
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

730

Consistent Modeling of Functional Dependencies
along with World Knowledge

Sven Rebhan, Nils Einecke and Julian Eggert

Abstract—In this paper we propose a method for vision systems
to consistently represent functional dependencies between different
visual routines along with relational short- and long-termknowledge
about the world. Here the visual routines are bound to visualproper-
ties of objects stored in the memory of the system. Furthermore,
the functional dependencies between the visual routines are seen
as a graph also belonging to the object’s structure. This graph is
parsed in the course of acquiring a visual property of an object to
automatically resolve the dependencies of the bound visualroutines.
Using this representation, the system is able to dynamically rearrange
the processing order while keeping its functionality. Additionally, the
system is able to estimate the overall computational costs of a certain
action. We will also show that the system can efficiently use that
structure to incorporate already acquired knowledge and thus reduce
the computational demand.

Keywords—Adaptive systems, Knowledge representation, Machine
vision, Systems engineering

I. I NTRODUCTION

COGNITIVE vision systems, both technical and biologi-
cal, with at least a minimal claim on generality have to

carefully select the information they acquire from their envi-
ronment. This is necessary to fulfill constraints on computing
and memory resources. Therefore, those systems implement
algorithms to focus on certain aspects of the surrounding
scene, depending on their need, their task and their knowledge
about the world they have accumulated. This flexible control
architecture like proposed in [1] must be able to dynamically
rearrange the processing pathways of the system, use the
already acquired knowledge and estimate the cost and benefits
of the system’s actions. To achieve this in a reasonable manner
the system not only needs knowledge about relations between
objects, but also needs knowledge about the relations of
internal routines it can use to acquire information about its
vicinity. This knowledge could then be used to determine
which actions the system has to perform to measure a certain
property of an object. If, for example, the system wants to
measure which color an object is, it first needs to know
where the object is and what retinal size it approximately has.
Determining the position of an object might involve further
processing which is again a dependency of the localization
module and so on. The structure we have chosen makes it
possible to model those dependencies along with the world
knowledge the system has in a relational memory. In this
paper, we concentrate on how we can efficiently represent the
knowledge about dependencies between different routines and
on how to use it in a system context.

S. Rebhan, N. Einecke and J. Eggert are with the Honda Research Institute
Europe GmbH, Carl-Legien-Str. 30, 63073 Offenbach/Main, Germany, e-
mail: sven.rebhan@honda-ri.de.

In computer science, problems similar to the representation
of such dependencies exist. Those problems on representing
the data flow of a computer program date back to the work
of Dennis [2], [3]. In this and later work, graph structures
are used to analyze the data and control flow of a computer
program to parallelize and optimize the program by a compiler
[4], [5]. There, the program dependence graph ”[introduces]
a partial ordering on the statements and predicates in the
program that must be followed to preserve the semantics of
the original program” [4, p. 322]. In the domain of computer
vision, data flow graphs are also used to ease the design of
vision systems and keep their complexity manageable [6].

However, all the mentioned methods map a fixed and
predefined algorithm to a graph structure. This structure is
used for parallelizing and optimizing that fixed algorithm later.
Contrary to that, we propose a method to implement anon-
demandvision system that parses its internal representation
of the dependencies anddynamically createsa program for
acquiring the requested property of an object. As the vast
majority of the literature in the field of computer science
shows, graph structures are well-suited for that purpose. In
this paper we will show that:

• Using graph structures we are able to consistently model
functional dependencies between object properties along
with the property structure of objects and world knowl-
edge, both short- and long-term.

• Using graph structures, the system is provided with the
means to estimate the costs of a certain measurement.
The graph size for measuring a certain property can be
used as a cost function.

• Using our proposed parsing algorithm, knowledge already
acquired by the system can be reused in a simple and effi-
cient way. This leads to a reduction of the computational
demand and speeds up operations of the system.

• Using our proposed parsing algorithm, the complexity of
designing the vision system is considerably reduced by
only modeling direct dependencies.

In the next section we present the memory structure of the
system together with the way we are modeling the functional
dependencies. We will also elucidate modifiers required for
covering the whole functionality of a vision system in the
dependency structure. In section III we propose a parsing al-
gorithm that exploits the previously described graph structure.
We discuss some special situations we came across when
working with that structures. Using the parsing algorithm
presented in section III we perform some experiments in a
proof-of-concept system based on the architecture proposed



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

731

in [1] and finally discuss our results in section V.

