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Abstract—A reduced-bit multiplication algorithm based on the
ancient Vedic multiplication formulae is proposed in this paper.
Both the Vedic multiplication formulae, Urdhva tiryakbhyam and
Nikhilam, are first discussed in detail. Urdhva tiryakbhyam, being
a general multiplication formula, is equally applicable to all cases of
multiplication. It is applied to the digital arithmetic and is shown to
yield a multiplier architecture which is very similar to the popular
array multiplier. Due to its structure, it leads to a high carry prop-
agation delay in case of multiplication of large numbers. Nikhilam
Sutra, on the other hand, is more efficient in the multiplication of large
numbers as it reduces the multiplication of two large numbers to that
of two smaller numbers. The framework of the proposed algorithm
is taken from this Sutra and is further optimized by use of some
general arithmetic operations such as expansion and bit-shifting to
take advantage of bit-reduction in multiplication. We illustrate the
proposed algorithm by reducing a general 4× 4-bit multiplication to
a single 2× 2-bit multiplication operation.

Keywords—Multiplication, algorithm, Vedic mathematics, digital
arithmetic, reduced-bit.

I. INTRODUCTION

D IGITAL multipliers [1], [2] are the core components of
all the digital signal processors (DSPs) and the speed

of the DSP is largely determined by the speed of its multi-
pliers [3]. They are indispensable in the implementation of
computation systems realizing many important functions such
as fast Fourier transforms (FFTs) and multiply accumulate
(MAC). Two most common multiplication algorithms followed
in the digital hardware are array multiplication algorithm and
Booth multiplication algorithm [4]. The computation time
taken by the array multiplier is comparatively less because
the partial products are calculated independently in parallel.
The delay associated with the array multiplier is the time
taken by the signals to propagate through the gates that
form the multiplication array. Booth multiplication is another
important multiplication algorithm [5]. Large booth arrays
are required for high speed multiplication and exponential
operations which in turn require large partial sum and partial
carry registers. Multiplication of two n-bit operands using
a radix-4 booth recording multiplier requires approximately
n/(2m) clock cycles to generate the least significant half of
the final product, where m is the number of Booth recoder
adder stages. Thus, a large propagation delay is associated
with this case. Due to the importance of digital multipliers
in DSP, it has always been an active area of research and

Manuscript received Mar 01, 2008.
The authors are with the Department of Electronics and Communication

Engineering, Indian Institute of Technology (IIT) Guwahati, India. E-Mail:
{harpreet; a.mitra}@iitg.ernet.in.

a number of interesting multiplication algorithms have been
reported in the literature [6]–[9].

This paper presents one such new multiplication algorithm
which circumvents the need of large multipliers by reducing
the multiplication of large numbers to that of smaller numbers.
This reduces the propagation delay associated with the con-
ventional large multipliers considerably. The framework of the
proposed algorithm is primarily based on the Nikhilam Sutra
(formula) of Vedic mathematics [10] and is further optimized
to take full advantage of reduction in the number of bits in
multiplication.

Although Nikhilam Sutra is applicable to all cases of mul-
tiplication, it is more efficient when the numbers involved are
large. In addition to this Sutra, Vedic mathematics deals with
another multiplication formula, Urdhva tiryakbhyam, which is
equally applicable to all cases of multiplication. Attempts have
been made in the literature to apply this general multiplication
formula to binary arithmetic. In [11], this Sutra is shown to
be more efficient multiplication algorithm as compared to the
conventional counterparts. Another paper [12] has also shown
the effectiveness of this Sutra to reduce the N ×N multiplier
structure into an efficient 4× 4 multiplier structures.

In this paper, Urdhva tiryakbhyam Sutra is first applied to
the binary number system and is used to develop a digital
multiplier architecture. This is shown to be very similar to
the popular array multiplier architecture. Nikhilam Sutra is
then discussed and is shown to be much more efficient in the
multiplication of large numbers as it reduces the multiplication
of two large numbers to that of two smaller ones. The
proposed multiplication algorithm is then illustrated to show
its computational efficiency by taking an example of reducing
a 4 × 4-bit multiplication to a single 2 × 2-bit multiplication
operation. The basic framework of the proposed algorithm is
taken from the Nikhilam Sutra of Vedic mathematics and is
further optimized to take full advantage of the bit-reduction in
multiplication.

