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Finite-time stability analysis of fractional-order with
multi-state time delay

Liqiong Liu and Shouming Zhong

Abstract—In this paper, the finite-time stabilization of a class of
multi-state time delay of fractional-order system is proposed.First, we
define finite-time stability with the fractional-order system.Second,by
using Generalized Gronwall’s approach and the methods of the
inequality,we get some conditions of finite-time stability for the
fractional system with multi-state delay.Finally,a numerical example
is given to illustrate the result.

Keywords—Finite-time stabilization, Fractional-order system,
Gronwall inequality.

I. INTRODUCTION

IN recent years, many studies focus on a lot in fractional
order systems.They study aspects of fractional order

systems.For instance, in [1],the author study the existence
of solutions for fractional differential equations,and in[2],
the author study existence and uniqueness of solutions for
the linear time-delay differential equations of fractional
order systerms.It comes to time-delay systems, time-delays
are often present invarious engineering systems such as
biological,economical systems,chemical processes. Time-
delays are described by differential-difference equations
which belong to a class of functional differential equations
[3]. Stability analysis is one of the most important issues for
control systems, although this problem has been investigated
for time-delay systems over many years in [4]. Recently,
for the first time, finite-time stability analysis of fractional
time-delay systems is presented and reported on paper
[5].And in [6], a stability test procedure is proposed for
linear nonhomogeneous fractional order systems with a pure
time delay using a recently obtained generalized Gronwall’s
inequality.Here, the finite-time stabilization of a class of
multi-state time delay of fractional-order system using
Gronwall’s approach is proposed.The main contribution of
this paper is to introduce multi-state time delay of fractional-
order system,and whenτi = 0 [6]is the special circumstances
of this paper.

II. FUNDAMENTALS OF FRACTIONAL DERIVATIVE

There are many ways to define the fractional integral and
derivative, and three definitions are generally used in recent
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studies, they are Riemann-Liouville definition, Grünwald-
Letnikov definition and Caputo definition. Given , Riemann-
Liouville definition of q-th order fractional derivative operator
0 < q < 1 is given by [7]

Dqf (t) =
1

Γ (1 − q)
d

dt

∫ t

0

(t − τ)−q
f (τ) dτ (1)

Where Γ(·) is the Gamma function generalizing factorial for
non-integer arguments

Γ (q) =
∫ +∞

0

e−ttq−1dt (2)

The Grünwald-Letnikov fractional derivative definition is
given by [8]

aDq
t f (t) = lim

h→0

1
hq

[ t−a
h ]∑

j=0

(−1)j

(
q
j

)
f (t − jh) (3)

where[·] is a flooring operator.
And Caputo definition:

0D
q
t f (t) =

{
1

Γ(m−q)

∫ t

0
f(m)(τ)

(t−τ)q+1−m dτ, m − 1 < q < m
dm

dtm f (t) , q = m
(4)

A linear time-invariant function-order system can be repre-
sented in the following state-space form:

Dqx (t) = Ax (t) + Bu (t) (5)

WhereDqx(t) denotes the Riemann-Liouville fractional
derivative of order q ∈ R, x(t) ∈ Rn, u(t) ∈ Rm, A ∈ Rn×n,
B ∈ Rn×m, q = (q1, q2, · · ·, qn) ∈ Rn

III. MULTI-STATE TIME DELAY OF FRACTIONAL-ORDER
SYSTEM WITH INPUT DELAY

Consider the following fractional order systerm:⎧⎨
⎩ Dqx (t) = A0x (t) +

n∑
i=1

Aix (t − τi) + B0u, (t) t ≥ 0

x (t) = Ψx (t) , t ∈ [−τ, 0]
(6)

where Dq denotes Riemann-Liouville derivative of order q,
0 < q < 1, Ψx(·) is a given continuous function on [−τ, 0],
τ = max(τ1, τ2, · · ·, τn) ,and τi is a constant with τi > 0.In
Eq.(6),x(t) ∈ Rnis a state vector,u(t) ∈ Rmis a input
control vector,A0, Ai, B0 are constant system matrices of
appropriate dimensions,and the system is defined over time
interval J = [0, T ],where T is a positive number ,u(t) is a
given continuous function on [0, T ].
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Let us denote by C([a, b]) the space of all continuous
real functions defined on [a, b] and by C([a, b], Rn) the
Banach space of continuous functions mapping the interval
[a, b] into Rn with the topology of uniform convergence.Let
C = C([−τ, 0], Rn),if [a, b] = [−τ, 0],and designate the norm
of an element ‖Ψx‖C in C by

‖Ψx‖C = sup
−τ≤θ≤0

‖Ψ (θ)‖ (7)

Before proceeding further,we will introduce the following
some definition and lemmas which will be used in the next
section.