I I . RELATIONAL MEMORY

Memory Structure

proposed in [7] for representing information in the short-
and long-term memory. This relational memory is, contrary to
many other semantic memories, able to represent an arbitrary
number of link patterns. Thus we can define classical link
types like ”hasProperty” , ” isPartOf” or ” isContainedIn” as
shown in Fig. 1. Additionally, we store a sensory represen-

Fig. 1. The employed relational memory can represent an arbitrary number
of link patterns. Some examples are shown here. See [7] for details.

tation in the property nodes to be able to later feed back
that information into the system. Along with the sensory
representation a direct link to the visual routine used for
acquiring a certain property is stored in the property nodes.
Thus we can demand the attached visual routine to deliver
information. The objects in the memory are composed of
several visual properties.

Beside the classical link patterns, we can also construct
dependency patterns. The dependency pattern that can be seen
in Fig. 2 readsas ” the measurement of A dependson operation
op of B” . Given this link, we can measure A in a demand-

A B
op

Measurement
request

Fig. 2. The measurement of node A depends on the operation op of node
B. We store this pattern in exactly the same memory as shown in Fig. 1.

driven way: if the system needs to measure node A, it knows
it has to perform op of node B before being able to process A.

The operation op of B has no further dependency and can thus
be performed directly. Afterwards A can be measured. If the
structures are getting more complex and the graph is getting
deeper, a more sophisticated algorithm is needed to parse the
graph. Details can be found in section III.

Link Modifiers

Even though Ballance et. al state in their paper that ”neither
switches nor control dependence are required for a demand
driven interpretation” [8, p. 261], we need some modifiers for
the dependency link patterns to cover interesting cases of a
vision system. Those interesting cases are:

• The operation of node B is optional and not absolutely
required for measuring node A, but would e.g. improve
the result of the measurement. For example a spatial
modulation map could constrain the search space for an
object, but is not necessary, as in the latter case the whole
space has to be searched for the object (see Fig. 3 a).

• The system requires different operations for the target
nodeto beexecuted before it isable to process thecurrent
node (see Fig. 3 b).

• There might be alternative ways to measure a certain
property and the system only needs to fulfill one of
several dependencies. Think of different segmentation
algorithms for estimating the shape of an object, where
only one of those algorithms is required to get a shape
(see Fig. 3 c).

B

A

B

A

B

A

C

and/or

a) b) c)

C

mandatory optional
send /

receive

Fig. 3. We cover different cases using modifiers for a dependency link
pattern: a) dependencies can be optional or mandatory, b) different operations
(send and receive) are requested for the target node and c) we differentiate
between the need for all dependencies or only one-of-many dependencies to
be fulfilled.

The generic pattern we implement reads as ”A depends de-
pendency type on operation of B logical mode depends de-
pendency type on operation of C...” In our case, the modifiers
of this generic pattern are:

• Dependency type: The link between the node can be
mandatory or optional as shown in Fig. 3 a.

• Operations: We realize send and receive operations that
push or pull information of the target node, respectively
as shown in Fig. 3 b.

• Logical mode: The node ”A can depend on B AND C”
or node ”A can depend on B OR C” . That way we can
mark alternativepathwaysby using the logical OR mode,
else node A depends on all target nodes (see Fig. 3 c).

Node States

In our case each node has a state marking the validity of
the node data. We later use this to determine if the node
information needsto beupdated i.e. thevisual routinebound to

In our vision system weuse the relational semantic memory



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

732

this node needs to be executed or not. Basically there are two
states, as the data is either valid or invalid. In the beginning,
all nodes contain invalid data. After updating, i.e. receiving
information from a visual routine, the datum of the node is
valid. The transition of the node’s state back to invalid can
be determined by time or any other criteria. In section III you
will see how we use the state of the nodes to dynamically
reduce the number of operations when we encounter a node
with valid data.

System Memory Layout

After discussing the different link types, operations, mod-
ifiers and node states, we now present the actual designed
prototypical memory patternswe use in our system. The upper
part of Fig. 4 shows the view on the designed object structure.
You can seethat theobject propertiesarebound to thedifferent
visual routines (shown in the upper left). In the lower part of
Fig. 4 the designed dependency patterns are shown. Please
note that the illustration only shows two different views on
the memory content. Both representations coexist in the very
same memory using the same nodes. As you can see, we only
define the direct dependencies of the node and not the whole
tree. This eases the design process, as it keeps the system
structure manageable. The complete dependency tree will later
be generated on the fly using the parsing algorithm described
in the next section.

