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Abstract—Years of extensive research in the field of speech
processing for compression and recognition in the last five decades,
resulted in a severe competition among the various methods and
paradigms introduced. In this paper we include the different rep-
resentations of speech in the time-frequency and time-scale domains
for the purpose of compression and recognition. The examination of
these representations in a variety of related work is accomplished.
In particular, we emphasize methods related to Fourier analysis
paradigms and wavelet based ones along with the advantages and
disadvantages of both approaches.
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I. INTRODUCTION

I
Ntroduction While the main focus of any speech recogni-

tion system (SRS) is to facilitate and improve the direct

audible man-machine communication and provide an alterna-

tive access to machines, a speech compression system (SCS)

focuses on reducing the amount of redundant data while

preserving the integrity of signals.

The research in these areas dates back to the 1950’s at Bell

Laboratories. Since then, systems have been proposed, imple-

mented and commercialized [12]. In the last few years, the

architecture of (SRS) and (SCS) have been perturbed by the

introduction of the new powerful analysis tool called wavelets.

The theory of wavelets is a product of many independent

developments in the fields of pure and applied mathematics,

electrical engineering, quantum physics and seismic geology.

The interchange between these areas in the last decade pro-

duced many new important and vital wavelet applications such

as image and signal compression, turbulence, human vision,

radar and earthquake prediction [7] to name a few. In the

speech processing realm, this new tool is best introduced as

an alternative to the classical Short Time Fourier Transform

(STFT) for its effectiveness in the analysis of non-stationary

signals. A survey of the wavelet literature reveals that the

application of wavelets in the area of speech recognition

has received a much late attention than areas such as image

processing and data compression. Section 3 of this paper

introduces the details of speech representations in the various

domains for recognition purposes, while Section 4 and Section

5 discuss speech compression using wavelets and compare two

common threshold approaches.

II. SPEECH REPRESENTATIONS

Extracting information from a speech signal to be used

in a recognition engine or for compression purposes relies
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usually on transforming such a signal to a different domain

than its original state. Although, processing a signal in the

time domain can be beneficial to obtain measures such as zero

crossing and others, most important properties of the signal

resides in the time-frequency and time-scale domains. This

section contains a review and a comparison of the different

methods and techniques that allow such extractions. In this

paper, x(t) represents the continuous speech signal to be

analyzed. In order to digitally process a signal x(t), it has to

be sampled at a certain rate. 20000 Hz is a standard sampling

frequency for the Digits and the English alphabets in [14]

[15]. To make the distinction in the representation with the

digitized signals, the latter is referred to as x(m). Most speech

processing schemes assume slow changes in the properties

of speech with time, usually every 10-30 milliseconds. This

assumption influenced the creation of short time processing,

which suggests the processing of speech in short but periodic

segments called analysis frames or just frames [21]. Each

frame is then represented by one or a set of numbers, and the

speech signal has then a new time-dependent representation.

In many speech recognition systems like the ones introduced

in [1] [17], frames of size 200 samples and a sampling

rate of 8000 Hz (i.e., 200 ∗ 1000/8000 = 25 milliseconds)

are considered. This segmentation is not error free since it

creates blocking effects that makes a rough transition in the

representation (or measurements) of two consecutive frames.

To remedy this rough transition, a window is usually applied

to data of twice the size of the frame and overlapping 50%

the consecutive analysis window. This multiplication of the

frame data by a window favors the samples near the center of

the window over those at the ends resulting into a smooth

representation. If the window length is not too long, the

signal properties inside it remains constant. Taking the Fourier

Transform of the data samples in the window after adjusting

their length to a power of 2, so one can apply the Fast Fourier

Transform [3], results in time-dependent Fourier transform

which reveals the frequency domain properties of the signal

[16]. The spectrogram is the plot estimate of the short-term

frequency content of the signals in which a three-dimensional

representation of the speech intensity, in different frequency

bands, over time is portrayed [19]. The vertical dimension

corresponds to frequency and the horizontal dimension to

time. The darkness of the pattern is proportional to the energy

of the signal. The resonance frequencies of the vocal tract

appear as dark bands in the spectrogram [16]. Mathematically,

the spectrogram of a speech signal is the magnitude square

of the Short Time Fourier Transform of that signal [2]. In

the literature one can find many different windows that can

be applied to the frames of speech signals for a short-term
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Fig. 1. Plots of window functions in the time domain.

frequency analysis. Three of them are depicted in Figure 1.