Definition 3.1 The system given by homogeneous state
equation (6) (u(t) ≡ 0,∀t), satisfying initial condition x(t) =
Ψx(t), −τ ≤ t ≤ 0 is finite-time stable w.r.t.{δ, ε, J}, if and
only if:

‖Ψx‖C < δ (8)

imply:
‖x (t)‖ < ε, ∀t ∈ J (9)

Where J denotes time interval J = [0, T ].

Definition 3.2 The system given by (6) satisfying initial
condition x(t) = Ψx(t), −τ ≤ t ≤ 0 is finite-time stable
w.r.t.{δ, ε, qu, J}, if and only if:

‖Ψx‖C < δ (10)

and
‖u (t)‖ < qu,∀t ∈ J (11)

imply:
‖x (t)‖ < ε, ∀t ∈ J (12)

Where J denotes time interval J = [0, T ].
Let

f (t) =
∫ t

0

(t − s)p ‖x (l)‖dl, ∀t ∈ J, p > 0 (13)

we have the following definition.

Lemma 3.1 ([9] Generalized Gronwall Inequality) Suppose
x(t), a(t) are nonnegative and local integrable on 0 ≤ t < T
,some T ≤ +∞,and g(t)is a nonnegative,nondecreasing con-
tinuous function defined on 0 ≤ t < T ,g(t) ≤ M =const,q >
0,with

x (t) ≤ a (t) + g (t)
∫ t

0

(t − s)q−1
x (s) ds (14)

on this interval.Then

x (t) ≤ a (t)

+
∫ t

0

[ ∞∑
n=1

(g(t)Γ(q))n

Γ(nq) (t − s)nq−1
a (s)

]
ds

(15)

where 0 ≤ t < T .

Lemma 3.2([9]) Under the hypothesis of Lemma 3.1, let
a(t) be a nondecreasing function on [0, T ) .Then holds:

x (t) ≤ a (t) Eq (g (t) · Γ (q) · tq) (16)

Where Eq is the Mittag-Leffler function defined by

Eq (z) =
∞∑

k=0

zk

Γ (kq + 1)
(17)

IV. MAIN RESULTS

Theorem 4.1 The system given by (6) satisfying initial
condition x(t) = Ψx(t), −τ ≤ t ≤ 0 is finite-time stable
w.r.t.{δ, ε, qu, J},if the following condition is satisfied:[

1 +
(n + 1)σtq

Γ (q + 1)
+

qu · b0 · tq
δΓ (q + 1)

]
Eq ((n + 1)σtq) <

ε

δ
(18)

where σmax(·) being the largest singular value of matrix (·)
and

σ1 = max
1≤i≤n

{σmax (Ai)}
σ = max {σmax (A0) , σ1}
bo = σmax (B0)

(19)

Proof: In accordance with the property of the fractional order
0 < q < 1, one can obtain a solution in the form of the
equivalent Volterra integral equation:

x (t) = x (0) + 1
Γ(q)

∫ t

0
(t − s)q−1

A0x (s)

+
n∑

i=1

Aix (s − τi) + B0u (s) ds
(20)

Applying the norm ‖ · ‖ on Eq.(20)and using appropriate
property of the norm,it follows that

‖x (t)‖ ≤ ‖x (0)‖ + 1
Γ(q)

∫ t

0
(t − s)q−1

×
∥∥∥∥A0x (s) +

n∑
i=1

Aix (s − τi) + B0u (s)
∥∥∥∥ ds

≤ ‖Ψx‖C+ 1
Γ(q)

∫ t

0
(t − s)q−1(‖A0‖ ‖x (s)‖

+
n∑

i=1

‖Ai‖ ‖x (s − τi)‖ + ‖B0‖ ‖u (s)‖)ds

≤ ‖Ψx‖C+ 1
Γ(q)

∫ t

0
(t − s)q−1(σ (n + 1)

× sup
s−τ≤t∗≤s

‖x (t∗)‖ + ‖Ψx‖C + b0qu)ds

≤ ‖Ψx‖C

+σ(n+1)
Γ(q)

∫ t

0
(t − s)q−1 sup

s−τ≤t∗≤s
‖x (t∗)‖ ds

+ 1
Γ(q) (σ (n + 1) + ‖Ψx‖C + b0qu)

× ∫ t

0
(t − s)q−1

ds

=
(
1 + σ(n+1)tq

Γ(q+1)

)
‖Ψx‖C + b0qutq

Γ(q+1)

+σ(n+1)
Γ(q)

∫ t

0
(t − s)q−1 sup

s−τ≤t∗≤s
‖x (t∗)‖ds

(21)
let

a (t) = ‖Ψx‖C

[
1 + (n+1)σ·tq

Γ(q+1)