I I I . DEPENDENCY PARSING

its knowledge, about both the world and its internal
functional dependencies. In this section we will show how
we use that knowledge for implementing a demand-driven
acquisition of sensory information about the system’s vicinity.
If we look back at the bottom of Fig. 4, we see that we define
only direct dependencies. To update a property of an object
like its 3D-position (world location), we need to resolve the
dependenciesof that node. The resolved dependency graph for
the world location in Fig. 5 illustrates the necessary steps.

Recursive Parsing

In the exampleof receiving the world location (see the steps
in Fig. 5), this would require the measurement (receiving)
of the retinal location (1) and the distance of the object, as
we can calculate the 3D-position of the object by means of
a depth estimation algorithm. However, the measurement of
e.g. the retinal location itself depends on sending a spatial
modulation map (2). If you take a closer look, you will see
that the dependency is optional, as we can also measure the
retinal location without having a modulatory input. If we
follow the graph further, we see that the sending of the spatial
modulation map itself depends on the acquisition (receiving)
of the spatial modulation map (3). This makes sense, as we
first must have the modulatory information before using it.
Looking at the steps we have done up to here, we already can
see that parsing the dependency graph can be formulated as a
recursive problem. So we implement our parsing algorithm as
a recursive function, as can be seen in the pseudo-code at the
end of this section.

Visual routines

Color measurement
module

Stereo computation
module

Saliency module

Level-set module

Region growing
module

Prototypical memory layout

RetinalLocation

WorldLocation

Color

Distance

SaliencyCueWeights

PhysicalSize

SpatialModulationMap

ObjectMask

RetinalSize LevelSet

RegionGrowing

Object

Dependency Definitions

Legend

Distance

PhysicalSize

ObjectMask

distance levelset

RetinalLocation

location

region

RegionGrowing

RetinalLocation

SpatialModulationMapSaliencyCueWeights

saliency_weights modulation_spatialmap

location

modulation_spatialmap

ColorColor

SpatialModulationMap colormodulation_color

SaliencyCueWeights

saliency_weights

SpatialModulationMap

modulation_spatialmap

SpatialModulationMap

ObjectMask

location

RetinalLocationSpatialModulationMap

Distance Distance

modulation_spatialmap

SpatialModulationMapdistancemodulation_distance

WorldLocation

location

Distance

distance

RetinalLocation

RetinalSize

SaliencyCueWeightsSpatialModulationMap

modulation_spatialmap saliency_weights

radius

modulation_levelset

LevelSet

levelset

modulation_levelset

LevelSet

location

RetinalLocation

ObjectMask

RetinalSize

radius levelset

LevelSet

region

RegionGrowing

Node should perform

receive operation.

Node should perform

send operation in

"OR" mode.

Dependency is

mandatory

Dependency is

optional.

Node should perform

send operation.

Fig. 4. On top the prototype of an object structure is displayed as used by our
system. You can see the binding (gray lines) to the visual routines (rectangles),
both feed-forward and feed-back. At the bottom, the dependency structure
can be seen. The color indicates the operation the node should perform. The
rectangles mark the bindings (gray lines) to visual routine variables.

Circular Dependencies Detection and Handling

We now continue the example and pursue the dependencies
one step further (see Fig. 6). We find that the measurement of
the spatial modulation map dependson the measurement of an
object mask and on the measurement of the retinal location (4)
of the object. These two information are necessary to create
the spatial modulation map at the correct location with the
correct shape. However, we have already visited the retinal
location node before. What we see here is a loop or circular

The last section illustrated the way the system represents



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

733

Resolved world location dependency tree

WorldLocation

Distance

distance

RetinalLocation

location

SpatialModulationMap

modulation_spatialmap

SpatialModulationMap

ObjectMask

SaliencyCueWeights

saliency_weights

1

2

3

Fig. 5. The resolved dependency tree for the world location property of
the object looks much more complex than the definitions in Fig. 4. We did
not completely resolve the graph here for simplicity (cut at the object mask
node). The path described in the text is marked red.