A. Time-Domain Representation

A natural and direct way to retrieve information from a

speech signal is to analyze it in the time domain. The most

common time domain measurements used to estimate features

of speech [19] [21] are the short time: Energy, Average Magni-

tude Function, Average Zero-Crossing Rate, Autocorrelation.

The amplitude of voiced segment is generally much higher

than the amplitude of an unvoiced segments. The short-time

energy of a speech signal provides a convenient representation

that reflects these amplitude variations[21]. Zero crossing rate

can be used as a simple measure of the frequency content of a

speech signal. The work of Reddy, [22], used the zero crossing

rate and the average energy to construct a large set speech

recognition system. This lead Rabiner and Sambur to use the

same parameters to mark the end points of a word while

implementing an isolated word speech recognition system

[20]. The pitch period which is a prime candidate for speaker

identification is detected usually by one or more of these time

domain parameters [21]. The most important advantage of

time domain methods in speech analysis is their computational

simplicity. Some of their disadvantages are quasi-stationary

assumption on the speech signal and noise sensitivity, thus

the need for complicated noise suppressing algorithms.

B. Time-Frequency Representations

To overcome the problems associated with the time domain

methods, two dimensional signal processing tools such as

time-frequency representations were introduced. This type of

representation transforms a one dimensional signal into two

dimensional space. Broadly speaking, there are two classes

of time-frequency representations, linear and non-linear. The

Wigner Distribution is an example of the non-linear class. It

was first introduced by Wigner in quantum physics [24]. Gabor

introduced the Short Time Fourier Transform (STFT) in 1946

to analyze finite duration signals [6]. The STFT of a signal

x(m) as defined in [19] is:

Xn(ejω) =

∞∑
m=−∞

x(m)w(n − m)e−jωm. (1)

where w(n−m) is a real window sequence which determines

the portion of the input signal that receives emphasis at the

particular discrete time index m. The frequency ω is a nor-

malized frequency with value 2πm/Fs with Fs representing

the sampling frequency of the signal. The properties of the

STFT include: homogeneity, linearity, time shift variant and

has an inverse. Proofs of these properties can be found in [16]

[21] along with many applications of the STFT in estimating

and extracting speech parameters such as pitch and formants.

This time-frequency representation allows the determination

of the frequency content of a signal over a short period of

time by taking the FT of the windowed signal. It also has

the ability to capture the slowly varying spectral properties

of an analyzed signal. The signal is assumed to be quasi-

stationary within the analysis window [21]. Thus the width

of the analyzing window has to be carefully chosen. In this

time-frequency analysis there are two conflicting requirements.

Since the frequency resolution is directly proportional to the

width of the analyzing window, good frequency resolution

requires a long window and good time resolution, needs a

short time length window. This is an immediate disadvantage

of the STFT analysis since the window length is kept constant.

Hence, there is a time-frequency resolution trade off. This is

captured in the uncertainty principal [2] which states that for

the pair of functions x(t) and its Fourier Transform X(w)
one has: ∆t∆w ≥ 1/2, Where ∆2

t and ∆2
w are measures of

variations of spread of x(t) and X(w). If one start analyzing

with a window of size 20 ms and needed to shorten its size to

10 ms for rapid variation detection, then there will be a loss

of frequency resolution. This also increases the computational

complexity of the STFT. Another interpretation of Equation 4,

is that it can be viewed as the convolution of the modulated

signal x(m)e−jωm with the analysis filter w(m). Based on

this interpretation, the STFT can be implemented by the filter

bank approach where the signal is passed through a bank of

filters of constant bandwidth since the length of the window

is fixed. Thus, the temporal and spectral resolutions are fixed.

Filter banks are popular analysis methods of speech signals

[23] [19]. In this spectral analysis approach, a digitized speech

signal x(m) is passed through a bank of P bandpass filters

(or channels) that covers a frequency range of interest (e.g.,

P = 20 channels covering 78 Hz to 5000 Hz [8]). In a

filter bank, each filter processes the signal independently to

produce a short-time spectral representation Xm(ejω) at time

m through a filter i that has ωi as its center of frequency. The

center frequency and bandwidth of each filter are normally

determined based on a scale model that mimics the way the

human auditory system perceives sounds.