This paper is organized as follows. In Section 2, a brief
overview of Vedic mathematics is provided. Section 3 deals
with the Vedic multiplication Sutras followed by the proposed
algorithm. Concluding remarks are presented in Section 4.

II. VEDIC MATHEMATICS

Vedic mathematics is the name given to the ancient Indian
system of mathematics that was rediscovered in the early
twentieth century from ancient Indian sculptures (Vedas) by
Sri B. K. Tirtha (1884-1960) [10]. It mainly deals with
Vedic mathematical formulae and their application to various
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Fig. 1. Multiplication of two decimal numbers by Urdhva tiryakbhyam Sutra.

5 4 9 8

1

0

0

0

8

0 0

3

1

21

5

1

1

2

5

2

2

8

0

1

4

7

6

6

9

0

4

6

3

8

2

0

21 2 7 2 2 3 7

0122210

2

3

1

4

Previous
Carry

5498 X 2314 = 12722372

Fig. 2. Alternative way of multiplication by Urdhva tiryakbhyam Sutra.

branches of mathematics. The algorithms based on conven-
tional mathematics can be simplified and even optimized
by the use of Vedic Sutras. The word ‘Vedic’ is derived
from the word ‘veda’ which means the store-house of all
knowledge. Vedic mathematics is mainly based on 16 Sutras
(or aphorisms) dealing with various branches of mathematics
like arithmetic, algebra, geometry etc. [10]. These Sutras along
with their brief meanings are enlisted below alphabetically.

1) (Anurupye) Shunyamanyat – If one is in ratio, the other
is zero.

2) Chalana-Kalanabyham – Differences and Similarities.
3) Ekadhikina Purvena – By one more than the previous

one.
4) Ekanyunena Purvena – By one less than the previous

one.
5) Gunakasamuchyah – The factors of the sum is equal to

the sum of the factors.

6) Gunitasamuchyah – The product of the sum is equal to
the sum of the product.

7) Nikhilam Navatashcaramam Dashatah – All from 9 and
the last from 10.

8) Paraavartya Yojayet – Transpose and adjust.
9) Puranapuranabyham – By the completion or non-

completion.
10) Sankalana-vyavakalanabhyam – By addition and by

subtraction.
11) Shesanyankena Charamena – The remainders by the last

digit.
12) Shunyam Saamyasamuccaye – When the sum is the

same that sum is zero.
13) Sopaantyadvayamantyam – The ultimate and twice the

penultimate.
14) Urdhva-tiryakbyham – Vertically and crosswise.
15) Vyashtisamanstih – Part and Whole.
16) Yaavadunam – Whatever the extent of its deficiency.

These methods and ideas can be directly applied to
trigonometry, plain and spherical geometry, conics, calculus
(both differential and integral), and applied mathematics of
various kinds. As mentioned earlier, all these Sutras were
reconstructed from ancient Vedic texts early in the last cen-
tury [10]. Many Sub-sutras were also discovered at the same
time which are not discussed here.

The beauty of Vedic mathematics lies in the fact that it
reduces the otherwise cumbersome-looking calculations in
conventional mathematics to a very simple ones. This is so
because the Vedic formulae are claimed to be based on the
natural principles on which the human mind works. This is a
very interesting field and presents some effective algorithms
which can be applied to various branches of engineering such
as computing and digital signal processing [13]–[15].
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Fig. 3. Line diagram for multiplication of two 4-bit numbers.

III. THE PROPOSED VEDIC MULTIPLIER

The proposed Vedic multiplier is based on the Vedic multi-
plication formulae (Sutra). These Sutra have been traditionally
used for the multiplication of two numbers in the decimal
number system. In this paper, we apply the same ideas to
the binary number system to make the proposed algorithm
compatible with the digital hardware. Let us first discuss both
these Sutras in detail.