Cyclic dependency handling

WorldLocation

Distance

distance

RetinalLocation

location

SpatialModulationMap

modulation_spatialmap

SpatialModulationMap

ObjectMask

SaliencyCueWeights

saliency_weights

1

2

3

4

cut this

branch

Fig. 6. The detection of a cyclic dependency at the retinal location node
leads to a trace back of the path (red). Finally the circular dependency can
be resolved by cutting the branch between the retinal location and the spatial
modulation map nodes.

dependency, which would lead to a dead-lock situation if the
system did not have means to deal with it. So the first impor-
tant point is to detect such circular dependencieswhich can be
easily done by marking visited nodes in the graph and check
if the node is already marked before entering it. The second
important question is what to do once a circular dependency
is detected. Here the dependency types described in section II
come into play. After detecting a circular dependency, we go
back (4) to theparent node(spatial modulation map) and check
if the dependency is mandatory or optional. If the dependency
is optional, we are done, as we can simply cut the loop at
this point without breaking the algorithm. This is because the
information that is missing is not essential for the algorithm to
run. However, if the dependency is mandatory, the system can
not resolve the dependencies of the current node. The latter
case is true for our example, because the spatial modulation
map requires the retinal location to be known. Thus the system
needs to go back another step (3) and check if the operation
of the dependency graph’s parent can be executed (in our case

the sending of the spatial modulation map). As you can see in
Fig. 6, this is not the case, as sending the spatial modulation
map strictly depends on receiving it first. Again, we have
to trace back the dependency path one step (2). This brings
us back to the receiving of the retinal location, which only
optionally depends on sending the spatial modulation map. At
this point we can ”solve” the circular dependency by cutting
the complete branch leading to the loop. The procedure for
handling circular dependencies can be summarized as:

1) Detect a circular dependency.
2) If the current link leading to a dependency loop is

optional, cut it and thus remove the whole branch
containing the circular dependency.

3) Otherwise check if we are already at the root node.
In this case, the dependencies can not be resolved and
an error should be returned. If we are not yet at the
root node, trace back the dependency path one step and
continue with step 2.

Reusing Already Acquired Knowledge

One of the biggest advantages of our approach to flexibly
model functional dependencies is the fact that we can reuse
the knowledge the system has. For doing so we introduced the
node state in section II. This node state tells the graph parsing
algorithm if a node requires updating, i.e. performing the
operation required by itsparents in thedependency graph, or if
it already holds valid data. If the node already has valid data,
the system does not need to execute the whole dependency
sub-tree below the node. Let us assume that we have already
measured the retinal location (the data is still valid) and we
now want to update the world location of that object. This
will lead to the reduced graph you can see in Fig. 7. If you

Resolved world location dependency tree

WorldLocation

Distance

distance

RetinalLocation

SpatialModulationMap

modulation_spatialmap

SpatialModulationMap

ObjectMask

Fig. 7. By incorporating knowledge already acquired by the system, the
structure of the effective dependency graph changes and its size shrinks.

compare that graph to the original one in Fig. 5, you see that
the resulting graph is smaller. This means that the structure
of the dependency graph is determined by the knowledge of
the system. This is a main difference to previously proposed
methods like [4], [8], [6], only working on fixed graphs.
Eventually, the graph shrinks by incorporating the knowledge
of the system, leading to a more efficient and less demanding
system.



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

734

Alternative Pathways

Alternative ways of measuring a certain object property
are desirable in a cognitive vision system, as the redundancy
often increases the robustness of the system. This is because
different algorithms for determining a property might differ in
the assumptions they make on the data, the way they compute
the result, thespeed, theaccuracy and theweaknessthey might
have. Therefore, we also need to add a way to deal with
such alternative pathways. In our example shown in Fig. 8
we have three different segmentation algorithms: a simple
size estimation using the saliency map (see [9] for details),
a region-growing method (see [10]) and a level-set method
(see [11]). For modeling alternative pathways we introduced

ObjectMask

RetinalSize

radius levelset

LevelSet

region

RegionGrowing

Fig. 8. Themask of an object can becalculated by any of the three algorithms
(retinal size estimation using the saliency, region growing and a level-set
method). However, only one of these alternatives has to be run to get the
mask.

