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Abstract—Brain ArterioVenous Malformation (BAVM) is an
abnormal tangle of brain blood vessels where arteries shunt directly
into veins with no intervening capillary bed which causes high
pressure and hemorrhage risk. The success of treatment by
embolization in interventional neuroradiology is highly dependent on
the accuracy of the vessels visualization. In this paper the
performance of clustering techniques on vessel segmentation from 3-
D rotational angiography (3DRA) images is investigated and a new
technique of segmentation is proposed. This method consists in:
preprocessing step of image enhancement, then K-Means (KM),
Fuzzy C-Means (FCM) and Expectation Maximization (EM)
clustering are used to separate vessel pixels from background and
artery pixels from vein pixels when possible. A post processing step
of removing false-alarm components is applied before constructing a
three-dimensional volume of the vessels. The proposed method was
tested on six datasets along with a medical assessment of an expert.
Obtained results showed encouraging segmentations.

Keywords—Brain arteriovenous malformation (BAVM); 3-D
rotational angiography (3DRA); K-Means (KM) clustering; Fuzzy C-
Means (FCM) clustering; Expectation Maximization (EM) clustering;
volume rendering.

I. INTRODUCTION

HE term “brain arteriovenous malformation” refers to a set

of cerebral blood vessels comprising tangled abnormal
vessels called the nidus, feeding arteries and draining veins [1].
Due to BAVMs, the blood directly flows from the arterial to
the venous system without passing through the capillaries. This
can cause an increasing in the veins pressure that can become
extremely fragile and prone to bleeding. The most common
BAVM symptoms include spontaneous hemorrhages, epileptic
seizures, headaches, neurological deficits and progressive
neurological deficits [2].

The gold standard for treatment of BAVMs is microsurgery,
which was proved to be safe and effective for the majority of
AVMs smaller than 3 cm in diameter [3]. Another approach is
endovascular embolization that can be used alone or as a
component of a multidisciplinary management [4]. BAVMs
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can also be treated via a radiosurgery [5] delivered by gamma
knife, linear accelerator or heavy charged particle.

It is essential to precisely locate the position of vessels
entering and leaving the malformation, as well as their radii
and bending angles before treatment. Therefore many imaging
techniques have been developed for this purpose. Conventional
catheter angiography (CCA) is used at the end of follow-up to
confirm complete occlusion [1], while for intermediate controls
magnetic resonance angiography (MRA) with time of flight
(TOF) or phase contrast techniques or computed tomography
angiography (CTA) are usually used [6]-[8]. Digital subtraction
angiography (DSA) with 3-D rotational angiography (3DRA)
remains the standard technique [9], providing substantial
additional information on BAVM angioarchitecture [10]-[11].

Despite the numerous different acquisition techniques, the
neuroradiologists need a robust image processing techniques
(vessel extraction, contrast enhancement, etc.) to be efficient
during the intervention. Reviews on vessels extraction
techniques [12]-[13] show that most techniques used in clinical
purposes are semi-automatic requiring user intervention. Such
techniques include specific geometric models problems [14],
shape and flow driven methods [15], region growing and
mathematical morphology [16]. One major problem for those
methods is that they are not able to cope with the wide range of
blood vessel pixel intensities. Weiler et al. [17] introduced a
system (AVM-Explorer) for multi-volume visualization on
vascular structures starting from MRI images. D. Babin et al.
[18] proposed a segmentation algorithm based on projections in
3-D CTA images. M. Hernandez and A. Frangi [19] proposed
an automatic method based on non-parametric geodesic active
regions for segmentation of cerebrovascular structures with
application to brain aneurysms in 3DRA and CTA images.

In the case of endovascular embolization treatment, the
separation between the BAVM and the vessels is required in
order to isolate the malformation. An automatic vessels'
segmentation of 3DRA images is considered highly important
and useful for the clinician, guiding him through the
embolization process.

In this study, a framework that allows an automatic
segmentation of the brain vessels from 3DRA images using
different clustering methods is proposed. It allows extracting
the vascular structures and the BAVMs from the background.
The clustering algorithms: K-Means (KM), Fuzzy C-Means
(FCM) and Expectation Maximization (EM) were separately
tested and, the resulting outputs from each of the clustering
algorithms where analyzed and compared. The rest of the paper
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is organized as follow: section Il provides a detailed
description of the methodology and the used clustering
algorithms while section 11 presents the obtained results that
are discussed in the last section before ending with a
conclusion.

Il. MATERIALS

The 3DRA clinical datasets were acquired at the
Interventional NeuroRadiology department at Fondation
Ophtalmologique de Rothschild (Paris Franace) using a
Philips  Allura unit (Philips Healthcare, Netherlands).
Rotational angiographies were performed using 28 cc of
contrast agent, injected as 4cc per second with a delay of 3
second, and a 210-degree rotation. Each dataset was
reconstructed on a 256 x 256 x 256 image with a voxel size of
0.496 x 0.496 x 0.496 mm®

I11. THE PROPOSED METHOD

Fig. 1 shows the flowchart of the proposed framework for
the automatic segmentation of brain vessels from 3DRA
images. Each image is first processed alone and then the slices
are combined into a 3-D image via volume rendering. The
processing steps start by image enhancement followed by
image clustering using one of the three different approaches
(KM, FCM and EM). After the clustering step, a mask is
created to remove unneeded components from the output
image. Then each connected component of this output is
treated separately for further cleaning.