A. Urdhva Tiryakbhyam Sutra

Urdhva tiryakbhyam Sutra is a general multiplication for-
mula applicable to all cases of multiplication. It literally means
“Vertically and Crosswise”. To illustrate this multiplication
scheme, let us consider the multiplication of two decimal
numbers (325 × 728). Line diagram for the multiplication
is shown in Fig. 1. The digits on the two ends of the line
are multiplied and the result is added with the previous carry.
When there are more lines in one step, all the results are added
to the previous carry. The least significant digit of the number
thus obtained acts as one of the result digits and the rest act
as the carry for the next step. Initially the carry is taken to be
zero.

An alternative method of multiplication using Urdhva
tiryakbhyam Sutra is shown in Fig. 2. The numbers to be
multiplied are written on two consecutive sides of the square
as shown in the figure. The square is divided into rows and
columns where each row/column corresponds to one of the
digit of either a multiplier or a multiplicand. Thus, each digit
of the multiplier has a small box common to a digit of the
multiplicand. These small boxes are partitioned into two halves
by the crosswise lines. Each digit of the multiplier is then
independently multiplied with every digit of the multiplicand
and the two-digit product is written in the common box. All the
digits lying on a crosswise dotted line are added to the previous
carry. The least significant digit of the obtained number acts
as the result digit and the rest as the carry for the next step.
Carry for the first step (i.e., the dotted line on the extreme
right side) is taken to be zero.

Now we extend this Sutra to binary number system. To
illustrate the multiplication algorithm, let us consider the
multiplication of two binary numbers a3a2a1a0 and b3b2b1b0.
As the result of this multiplication would be more than 4 bits,
we express it as ...r3r2r1r0. Line diagram for multiplication
of two 4-bit numbers is shown in Fig. 3 which is nothing but
the mapping of the Fig. 1 in binary system. For the sake of
simplicity, each bit is represented by a circle. Least significant
bit r0 is obtained by multiplying the least significant bits of
the multiplicand and the multiplier. The process is followed
according to the steps shown in Fig. 3. As in the last case, the
digits on the both sides of the line are multiplied and added
with the carry from the previous step. This generates one of
the bits of the result (rn) and a carry (say cn). This carry is
added in the next step and hence the process goes on. If more
than one lines are there in one step, all the results are added
to the previous carry. In each step, least significant bit acts as
the result bit and all the other bits act as carry. For example,
if in some intermediate step, we get 110, then 0 will act as
result bit and 11 as the carry (referred to as cn in this text).
It should be clearly noted that cn may be a multi-bit number.
Thus we get the following expressions:

r0 = a0b0, (1)
c1r1 = a1b0 + a0b1, (2)
c2r2 = c1 + a2b0 + a1b1 + a0b2, (3)
c3r3 = c2 + a3b0 + a2b1 + a1b2 + a0b3, (4)
c4r4 = c3 + a3b1 + a2b2 + a1b3, (5)
c5r5 = c4 + a3b2 + a2b3, (6)
c6r6 = c5 + a3b3 (7)

with c6r6r5r4r3r2r1r0 being the final product. Hence this is
the general mathematical formula applicable to all cases of
multiplication. The hardware realization of a 4-bit multiplier
using this Sutra is shown in Fig. 4. This hardware design is
very similar to that of the famous array multiplier where an
array of adders is requited to arrive at the final product. All the
partial products are calculated in parallel and the delay associ-
ated is mainly the time taken by the carry to propagate through
the adders which form the multiplication array. Clearly, this
is not an efficient algorithm for the multiplication of large
numbers as a lot of propagation delay is involved in such
cases. To deal with this problem, we now discuss Nikhilam
Sutra which presents an efficient method of multiplying two
large numbers.

B. Nikhilam Sutra

Nikhilam Sutra literally means “all from 9 and last from
10”. Although it is applicable to all cases of multiplication, it
is more efficient when the numbers involved are large. Since it
finds out the compliment of the large number from its nearest
base to perform the multiplication operation on it, larger the
original number, lesser the complexity of the multiplication.
We first illustrate this Sutra by considering the multiplication
of two decimal numbers (96 × 93) where the chosen base
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Fig. 4. Hardware architecture of the Urdhva tiryakbhyam multiplier.
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Fig. 5. Multiplication using Nikhilam Sutra.

is 100 which is nearest to and greater than both these two
numbers.