the logical OR mode in section II. As you can see in Fig. 8
the ”object mask” node is marked by a bluish color which
indicates ”OR nodes” . The OR mode is interpreted by the
graph parser as ”only one of these dependencies is required” .
To calculate the object mask we only need to start oneof these
routines. However, if you look at the different algorithms,
you will see that they differ in speed, initial requirements
and accuracy. The retinal size estimation is very fast and
only needs the object’s location as an initial value, but is not
very accurate. The region-growing is fast (but slower than the
retinal size estimation), only needs the object’s location as an
initial value and is more accurate at least for homogeneously
structured objects. The level-set method on the other hand is
relatively slow compared to the other two algorithms, needs
an initial segmentation to start, but is very accurate even
for structured objects. One consequence of the mentioned
properties is that the level-set method can never be used for
initially estimating the object mask, because it needs an initial
mask to run. Furthermore, the system should be able to select
the algorithm that is as accurate as required, but as fast as
possible. What we need here is a decision dependent on the
current system’s state (e.g. required accuracy and available
time) and the system’s knowledge (e.g. initial object mask). In
the easiest implementation the parser now tries to resolve the
dependenciesconsecutively until oneof them can beresolved1.
If none of the dependencies can be resolved, a trace back as
described in the circular dependency case can be performed.
Besides the resolvability of the dependencies an extended
version of the parsing algorithm could take into account the
costs and accuracy of the different pathways.

1A node can deny its execution if its initial conditions are not fulfilled.

Pseudo-code

The pseudo-code of our graph parsing algorithm has a
recursive nature as the problem is recursive. The algorithm
dynamically generates the dependency graph starting from the
requested property. It also needs to take into account the cyclic
dependency detection and handling. The update procedure
reads as follows:

Procedure UpdateNodeValue:
(a) Check the ability of the node to run

(1) Check the current node for valid data. If it already has valid data,
we skip any operation and return success.

(2) Check for a cyclic dependency indicated by an already set visited
flag. If we detect a cyclic dependency, hand the corresponding
error to the node’s parent.

(3) Set the visited flag for the current node.

(b) Updating dependencies
(1) Get the list with all dependencies for the current node.
(2) For each dependency (child node) do:

(2.1) Call UpdateNodeValue on the child node.
(2.2) Check the return code of the call for a cyclic dependency

error. If we get such an error and we have a mandatory
dependency for that child node, propagate the error further
up to our parent. For an error on an optional dependency we
continue with processing the next dependency in the list.

(2.3) If we are on a logical or node, we can leave the loop
and continue with (c), because at least one dependency is
fulfilled.

(c) Execute current node’s operation
(1) Perform the send or receive operation of the current node as

requested by theparent and optionally store thesensor data locally.
(2) Set the data validity flag.
(3) Remove the visited flag.

IV. EXPERIMENTS

By using the algorithm above and the structural definitions
shown in Fig. 4 we have implemented a proof-of-concept
system. The memory content of the system can be seen in
Fig. 9. In the ”prototypes” section of Fig. 9 only the structure
of an object is defined i.e. it is defined which properties
constitute an object and how they relate. In our proof-of-
concept system we only use ”hasProperty” links (black). In the
”SensoryInterface” section we inherit the object structure and
add the dependency definitions and the bindings to the visual
routines. The dependency structure originates from the direct
dependency definition shown in Fig. 4. The long-term memory
inherits the object structure from the ”SensoryInterface” . Here
only the ”hasProperty” linksare shown to maintain readability.
For our proof-of-concept system we handcrafted the memory
content, but we are planning to investigate ways to learn the
content. As you can see, not all properties are instantiated
per object (here only color and size are chosen). However,
other nodes like retinal location or distance can be instantiated
on demand. Property nodes in the long-term memory store
sensory representations which are stable for the objects linked
to them. Other more volatile object information is not stored
there, but rather measured in a concrete scene and stored
in the short-term memory. The content of the short-term
memory inherits its structure from the long-term memory. To
summarize, we propagate the object structure by inheritance



