
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

86

Abstract—A new approach for timestamp ordering problem in

serializable schedules is presented. Since the number of users using
databases is increasing rapidly, the accuracy and needing high
throughput are main topics in database area. Strict 2PL does not
allow all possible serializable schedules and so does not result high
throughput. The main advantages of the approach are the ability to
enforce the execution of transaction to be recoverable and the high
achievable performance of concurrent execution in central databases.
Comparing to Strict 2PL, the general structure of the algorithm is
simple, free deadlock, and allows executing all possible serializable
schedules which results high throughput. Various examples which
include different orders of database operations are discussed.

Keywords—Concurrency control, schedule, timestamp,
transaction.

I. INTRODUCTION

HE number of users who access database applications has
been growing so fast and it becomes the highest priority

in database fields to handle transactions of users. Researchers
have continuously made effort to enhance concurrency control
and recovery for centralized database which stored at a single
computer site. A centralized DBMS support multiple users,
but the DBMS and the database themselves reside totally at a
single computer site [10]. Centralized DBMS needs a
concurrency control for transaction processing that
coordinates the actions of processes that operate in parallel,
access shared-data, and therefore potentially interfere with
each other. Database products need to be accurate and
recoverable. The work load of read and write operation
requests the systems to execute a large number of transaction
at a given time.

In [2], many existing database applications place various
timestamps on their data. Timestamp is a unique identifier
created by the DBMS to identify a transaction [6]. ts(Ti) refers
to transaction with assigned a timestamp i. The timestamp of
any transaction is represented by its index (i.e., index(Ti) = i).
The index of all operations in Ti is i. Each data item contains a
read timestamp, giving the timestamp of the last transactions
to read the item and a write timestamp, giving the timestamp
of the last transaction to write the item [10]. Timestamp

Hassan M. Najadat is currently assistance professor at Computer

Information Systems Department in Jordan University of Science and
Technology, P.O. Box 3030 Irbid 22110 Jordan (phone: 962-2-7201000- ext.
23405; fax: 962-2-7095123; e-mail: najadat@ just.edu.jo).

ordering operations are conflict if they come from different
transactions; if they operate on the same data item and either
at least one of them is a write operation. The timestamp
ordering rule states that if pi(x) and qj(x) are conflicting
operations then pi(x) is processed before qj(x) if and only if
ts(Ti) < ts(Tj).

The timestamp ordering protocol is used to ensure
serializability based on the order of transaction timestamps
[4]. The basic timestamp ordering enforces conflict
serializability but it does not ensure recoverable schedules;
and hence it does not ensure cascadless or strict schedules
either [3]. The definition of recovery, avoid cascade, and strict
schedule is as follows:

In [11], every history H consists of a set of transactions
with two parts: a set of events that reflects the operations (e.g.,
read, write, abort, commit), and a version order in
chronological execution.

Recovery schedule: A history H is called recoverable (RC)
if, whenever Ti reads from Tj (i ≠ j) in H and Ci∈H, Cj < Ci.
A history is recoverable if each transaction commits after
commitment of all transactions (other than itself) from which
it read [6]. The basic timestamp ordering enforces conflict
serializability but it does not ensure recoverable schedules.
The recoverable systems increase throughput that affects the
speed processing. The present algorithm guarantees to
produce a recoverable schedule without delaying the
processing data.

Avoid cascade schedule: If, whenever Ti reads x from Tj
(i≠j) in H and Ci < Ri[x], it avoids cascading aborts (ACA).
That is, a transaction may read only those values that are
written by committed transactions or by it.
Strict schedule: the schedule is strict (ST) if, whenever
Wj[x]<Oi[x] (i ≠ j), either abort j < Oi[x] or Cj < Oi[x] where
Oi[x] is Ri[x] or Wj[x].

In this work, a new algorithm for recoverable time stamping
is provided with a new definition of recoverability property
and premature commit. We provided a formal proof of our
algorithm, and then we applied this algorithm in many models.
This paper is organized as follows. Section II provides an
abstract model for our approach with a discussion of the
definition of recoverable property. Section II defines the
transaction and recoverable history mathematically. Section
III presents a detailed discussion of the new algorithm. We
conclude with section V.

