that level j has - the first and second 
blocks in level j form the first block of level j + 1, the third 
and fourth from level j form the second and level j +1 and so 
on. If level j has nj > 0 'filled' blocks then it earns a bonus 
score of u* + (nj - 1) u; thus u* is a special bonus for getting 
at least one filled at that level. The topmost layer of the 
hierarchy has one block, which is filled if and only if every 
block in the lowest level is filled. [11] reports that such ‘royal 
road’ functions are very hard for some GAs and analyze why. 
See also the challenge issued by John Holland in the GA list, 
vol. 7 no. 22. This challenge is used in our experiment; the 
pseudo code is given in the following: 

 
Royal Road (JH): 
j indexes levels in hierarchy (1 is lowest level). 
i indexes target schemata (1 is at left). 
There are 2**k target schemata at level 1, and 2**(k-j) target  
schemata at level j+1 (compounded of adjacent pairs of schemata 

from  
the next lower level); each target schema is defined over b loci. 
BONUS(j) = u*+(n(j)-1)u, n(j)>0 
 = 0, n(j) = 0 
where n(j) is the number of found targets at level j and u* and u 

are  
parameters, u*>u. 
PART(i)=contribution to overall score from m(i) correct alleles in  
target 
 schema i at the lowest level, 0<i<1+2**k, 
 = m(i)v, if m(i)<m*+1, 
 = -(m(i)-m*)v if m*<m(i)<b, 
 = 0 otherwise. 
(PART introduces simple nonlinearities: The score actually 
decreases if there are more than m* correct bits in the target 

area). 
SCORE = Sumj[BONUS(j)]+Sumi[PART(i)]. 
Test experiments are done as follows: at first, entire 

population is initiated randomly, then algorithm is executed 
for maximum number of 5,000 iteration for the first problem 
and 10,000 for the second one. In the end of all iterations, 
mean fitness is calculated as the performance measure of the 
algorithm. For both two problems, SGA, Simple GA, and 
Simple GA with PAUX and SSO are tested in 25 independent 
experiments and mean of these 25 runs are plotted as 
performance of each algorithm.  

Used parameters are initiated as follows, population size is 
set to 50 for first problem and 800 for second one, Pc is set to 
0.5 for static rate of crossover, w1 is set to .4 and w2 is set to .6 
for SSO and Padd is set to 0.3 and Pth is set to 0.7 for PAUX. 
RR parameters are set as follows: Chromosome Length=246, 
b=8, g=7, m*=4 and u*=1.0. Results are shown and discussed 
in the proceeding sections.  

VII. EXPERIMENTAL RESULTS 
Fig. 3 and 4 indicates mean fitness of population for Simple 

GA, Simple GA with PAUX, and Simple GA with SSO, Simple 
GA with SSO and PAUX and SGA for on- max and Modified 
RR problems. 

 

 
Fig. 3 Comparing SGA, Simple GA, PAUX and SSO in One-Max 

Problem 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:2, 2008

329

 

 

 
Fig. 4 Comparing SGA, Simple GA, PAUX and SSO in RR Problem 

VIII. DISCUSSION 
As shown in the experimental results in the previous 

section, it is very clear that SGA works significantly better 
than simple GA. It can be for several reasons such as using 
PAUX and SSO that both of them can improve GA 
performance clearly [2, 3]. However, the interesting point is 
that SGA’s performance is better than simple GA with PAUX 
and simple GA with SSO. We can propose two reasons: 
simultaneously usage of PAUX and SSO and dynamic 
calculation method of Pc. this hypothesis is tested and we find 
out that combining PAUX and SSO can improves performance 
of simple GA that uses each of them separately, but it cannot 
reach performance of SGA (results are not presented in this 
paper). We investigate that SGA with static rate of Pc has 
lower performance that SGA with dynamic rate. To illustrate 
this issue consider Fig. 5. 

 
Fig. 5 Crossover probability of SGA in a single run of RR 

 
This Figure indicates Pc during a single run of SGA in RR 

problem. With respect to this  
Fig. 5 and Fig. 6, that indicates mean distance of the 

population with the best one (using hamming distance as 
measurement tool), and Fig. 4 that shows mean fitness of the 
population for this problem; we can conclude that Pc can help 
to improve SGA’s performance in some states that PAUX and 
SSO can not help it. For example, consider points A and B that 
are highlights in Fig. 6. These points indicate two critical 
points that mean fitness of population is near the best fitness 
(Phenotypic uniqueness) and population diversity decreases 
slowly. Our proposed mechanism to calculate Pc can 
overcome this situation by increasing probability of crossover 
and can produce some new genetic materials to increase 

population diversity (as shown in Fig. 4, points C and D). This 
issue can help SGA to escape local optima in problem 
landscape better than simple GA even with PAUX and SSO. 

 
Fig. 6 Population Diversity (Using Hamming Distance) in of SGA in 

a single run of RR 

IX. SUMMARY 
In this paper, we employ our previously invented operators 

such as PAUX [1] and SSO [2] to introduce a new approach 
to adaptive genetic algorithms that is called Statistical Genetic 
Algorithm. This approach uses statistical information of the 
population as a guideline to improve its performance when it 
applies evolutionary operators to the population. This 
algorithm is described in detail and compare with traditional 
GA with some benchmark problems. 
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