As shown in Fig. 5, we write the multiplier and the
multiplicand in two rows followed by the differences of each
of them from the chosen base, i.e., their compliments. We
can now write two columns of numbers, one consisting of the
numbers to be multiplied (Column 1) and the other consisting
of their compliments (Column 2). The product also consists
of two parts which are demarcated by a vertical line for the
purpose of illustration. The right hand side (RHS) of the
product can be obtained by simply multiplying the numbers
of the Column 2 (7×4 = 28). The left hand side (LHS) of the
product can be found by cross subtracting the second number
of Column 2 from the first number of Column 1 or vice versa,
i.e., 96− 7 = 89 or 93− 4 = 89. The final result is obtained
by concatenating RHS and LHS (Answer = 8928).

After this illustration, we now discuss the operational prin-
ciple of Nikhilam Sutra by taking the case of multiplication of

two n–bit numbers x and y having compliments x̄ = 10n−x
and ȳ = 10n − y respectively. The required product ‘p’ is
defined as:

p = xy, (8)

which can be reframed by adding and subtracting 102n +
10n(x + y) to the right hand side as:

p = xy + 102n − 102n + 10n(x + y)− 10n(x + y). (9)

The above terms can be clubbed as follows:

p = {10n(x + y)− 102n}+ {102n − 10n(x + y) + xy}
= 10n{(x + y)− 10n}+ {(10n − x)(10n − y)}

= 10n{x− ȳ}+ {x̄ȳ} = 10n{y − x̄}+ {x̄ȳ}.
(10)

From (10), the expressions of LHS and RHS can be deduced,
which come out to be:

LHS = {x− ȳ} = {y − x̄}, (11)

RHS = {x̄ȳ}. (12)

Hence the multiplication of two n- bit numbers is reduced to
the multiplication of their compliments. To take full advantage
of this reduction, it should be ensured that the numbers
obtained after taking the compliments are lesser than the
original numbers. This condition is satisfied if both the orig-
inal numbers are greater than 10n/2, i.e., x > 10n/2 and
y > 10n/2. This is the reason why it is said that the Nikhilam
Sutra is more efficient in the multiplication of large numbers
than the smaller ones.

An important point to note here is the number of digits
required in the RHS of the product. From (10), it is clear that
RHS should have n digits irrespective of number of digits
in the product x̄ȳ. We illustrate this point by considering a
special case of the multiplication of two 2- digit numbers in
which RHS comes out to be a single digit (99×97). As shown
in Fig. 6, the LHS of the product comes out to be 99 − 3 =
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Fig. 6. Multiplication using Nikhilam Sutra.

97 − 1 = 96 and the RHS comes out to be 3 × 1 = 3. As
n = 2 in this case, we need to append a leading zero to the
RHS making it to be 03. The final result thus comes out to be
9603. On the other hand, if the number of digits in RHS would
have been three, then the most significant digit would be the
carry digit to LHS. With this knowledge of the Vedic formulae,
we now describe the developed multiplication algorithm.

C. The Proposed Algorithm

We recast the Nikhilam Sutra in binary arithmetic and
further exploit certain basic properties of multiplication like
shifting to propose a new reduced-bit multiplication algorithm.
The proposed algorithm is summarized in Table 1 for the case
of multiplying two 4-bit numbers. It is shown that the proposed
algorithm reduces 4×4-bit multiplication to a single 2×2-bit
multiplication operation. As a result, it reduces the delay for
carry propagation than any standard 4× 4-bit multiplier.

In the preprocessing stage, the input binary numbers are
right shifted to remove the least significant consecutive zero
bits. This decreases the computational time by reducing the
number of bits in the multiplier and the multiplicand. The
effect of the removed zero bits is efficiently incorporated
by shifting the final product to the left by equal number of
bits. As explained in Table 1, if both the multiplier and the
multiplicand obtained after the preprocessing stage are 4-bit
numbers, Nikhilam Sutra is directly applied to reduce the
numbers to atmost 3-bits. If the numbers thus obtained are
exactly 3-bit numbers, the sutra is again applied to reduce
the multiplication to 2 × 2-bit which can be done with any
standard multiplier. In another case, if the numbers obtained
after preprocessing stage are 4-bit and 3-bit numbers, the
larger number is expanded as a sum of binary 1000 and a
3-bit number. This reduces the entire multiplication to a 3-bit
multiplication operation, followed by a shift and an addition
operation. A 3-bit multiplication is further reduced to a 2-bit
multiplication operation as explained in the previous case. On
the other hand, if one of the numbers is 3-bit long and the other
one 2-bit, the larger number is expanded as a sum of binary
100 and a 2-bit number. This reduces the entire multiplication