C. Time-Scale Representations

Another two dimensional signal processing tool that reme-

dies problems arising from time frequency domain methods
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Fig. 2. The DWT coverage of the Time-Frequency plane.

such as trade off in time frequency resolutions and limitations

in analyzing non-stationary signals is the time-scale repre-

sentation. The Wavelet Transform (WT) accomplishes such

representation. It partitions the time-frequency plane in a non-

uniform fashion and shows finer frequency resolution than

time resolution at low frequencies and finer time resolution

than frequency resolution at higher frequencies. This type of

transform decomposes the signal into different frequency com-

ponents, and then analyzes each component with a resolution

that matches its scale [7]. The Continuous Wavelet Transform

(CWT) [4] of a signal x(t), is given by :

CWT(a,b)(x(t)) =
1
√

a

∫ ∞

−∞

x(t)ψ

(
t − b

a

)
dt (2)

Where a and b are the real numbers that represent the scale

and the translation parameter of the transform respectively.

The function ψ(t) is called the mother wavelet and has to

have the following two properties:

(1)
∫ ∞

−∞
|ψ(t)|2dt < ∞. This is equivalent to having

ψ(t) ∈ L2(ℜ) the space of finite energy functions.

(2)
∫ ∞

−∞
ψ(t)dt = 0. This is equivalent to having the

Fourier Transform of ψ(t) null at zero (i.e., ψ(t) has

no dc components).

One can interpret the integral operation of Equation 5 in two

ways [2]:

(1) It evaluates the inner product or the cross cor-

relation of x(t) with the ψ(t/a)/
√

a at shift b/a.

Thus it evaluates the components of x(t) that are

common to those of ψ(t/a)/
√

a. Thus it measures

the similarities between x(t) and ψ(t/a)/
√

a.

(2) It is the output of a bandpass filter of impulse

response ψ(−t/a)/
√

a at b/a of the input signal

x(t). This is a convolution of the signal x(t), with

an analysis window 1√
a
ψ(t/a) that is shifted in time

by b and dilated by a scale parameter a.

The second interpretation can be realized with a set of filters

whose bandwidth is changing with frequency. The bandwidth

of the filters is inversely proportional to the scale a which is

inversely proportional to frequency. Thus, for low frequency

we obtain high spectral resolution and low (poor) temporal res-

olution. Conversely, (This is where this type of representation

is most useful) for high frequencies we obtain high temporal

resolution that permits the wavelet transform to zoom in on

singularities and detect abrupt changes in the signal [7]. This

leads to a poor high frequency spectral resolution. The DWT

coverage of the Time-Frequency plane is depicted in Figure

2.

The Discrete Wavelet Transform and the Fourier Transform are

modified versions of the Continuous Wavelet Transform. They

can be derived from the CWT for specified values of a and

b. For example, if the mother wavelet ψ(t) is the exponential

function e−it and a = 1
w

and b=0 then, the CWT is reduced to

the traditional Fourier Transform with the scale representing

the inverse of the frequency [26]. The advantages that this

new representation has over the STFT can be noticed in its

efficiency in representing physical signals since it isolates

transient information in a fewer number of coefficients and

also in overcoming the time frequency trade off induced by

STFT [7]. The properties of the CWT for real signals include:

linearity, scale invariant, translation invariant, real and has an

inverse.

III. WAVELETS COMPRESSION

The goal of using wavelets to compress speech signal

is to represent a signal using the smallest number of data

bits commensurate with acceptable reconstruction and smaller

delay. Wavelets concentrate speech information (energy and

perception) into a few neighboring coefficients, this means a

small number of coefficients (at a suitably chosen level) will

remain and the other coefficients will be truncated [5]. These

coefficients will be used to reconstruct the original signal by

putting zeros instead of the truncated ones.

A. Thresholding techniques

Thresholding is a procedure which takes place after

decomposing a signal at a certain decomposition level. After

decomposing this signal a threshold is applied to coefficients

for each level from 1 to N (last decomposition level). This

algorithm is a lossy algorithm since the original signal cannot

be reconstructed exactly [13]. By applying a hard threshold

the coefficients below this threshold level are zeroed, and the

output after a hard threshold is applied and defined by this

equation :-

yhard(t) =

{
x(t), |x(t)| > δ

0, |x(t)| ≤ δ
(3)

where x(t) is the input speech signal and δ is the threshold.