]
+ qu·b0·tq

Γ(q+1)

g (t) = (n+1)σ
Γ(q)

(22)

by(21),we have

‖x (t)‖ ≤ a (t) + g (t)
∫ t

0

(t − s)q−1 sup
s−τ≤t∗≤s

‖x (t∗)‖ ds

(23)
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Obviously,the right of the Eq.(23)is the nondecreasing contin-
uous functions defined on [0.T ].We have

sup
t−τ≤t∗≤t

‖x (t∗)‖ ≤ a (t)

+g (t)
∫ t

0
(t − s)q−1 sup

t−τ≤t∗≤t
‖x (t∗)‖ds

(24)
Now, one may apply generalized Gronwall inequality, here,
obviously, it is easy to show:

‖x (t)‖ ≤ a (t) · Eq (g (t) · Γ (q) · tq)
≤ a (t) · Eq ((n + 1) σ · Γ (q) · tq) (25)

and

‖x (t)‖ ≤
[
δ
(
1 + (n+1)σ·tq

Γ(q+1)

)
+ qu·b0·tq

Γ(q+1)

]
·

×Eq ((n + 1)σ · Γ (q) · tq)
(26)

Hence, using the basic condition of Theorem4.1, relation (18)
yields:

‖x (t)‖ < ε, ∀t ∈ J0 (27)

This is a proof of the theorem.
When u(t) = 0,we can get Theorem 4.2.

Theorem 4.2 The liner autonomous system given by (6)
satisfying initial condition x(t) = Ψx(t), −τ ≤ t ≤ 0 is finite-
time stable w.r.t.{δ, ε, J},∀t ∈ J if the following condition is
satisfied:(

1 +
(n + 1) · σ · tq

Γ (q + 1)

)
Eq ((n + 1) σ · tq) ≤ ε

δ
(28)

Proof: The proof immediately follows from the proof of
Theorem 4.1 applying the same procedure taking into account
Eqs.(8)and (28).

V. AN ILLUSTRATIVE EXAMPLE

Using a time-delay PDq compensator on a linear system of
equations with respect to the small perturbationz(t) = y(t) −
yd(t),one can obtain:

•
z (t) +ωz (t) = Kp1z (t − τ1) + KD1 · dz(q)(t−τ1)

dtq

+Kp2z (t − τ2) + KD2 · dz(q)(t−τ2)
dtq + u (t)

(29)
Whereq = 1

2 ,ω = 2,KP1 = 3,KD1 = 4,KP2 = 0.1,KD2 =
0.2, and u(t)is feed forward control,KPi ,KDi are gain matrix.
Also,all initial values are zeros.introducing:

x1 (t) = z1 (t)
x2 (t) = d1/2z(t)

dt1/2

(30)

and

Dq
t x1 (t) = D

1/2
t z1 (t) = x2 (t) (31)

Dq
t x2 (t) = D

1/2
t

(
D

1/2
t z (t)

)
=

·
z (t)

= −2x1 (t) + 3x1 (t − τ1) +4x2 (t − τ1)
+0.1x1 (t − τ2) + 0.2x2 (t − τ2) + u (t)

(32)

Or ,in condensed form,where x(t) = (x1, x2)T ,we can
obtain this as:

D
1/2
t x (t) =

[
0 1
−2 0

] [
x1 (t)
x2 (t)

]

+
[

0
1

] [
3 4

] [
x1 (t − τ1)
x2 (t − τ1)

]

+
[

0
1

] [
0.1 0.2

] [
x1 (t − τ2)
x2 (t − τ2)

]
+

[
0
1

]
u (t)

(33)
or

D
1/2
t x (t) = A0x (t) + A1 (t − τ1) + A2 (t − τ2) + B0u (t)

(34)
with the initial state of the function:

x (t) = ψx (t) = 0,−τ ≤ t ≤ 0 (35)

And now, we check the finite-time stability w.r.t

{t0 = 0, J = [0 , 10] , δ = 0.1, ε = 100, τ1 = 0.1, τ2 = 0.01,
qu = 1}

(36)
where Ψx(t) = 0,∀t ∈ [−0.1, 0].
From the initial data and Eqs.(33)and (6)one can obtain:
‖ψx (t)‖C < 0.1, σmax(A0) = 2, σmax(A1) = 5,
σmax(A2) = 2

√
0.05,b0 = 1

Then,we can obtain: σ = 5.
Applying the condition of Theorem (4.1) we can get:[

1 + (2+1)·5·Te
0.5

Γ(0.5+1) + 1·1·Te
0.5

0.1·Γ(0.5+1)

]
·E0.5

(
(2 + 1) · 5 · Te

0.5
)

< 100
0.1

(37)

and then T ≈ 0.15.
Te being”estimated time” of finite time stability.
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