A New Approach for
Recoverable Timestamp Ordering Schedule

Hassan M. Najadat

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

87

II. DATABASE MODEL
The components of database system as shown in Fig. 1

include: (1) transaction manager, which performs any required
preprocessing of database and transaction operations it
receives from transactions, (2) a scheduler, which controls the
relative order in which database and transaction operation are
executed, (3) a recovery manager, which is reasonable for
transaction commitment and abortion; and (4) a cache
manager, which operates directly on the database [10]. Most
of the concurrency control techniques ensure serializability of
schedules. Using timestamps to order transaction execution
guarantees serializability.

The most important operations considered in this work
include: Ri[x] reads database item named x, where i is the
transaction index, Wi[x] writes the value program variable x
into the database item named x, where i is the transaction
index, and Ci tells the DBS that the transaction i has
terminated normally and all of its effects should be made
permanent.

Fig. 1 Database system components

A history model composed of Reads and/or Writes, and

their execution order. We used this model to express the
execution of a set of transactions. There is more detail in [1].

The recoverability property ensures that a history is
recoverable if each transaction commits after the commitment
of all transactions (other than itself) from which it reads. This
section defines formally the recoverable property.
Active/abort transactions are not considered and the factor of
pre-existing database prior to an execution is not included in
the history model.

Two operations are conflict if they come from different
transactions; if they operate on the same data item and either
at least one of them is a write. A new concept called a
premature commit is defined as follows: Wi [x]@t is the most

recent write of x for Rj[x] @ t’ such that t < t’, Cj is called a
premature commit if and only if Cj < Ci. A history ensures the
recoverability property iff it has no Premature Commit.

A recoverable history, H, ensures the recoverability
property for each set of chronological operations. The
following histories demonstrate the recoverability property of
H1, H2, and H3.

If H1 is defined as H1: W2(x) R2(y) C2 R1(x) C1 then H1 is
considered to be recoverable because T2 writes x, and then
commits before T1 reads x. H2 is also considered recoverable
as sequence of the following operations: H2: W1(x) R2(x)
R1(y) W2(x) W1(y) R2 (z) W2 (z) C1 C2. H3 represents a
non-recoverable history as follows W1(x) R2(x) W2(x) R2(y)
W2(y) C2 R1(y) W1(y) C1. In H3, C2 is a premature commit;
it happened before C1. Our algorithm enforces H3 to be
recoverable without changing the chronological execution of
operations except the commit operation by delaying C2 until
C1 commits. In the following section, we give a description of
the new approach which remedies this problem.

III. NEW-RCTO ALGORITHM

In this work, the following assumptions are considered: (1)
the proposed approach follows basic timestamp ordering
except in commit operation, and (2) for every data item x,
there are two vectors: (i) the write vector, wv, records the
write timestamp for each write/read operation, and (ii) the
commit vector, cv, records commit operation for each
transaction only if the timestamp of received commit
operation does not equal the timestamp of the first stored
element in wv.

A rotate function shifts the elements of wv such that the
first element in wv shifts to the last location and the remaining
elements move up as in Fig. 2.

Fig. 2 Rotate function example

NEW-RCTO algorithm consists of three different phases:

(1) read phase, (2) write phase, and (3) commit phase. Before
defining these phases, the timestamp of commit operation for
different transaction on the same object maintains a
relationship as depicted in the following code:

1. if ts(Ci) = ts(wv[i])
 {
2. Execute Ci,
3. Delete the contents of wv[i],
4. Move up the remaining values of wv
 }

The above code operates simultaneously in both wv and cv

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

88

vectors in order to get a high speed in processing of commit
operation.

Fig. 3 depicts a schedule execution which consists of the
following operations: C3C4C5 is a set of three commit
transactions, t1,t2,and t3, stored in commit vector, while
W2(x) W4(x) W1(x) is a set of write operation on the same
object x stored in write vector for the three transactions. Since
C4 and W4 are stored in the same row with the same index,
they will be deleted from wv and cv simultaneously. The
remaining w2, c3, w1 and c5 operations will be moved up one
row.