An alternative is soft thresholding at level δ which is chosen

for compression performance and defined by this equation :-

ysoft(t) =

{
sign(x(t))(|x(t)| − δ), |x(t)| > δ

0, |x(t)| ≤ δ
(4)

where equation 3 represents the hard thresholding and equation

4 represents the soft thresholding.
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IV. THRESHOLDING METHODS USED IN WAVELETS

COMPRESSION

In this section two thresholding algorithms will be

introduced and later used in compressing speech signals. These

two methods are, Global thresholding and Level dependent

thresholding.

A. Global Thresholding

Global thresholding [10] works by retaining the

wavelet transform coefficients which have the largest absolute

value. This algorithm starts by dividing the speech signal

into frames of equal size F . The wavelet transform of a

frame has a length T (larger than F ). These coefficients are

sorted in a ascending order and the largest L coefficients are

retained. In any application these coefficients along with their

positions in the wavelet transform vector must be stored or

transmitted. That is, 2.5L coefficients are used instead of the

original F samples, 8 bits for the amplitude and 12 bits for

the position which gives 2.5 bytes [5] . The compression ratio

C is therefore:

C =
F

2.5L
or L =

F

2.5C
(5)

Each frame is reconstructed by replacing the missing coeffi-

cients by zeros.

B. Level Dependent thresholding

This compression technique is derived from the Birge-

Massart strategy [11]. This strategy is working by the follow-

ing wavelet coefficients selection rule :

Let J0 be the decomposition level, m the length of the coarsest

approximation coefficients over 2, and α be a real greater than

1 so :

1) At level J0+1 (and coarser levels), everything is kept.

2) For level J from 1 to J0, the KJ larger coefficients in

absolute value are kept using this formula :-

KJ =
m

(J0 + 1 − J)α
(6)

The suggested value for α is 1 and was used in [10]

[11].

C. Interpretation of the two algorithms

These algorithms are used to compress speech signals

and compare the quality of the reconstructed signal with

the original. In this section, outlines the steps followed in

implementing these algorithms.

D. Compression using the Global Thresholding

The following procedure is usually followed to implement

the global thresholding to compress speech signals.

1) Divide the speech signal into frames of equal size. In

this thesis different frame sizes are tested to see how

the frame size will affect the performance of the recon-

structed signal. Three different frame sizes are examined

since wavelet analysis is not affected by the stationarity

problem. Expanding the frame length will speed up the

processing time which reduces the processing delay.

2) Apply the discrete wavelet transform to each one of

these frames separately at the five decomposition levels.

This level is chosen since the best performance of the

reconstructed signal is obtained at this level.

3) Sort the wavelet coefficients in a ascending order.

4) Apply the global thresholding to these coefficients by

choosing the compression ratio and using equation 5 to

obtain the non zero coefficients.

5) Keep the retained coefficients and their positions to

reconstruct the signal from them.

6) Reconstruct the compressed frames by using the non

zero coefficients and their positions and replacing the

missing ones by zeros.

7) Repeat steps 2 to 6 to compress all the frames.

8) Insert these reconstructed frames into their original

positions to get the reconstructed signal.

E. Compression Using Level-dependent Thresholding

After the speech signal is divided into equal frame

sizes, the following steps are to be followed to implement the

level dependent thresholding.

1) Apply the wavelet decomposition to each frame sepa-

rately.

2) Keep all the coefficients of the last approximation, and

use equation 6 to retain coefficients from each detail

level.

3) Decompose all the frames and apply step 2 to each

one of the frames, then keep the non zero coefficients

and their positions using 2.5 bytes as in the global

thresholding.

4) Reconstruct each decomposed frame using the non zero

coefficients and replace the missing ones by zeros.

5) Insert these reconstructed frames into their original

positions to get the reconstructed signal.

V. CONCLUSION

Speech processing for compression and recognition was

addressed in this paper. A comprehensive examination of

the different techniques used for these two purposes were

examined. Various methods and paradigms based on the time-

frequency and time-scale domains representation for the pur-

pose of compression and recognition were discussed along

with their advantages and draw-backs. Level dependent and

global threshold compression schemes were also examined in

details.
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