TABLE I
THE PROPOSED REDUCED-BIT MULTIPLICATION ALGORITHM

(a) Initialization
Predefine: flag1 = flag2 = flag3 = flag4 = 0

(b) Preprocessing
Input 4-bit binary numbers a and b
n1 = Number of least significant consecutive zeros in a
n2 = Number of least significant consecutive zeros in b
n = n1 + n2

ā = Right shift a by n1

b̄ = Right shift b by n2

(c) Processing
1. IF (ā > 1000 & b̄ > 1000) THEN

ā = 10000− ā; b̄ = 10000− b̄;
flag1 = 1

2. IF (ā > 100 & b̄ > 1000) THEN b̄ = b̄− 1000;
[Solution = ā× 1000 + b̄× ā]
flag2 = 1
[If b̄ > 100 & ā > 1000, THEN ā = ā− 1000]

3. IF ā > 100 & b̄ > 100 THEN
ā = 1000− ā; b̄ = 1000− b̄;
flag3 = 1

4. IF (ā > 10 & b̄ > 100) THEN b̄ = b̄− 100;
[Solution = ā× 100 + b̄× ā]
flag4 = 1
[If b̄ > 10 & ā > 100, THEN ā = ā− 100]

5. IF (ā = 1) THEN p̄ = b̄ | IF (b̄ = 1) THEN p̄ = ā
GOTO Step 7

6. Perform 2-bit multiplication: p̄ = ā× b̄
7. IF (flag4 = 1) THEN

p̄ = ā× 100 + p̄; b̄ = 100 + b̄
8. IF (flag3 = 1) THEN

p̄ = {LHS = 1000− (ā + b̄) + carry of RHS}|{RHS = (3-bit)p̄};
ā = 1000 + ā ; b̄ = 1000 + b̄

9. IF (flag2 = 1) THEN
p̄ = ā× 1000 + p̄ ; b̄ = 1000 + b̄

10. IF (flag1 = 1) THEN
p̄ = {LHS = 10000− (ā + b̄) + carry of RHS}|{RHS = (4-bit)p̄}

11. p = Left shift p̄ by n bits
12. Return the product p
13. END.

to a 2-bit multiplication, shift and an addition operation. If
the preprocessing stage outputs 3-bit or 2-bit numbers, they
are processed as explained earlier. Finally, another case might
arise in our processing stage where either of the numbers
is 1. In that case, the output always equals to the other
number irrespective of the value of the number obtained after
processing. The entire algorithm to be followed in the 4 × 4
multiplication operation is presented in Table 1. Here, we have
exploited the basic operational principle of Nikhilam Sutra in
conjunction with certain other basic arithmetic operations like
decomposition and bit shifting as explained above.

The proposed multiplier algorithm can further be extended
for larger numbers with some modifications in the algorithm
condition checking steps accordingly.

IV. CONCLUSION

A new reduced-bit multiplication algorithm based on a for-
mula of ancient Indian Vedic mathematics has been proposed.
Both the Vedic multiplication formulae, Urdhva tiryakb-
hyam and Nikhilam, have been investigated in detail. Urdhva
tiryakbhyam, being general mathematical formula, is equally
applicable to all cases of multiplication. A multiplier archi-
tecture based on this Sutra has been developed and is seen
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to be similar to the popular array multiplier where an array
of adders is required to arrive at the final product. Due to
its structure, it suffers from a high carry propagation delay
in case of multiplication of large numbers. This problem has
been solved by introducing Nikhilam Sutra which reduces the
multiplication of two large numbers to the multiplication of
two small numbers. The framework of the proposed algorithm
is taken from this Sutra and is further optimized by use of
some general arithmetic operations such as expansion and bit-
shifting to take full advantage of bit-reduction in multiplica-
tion. The computational efficiency of the algorithm has been
illustrated by reducing a general 4× 4-bit multiplication to a
single 2× 2-bit multiplication operation.
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