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

735

LongTermMemory

ToyCar

large

Cup

yellow

Chair

gray

small

Ball

black

Pen

Coin

Monitor

Apple

MobilePhone

Penguin

Mouse

red

Keyboard

Puncher

medium

white

ShortTermMemory

obj_1

SensoryInterface

SpatialModulationMap

LevelSet

Distance

WorldLocation

RetinalLocation

RetinalSize

ObjectMask

Color

PhysicalSize

SaliencyCueWeights

Object

RegionGrowing

Prototypes

RetinalSize

RetinalLocation

SaliencyCueWeights

WorldLocation

SpatialModulationMap

ObjectMask

Distance

Object

RegionGrowing

Color

LevelSet

PhysicalSize

Fig. 9. On the left hand side you see both the ”hasProperty” and the
”dependsOn” connectivity. On the right hand side you see the pure structural
definition (top) and the content of the long-term memory (bottom).

through the different memory instances starting from the pro-
totypical definitions down to the short-term memory. Beside
thisstructural information the representation is enriched by the
bindings to the sensors and the graph linking nodes depending
on each other. Thebinding and dependency graph is introduced
in the ”SensoryInterface” layer. Up to this point no real values
are filled into the property nodes. This happens in the long-
term memory for longtimestablesensor data that can be linked
to one or more objects.

Based on this memory structure we now want to show what
an update process for a node looks like. The update process
for the color property of object 1 is illustrated in Fig. 10.
Please note that the dependency resolving process and the
subsequent information propagation process are implemented
asynchronously. The first step to update a property is to
instantiate it (see Fig. 10 a). In doing so, the properties up
to the prototypical definitions are inherited. One of those
properties are the dependencies of the node. To measure the
color of an object we need a spatial modulation map, which
in turn requires the retinal location of an object, which again
needs weight factors for the saliency. You can see the result
of that propagation process in Fig. 10 b. Because the weights
for the saliency have no further dependency, they can be sent
right away. After doing so, all dependencies of the retinal
location node are fulfilled and it requests its visual routine
for data (see Fig. 10 c). After triggering the visual routine
of the retinal location node, the process continues at the
spatial modulation map. As defined previously (see Fig. 4),
the modulation map requires an object mask to be processed.
The object mask is an OR node, because three alternative
measurement processes exist (retinal size estimation, region
growing and a level-set method). Only one of these visual
routines needs to run. As shown in Fig. 10 d, the object
mask node first tried to trigger the level-set measurement.
However, as described in section III, this algorithm needs

a)

b)

c)

d)

e)

f)

g)

Fig. 10. This shows the update process for the color property of object 1
zoomed into the short-term memory. Color codes: Nodes currently resolving
dependencies (gray), nodes waiting on data to receive (cyan), nodes waiting
on data to send (yellow) and nodes finished sending data (red).

an initial mask to run. We do not have such a mask yet,
so we tried the region growing method next, which was
successful. Because the region growing node was the last leaf
node, the dependencies could be resolved by tracing back the
dependency path while executing the node operations. This



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

736

can be seen in Fig. 10 e to g. Finally, all cyan nodes triggered
their visual routine to deliver data. Thespatial modulation map
(yellow) waits on data to send them.

When the data arrives from the visual routines, they get
propagated upwards along the dependency tree. In Fig. 11 the
retinal location and the mask of the region growing algorithm
arrive (almost) simultaneously. The information about the

Fig. 11. The arriving information (retinal size and region growing mask)
travels along the dependency tree and triggers computations in their parent
nodes. Color code as in Fig. 10 and nodes have finished receiving (green).

region growing mask then travels upwards to the object mask
where the processing can be finished. With a valid object mask
and the retinal location of the object, a spatial modulation
map can becomputed and sent subsequently. After sending the
spatial modulation map, the visual routine of the color node
runs and eventually returns the color (see bottom of Fig. 11).

Now let us assume that after some time, the data of some
nodes gets invalid again. Such a case is shown in the top
row of Fig. 12 where the data of the nodes retinal location,
region growing and object mask got invalid. Furthermore, let
us assume that the system needs to know the distance of
object 1. Receiving the distance requires sending the spatial

Fig. 12. The system requests the distance of the object. During this process,
the existing information about the spatial modulation map gets reused. This
reduces the computational demand dramatically.

modulation map (see Fig. 4). Typically, sending this map
requires the retrieval of the map, but in this case, the data of
the spatial modulation map is still valid. Thus there is no need
for updating and we can continue with just sending out the
information. If you compare this to the procedure in Fig. 10,
where sending the spatial modulation map triggered the whole
object mask and retinal location branch, the computational
effort is reduced dramatically. Finally, thedistance is requested
and received by the system as shown at the bottom of Fig. 12.