Load image

Clustering

Clustaring
Refinement

h
Volume
Rendering

Fig. 1 Proposed framework flowchart

A. Image Enhancemet

A first preprocessing step of enhancement was needed in
order to prepare the image for the clustering. Since the color
intensity holds the needed information, nonlinear curves are
avoided for contrast adjustment. Only the input range of the
pixel intensities is clipped to focus on higher intensities.

B. Image Clustering

The goal of this step is to classify the pixels of the enhanced
image into a given number of classes. We used 3 classes

(clusters) for all our experiments. Below we present the
different clustering techniques that we tested.

1. K-means (KM) Clustering

KM is an unsupervised statistical image segmentation
algorithm that classifies the pixels into clusters based on their
intensity values only without imposing special constraints. It is
used because it is simple and has relatively low computational
complexity. KM clustering is suitable for biomedical image
segmentation because of the previously known number of
clusters for images of particular regions of human anatomy
[20]. However, KM is usually not sufficient when solely
applied; hence it is either used in combination with other
techniques such as watershed algorithm in [21] or optimized
for image segmentation and made adaptive as in [22] or both as
in [20].

KM algorithm classifies the input data points into multiple
classes based on their inherent distance from each other. The
points are clustered around the centroids that are obtained by
minimizing the following objective function:

V= Z{'(:l ijesi(xj - 1)? )

where there are k clusters S;, i =1, 2... k and y; is the centroid
or mean point of all the points (pixels) x; € §;.

The algorithm [23] goes as follows: the intensity distribution
(histogram) is first computed and k centroids with random
intensities are initialized. The pixels are clustered based on the
distance of their intensities from the centroid intensities and a
new centroid for each of the clusters is then computed. This is
repeated until the cluster labels of the image do not change
anymore.

2. Fuzzy C-Means (FCM) Clustering

Like KM, FCM is an unsupervised clustering algorithm.
However, unlike KM which is a hard segmentation algorithm,
FCM is a type of soft segmentation that allows one piece of
data to belong to two or more clusters at the same time [24].
FCM assigns pixels to each class by means of a fuzzy
membership function. An image X = (x;, x5, X3 ... xy) With N
pixels can be categorized into C clusters by an iterative
minimization of the following objective function [25]:

I= Z?’:l pa iy lx; — vi||? (2

where y;; is the membership of pixel x; in the i’th cluster, v;
is the i’th cluster center, m is the fuzzifier that controls the
fuzziness of resulting partitions (any real number greater than
1) and |[|.]] is a norm metric. The membership function and
cluster centers are updated as:

1
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This is repeated until max;; {IHS‘H) - Hg-{)l} < &, where &

is a termination criterion between 0 and 1, and k is the number
of iteration steps.

Many image segmentation techniques were proposed using
fuzzy clustering; these include Fuzzy Clustering with Spatial
Probability, Fuzzy Logic Information C-Means Clustering
Algorithm, Novel Fuzzy C-Means Clustering Algorithm and
Improved Spatial Fuzzy C-Means Clustering Algorithm [26].

Besides, the application of FCM algorithm is explored as
modified for MR brain tumor detection in [27], and with
histogram based centroid initialization for brain tissue
segmentation in MRI of head scans in [28].

3. Expectation Maximization (EM)

Expectation Maximization is one of the most common
algorithms used for density estimation of data points in an
unsupervised setting and it relies on finding the maximum
likelihood estimates of parameters when the data model
depends on certain latent variables [23],[29]. The EM
algorithm consists of two steps: an expectation step, followed
by a maximization step. The expectation is with respect to the
parameters and conditions upon the observations while the
maximization step provides a new estimate of parameters. The
parameters found on the M step are used to begin another E
step, and the process is repeated until convergence. EM is
regularly used in image segmentation. It is combined with a
Markov Random Field model for brain MR images in [28] and
with distance measure for color image segmentation in [29].

C.Clustering Refinement
1. Filtering

The clustering result is not yet good enough; it showed to be
still noisy, hence median filtering [30] is applied on the
clustered image.

2. Masking

Even after filtering, some unwanted components remain in
the image as shown in Fig. 2-d. A mask that would cover only
the wanted components was needed. Such a mask is very
helpful in this step as well as in the still to come cleaning step.
Canny edge detection is used [31] to mark the boundaries of
the image components. After obtaining the boundaries, they are
filled up using basic morphological operations to result in a
neat binary mask.