Fig. 3 Write vector and commit vector status after matching w4 c4

A. Read Phase
Whenever read operation, Ri, arrives, the following code

will be executed:

1. For each received read operation i
 {
2. Let z = i * random number
3. If ts(Ri) is already in wv
 then
4. store z instead of Ri;
 else
5. store z at the end of wv
 }

 Fig. 4 depicts the read phase with the last data stored in

Fig. 3. Suppose the next arrival operation is R2(X), then apply
read phase will result the right table. Since the timestamp of
read operation is already stored in wv[2], the contents of
wv[2] is multiplied by a random value. The main advantage of
this phase is to distinguish the read operation from the write
operation which will not cause any delay in execution of the
read operation.

Fig. 4 Read operation R2 arrived and then multiplied by random

value

B. Write Phase
Whenever write operation, Wi, arrives, the following code

will be executed:

1. For each received write operation i
{
2. If ts(Wi) is not stored in wv then
3. Save ts(Wi) in wv
}

The write step enforces the write operation to store its
timestamp in wv. Fig. 5 shows the contents of wv and cv
after a new operation arrived, i.e. W3(x). The initial data
stored is shown in the left side of Fig. 5 and the right side is
the result after W3 arrived.

Fig. 5 Write vector and commit vector status after executing W3

C. Commit Phase
This phase is the main phase that enforces all commit

operation either to compare the ts(Ci) with the first element in
wv or to keep commit operation in cv. The following code
represents the commit phase:

1. Let k is the index of the first empty available position

in cv.
2. For each received Commit operation Ci
 {
3. If (ts(Ci) = wv[0]) or (ts(Ci) =wv[k])
 {
4. Execute Ci;
5. Delete wv[0] Or Delete wv[k];
6. Move up all the remaining values in wv and cv
 simultaneously
 }
 else
 {
7. Record Ci at the first empty cell in cv
 }
 }

The main advantage of commit phase is to delay any

premature commit and enforce the commit of transaction of
write operation to be executed before any commit of different
transaction for read operation. Fig. 6 shows the commit
phase after C3 arrived. Since W3 is already stored in wv, the
commit operation executes and delete wv[2] contents -i.e.W3.

Fig. 6 C3 commit arrived and then delete W3 from wv[2]

D. Model of new-RCTO
Two histories of execution are provided to complete our

discussion of new-RCTO by combining all phases. The first
represents the historical execution order H for all operations in
transaction 1 and transaction 2, ts(Ti)=i, index(Ti)=i, and
index any operation in Ti equal i.

Let a history H1= W1(x) W2(x) W3(x) R4(x) C1 C4 C3
C2. we can observe the following:

a) W1(x) arrives, New-RCTO dispatches ts(W1(x)) to

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

89

wv[1].
b) W2(x) arrives, RCTO dispatches ts(W2(x)) that equal 2

to wv[2].
c) W3(x) arrives, ts(W3(x)) dispatches ts(W3(x)) that equal

3 to wv[3].
d) R4(x) arrives, RCTO multiplies ts(R4(x)) by a random

number and compares it to the contents of wv, if the matching
successes then RCTO doesn’t add it else RCTO add it. The
comparing results fail and 4 *rand recorded to wv[3]. Fig. 7
depicts a, b, c and d.

Fig. 7 H=W1(x)W2(x)W3(x)R4(x)C1C4C3C2

e) C1 arrives, RCTO checks if ts(C1) = wv[1], the

comparing success, New-RCTO execute C1 and delete cv[1].
All remaining values in wv move up on location.

f) C4 arrives, the comparing ts(C4) with contents of wv[1]
fails, New-RCTO records C4 in first location in cv.

g) C3 arrives , New-RCTO checks if ts(C3) = wv[1],it fails,
the recording C3 will be in cv[2], but the value in
wv[2]=ts(cv[2]), then execute C3 and delete wv[2], move up
all elements in wv on location. Fig. 8 shows e, f, and g.