V. CONCLUSION AND FUTURE WORK

In this paper we have presented a system that uses graph
structures to represent both knowledge about functional de-
pendencies and knowledge about the world in a consistent
way. We exploit the fact that the relational semantic memory
in our system can represent an arbitrary number of link
patterns between nodes and is furthermore able to bind visual
routines to its nodes. In the paper we concentrated on the
modeling of dependency links and introduced some modifiers



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:3, No:6, 2009

737

for that link pattern, which allow to cover important use
cases for vision systems. We have discussed the cases of
optional and mandatory information, different node operations
modeling the direction of information flow and alternative
pathways. We proposed a parsing algorithm based on the
dependency link structure, which is able to detect and under
certain circumstances”resolve” circular dependencies. Beyond
this, the parsing algorithm is also able to efficiently reuse
previously acquired sensory information and thus reduces the
computational demand while keeping the full function of the
system. Our experiments show that with this framework we
are able to build systems that acquire data on demand and are
able to flexibly adapt their processing chain.

Even though this paper provides a basis for such flexible
control structures, many interesting questions that aroseduring
the experimentsare not answered yet. Some of those questions
and ideas we would like to mention here. One thing we did
not cover in this paper is the possibility for the system to
estimate the costs of a certain action. In section II we briefly
mentioned that the number of dependency nodes can be used
as a cost function. However, onecould also think of measuring
the time a certain action takes and use this as a cost function.
With this information, the system could learn which actions
it can take if a time constraint applies. In the same direction,
the system could furthermore learn how accurate and reliable
a certain pathway is and use fast but coarse functions in cases
where precise information is not necessary. To push this a step
further, thesystem could also try to find thedependenciesitself
and learn ”optimal” processing queues.

Beside estimating the dependency structure we could easily
exploit the consolidated findings from computer science like
[4] and later work to optimize and parallelize processing
pathways. The algorithms found there can be easily applied,
as the underlying structure is comparable.

REFERENCES

[1] Julian Eggert, Sven Rebhan, and Edgar Körner. First steps towards
an intentional vision system. In Proceedings of the 5th International
Conference on Computer Vision Systems (ICVS), 2007.

[2] Jack B. Dennis. First version of a data flow procedure language.
In Proceedings of the Colloque sur la Programmation, volume 19 of
Lecture Notes in Computer Science, pages 362–376, London, UK, 1974.
Springer-Verlag.

[3] Jack B. Dennis. Data flow supercomputers. Computer, 13(11):48–56,
November 1980.

[4] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program
dependence graph and its use in optimization. ACM Transactions on
Programming Language and Systems, 9(3):319–349, July 1987.

[5] Robert Cartwright and Matthias Felleisen. The semantics of program
dependence. In Proceedings of the ACM SIGPLAN 89 Conference
on Programming Language Design and Implementation, pages 13–27,
1989.

[6] Per Andersson. Modelling and implementation of a vision system for
embedded systems, 2003.

[7] Florian Röhrbein, Julian Eggert, and Edgar Köerner. Prototypical
relations for cortex-inspired semantic representations. In Proceedings
of the 8th International Conference on Cognitive Modeling (ICCM),
pages 307–312. Psychology Press, Taylor & Francis Group, 2007.

[8] Robert A. Ballance, Arthur B. Maccabe, and Karl J. Ottenstein. The
program dependence web: A representation supporting control-, data-,
and demand-driven interpretation of imperative languages. In Proceed-
ings of the ACM SIGPLAN 90 Conference on Programming Language
Design and Implementation, volume 25, pages 257–271, New York, NY,
USA, 1990. ACM.

[9] Sven Rebhan, Florian Röhrbein, Julian Eggert, and Edgar Körner. Atten-
tion modulation using short- and long-term knowledge. In A. Gasteratos,
M. Vincze, and J.K. Tsotsos, editors, Proceeding of the 6th International
Conference on Computer Vision Systems (ICVS), LNCS 5008, pages
151–160. Springer Verlag, 2008.

[10] Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing,
Analysis, and Machine Vision. Thomson-Engineering, 2 edition, 1998.

[11] Daniel Weiler and Julian Eggert. Multi-dimensional histogram-based im-
age segmentation. In Proceedings of the 14th International Conference
on Neural Information Processing (ICONIP), pages 963–972, 2007.