3. Cleaning

Since it is difficult to make the mask tight enough, one more
refinement step was applied as follow: select each connected
component in the mask, the mode of the pixels in the masked
image under it is found and all pixels that have a different
value from that mode value are set to zero.

D. Volume Rendering

Finally, a 3-D volume is constructed from the processed
slices. Shear-warp colored volume rendering [32] with bilinear
interpolation is used with the color map jet.

IV. RESULTS

In the following, the obtained results for each step of the
process are presented.

The best image enhancement results for each clustering
algorithm clipped the input range into: [0.357+0.077
0.881+0.184] for KM, [0.357+0.077 , 1+0] for FCM and
[0.34+0.09 , 0.983+0.04] for EM. The range of [0.325, 1] was
applied on all cases. An enhanced image for the case of KM
clustering is shown in Fig. 2-b.

At the clustering step, the number of clusters was set to 3
aiming at segmenting arteries from veins and from background.
However, the image intensity did not carry enough information
for such segmentation and clear distinction between arteries
and veins was not achieved. Fig. 2-c shows the output after
KM clustering. The outputs from each of the tested clustering
algorithms were almost identical as shown in Fig. 3 when
compared to Fig. 2-c. However, KM had the best convergence
time followed by EM and FCM.

Fig. 2 (a) The original image showing AVM, (b) Contrast
enhancement, (c) Resulting image after KM clustering, (d) Filtered
clustered output showing small, unwanted component to be masked,

(e) Edge detection, (f) Filled mask, (g) Masked output and (h)
Cleaned output
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Median filtering proved its importance in reducing the
number of wrongly classified pixels (Fig. 2-d). It also helped in
preparing a neat mask to be used next on the clustered image.
The Canny sensitivity threshold is set empirically to 0.155. Fig.
2-e shows the output after the edge detection step.

Hence, a neat mask is obtained as shown in Fig. 2-f. All
components in the filtered image that did not fall under the
components of the mask were erased to obtain a masked output
as shown in Fig. 2-g.

To avoid the loss of information due to the cleaning
process, some constraints were added such as limiting this
operation to components greater than a specific size and
skipping it if the majority of pixels under the mask component
are black. The cleaned output is shown in Fig. 2-h.

Fig. 3 (a) The resulting image after FCM clustering and (b) after EM
clustering

Finally, upon volume rendering and after segmenting into 3
clusters, most vessels appeared in red and some segments
appeared in blue, distributed, sometimes, within red segments
(Fig. 4-a). BAVMs were clearly identified in some cases as
shown in Fig. 4-f.

V. DiscussioN AND CONCLUSION

In this paper, a framework to segment brain vessels from
3DRA images was proposed.

Three different clustering algorithms; KM, FCM and EM
were tested and compared. Almost identical clustering results
were obtained with the three algorithms. K-Mean was used in
the rest of this study, as it had the shortest convergence time
when compared to EM and FCM.

Clustering results were refined in post-processing step in
order to reduce the number of wrongly classified pixels.

Finally, satisfying three dimensional reconstructions of the
vessels from the obtained 2D segmentations were obtained.

In the proposed framework, the image pixels intensity was
the only information used to carry out the segmentation
process.

However, it is known that the intensity of the vascular
structures depends on the presence of the contrast medium
besides the vessel where the medium was injected (carotid or
vertebral). High flow shunts and large size of AVMs have
impacts on the contrast medium dilution in the blood and thus
can influence the gray level intensity of the images.

Moreover, in datasets acquired under low contrast dose,
strong image artifacts are visible within the same range of
intensities of vessels. Fig. 4-a is an example of such a case

where blue segments appear within red ones due to bone
shadow.

Fig. 4 The 3D final outputs of the six processed datasets using KM
clustering after an enhancement that clipped the input range into
[0.325 1]

All the three dimensional outputs in Fig. 4 were obtained
with the same set of parameters. The developed method is
hence suitable for the segmentation of the whole injected
vessels without requiring any user intervention.

In the obtained results, vessels were segmented from the
background and within these vessels; the blue color indicates a
low density of contrast medium.

The main issue in segmenting 3DRA images is faced when
the same tissue can correspond to different intensity ranges
depending on the imaging device, settings and contrast
injection protocol.

Besides, another limitation is related to the fact that BAVMs
could be fed by several arteries that might not be injected by
the contrast media at the same time.

All these limitations make the task of automatically
separating arteries from veins on the 3DRA images, by using
the gray intensities as unique criterion for the segmentation
very difficult.

In order to facilitate the vessels separation task, the
segmentation process should rely on anatomical knowledge, to
be introduced in the image. This anatomical knowledge could
be expressed by using a reference set, segmented and marked
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manually by the clinician in order to support the automatic
process, by identifying critical points or paths.

On the other hand, image intensity standardization [33]
could also be combined to this anatomical knowledge for better
segmentation results on 3DRA images.

In work under progress, the proposed approch is to be
combined with an anatomical knowledge reference that is
currently under preparation, to achieve better results
concerning the separation of arteries and veins.
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