Fig. 8 H=W1(x)W2(x)W3(x)R4(x)C1C4C3C2

h) C2 arrives and compares with wv[1] success. new-RCTO

executes C2 and deletes wv[1], and also the remaining
elements

i) There is only one value in wv and C4 in CV, then execute
C4 and delete 4*rand. Fig. 9 shows h and i.

Fig. 9 H=W1(x)W2(x)W3(x)R4(x)C1C4C3C2

E. Correctness of New-RCTO
The most powerful of NEW_RCTO is producing much

high system throughput with non-deadlock happened. To
proof the correct of the proposed approach, we introduce a
formal proof as follows:

Theorem: If H is a history produced by New-RCTO then H

is recoverable.
Proof:
We use the serialization graph as a tool to proof the above

theorem. Serialization graph SG used to test a schedule for
conflict serializability. It looks only at read/write operations in
the schedule to construct a serialization graph.

The serialization graph is a directed graph. There is one
node for each transaction and a set of directed edges, each
edge in the graph is of the form (Ti Tj) where Ti is starting
node and Tj is the ending node. E is constructed to the
following rule: If R(x) @t reads from W[x] @ t’, add R[x]t,
W[x]t’ to the graph. This rule states that, for each reads-from
relationship, an edge is added to the graph. Now we can proof
the theorem:

Prove by contradiction
Let H be a history whose SG is not recoverable
The assumption that H is not recoverable means that there
is a premature commit
 Let R(x) @t’ reads from the most recent W(x) @ t and
 Ct’< Ct
This implies
 W(x) @ t < R(x) @t’
Ct’< Ct
t’ > t.
Clearly,
 The execution Ct’< Ct does not be allowed in

 new-RCTO.
new-RCTO delayed Ct’ until executes Ct
This execution guarantees Ct < Ct’
This result conflicts with the above assumption therefore H
 is recoverable.

IV. CONCLUSION

This paper has incorporated new-RCTO into concurrency
control in centralized database. This offered a recoverable
execution of transactions. As shown in different applications,
new-RCTO guaranteed the execution output by the scheduler
to the data manager to be recoverable. We provided a
comprehensive model to complete understanding of
new-RCTO. All write/read operations are executed without
any delay.

REFERENCES
[1] P. A. Bernstein, V. Hadzilacos, N. Good-Man, "Concurrency control

and recovery in database systems", Addison Wesley, 1987.
[2] T. Kristian, S. J. Christian, T. S. Richard, "Effective time stamping in

databases, a time center", Technical report, 1998.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:2, No:1, 2008

90

[3] Elmasri, Navathe, "Fundamentals of database systems", Addison
Wesley, 2nd edition 1994.

[4] Ramon Lawrence, "Advanced database seminar-concurrency control",
Lecture notes, 2001

[5] D. Jeffrey, Ullman, "Principles of database and knowledge-base
systems", W.H. Freeman & Company, 1988.

[6] A. James, A. Fekete, N. Lynch, M. Merrittt, W. Weihl, "A theory of
timestamp-based concurrency control for nested transactions",
Proceedings of the 14th VLDB Conference, 1988.

[7] J. T. Young, J. C. Peck, "A mathematical theory of correct executions in
temporal databases supporting concurrent simulations", ACM ,1998

[8] W. Smith, D. B. Johnson, "Minimizing timestamp size for completely
asynchronous optimistic recovery with minimal rollback", 15th IEEE
Symposium on Reliable Distributed Systems, 1996.

[9] T. Connolly, C. Begg, A. Strachan, "Database systems, A practical
approach to design, implementation, and management", Addison
Wesley, 4nd edition, 2004.

[10] A. Adya, B. Liskov, and P. O'Neil, "Generalized isolation level
definitions", proceedings of the IEEE International Conference on Data
Engineering, san Diego, CA, March 2000.

[11] M. Lonescu, B. Dorohonceanu, I. Marsic," A novel concurrency control
algorithm in distributed groupware", Proceedings of the international
conference on parallel and distributed processing techniques and
applications (PDPTA '2000), p. 1551-1557, Las Vegas, NV, June, 2000.

