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Abstract—Brain ArterioVenous Malformation (BAVM) is an 

abnormal tangle of brain blood vessels where arteries shunt directly 
into veins with no intervening capillary bed which causes high 
pressure and hemorrhage risk. The success of treatment by 
embolization in interventional neuroradiology is highly dependent on 
the accuracy of the vessels visualization.  In this paper the 
performance of clustering techniques on vessel segmentation from 3-
D rotational angiography (3DRA) images is investigated and a new 
technique of segmentation is proposed. This method consists in: 
preprocessing step of image enhancement, then K-Means (KM), 
Fuzzy C-Means (FCM) and Expectation Maximization (EM) 
clustering are used to separate vessel pixels from background and 
artery pixels from vein pixels when possible. A post processing step 
of removing false-alarm components is applied before constructing a 
three-dimensional volume of the vessels. The proposed method was 
tested on six datasets along with a medical assessment of an expert. 
Obtained results showed encouraging segmentations.  
 

Keywords—Brain arteriovenous malformation (BAVM); 3-D 
rotational angiography (3DRA); K-Means (KM) clustering; Fuzzy C-
Means (FCM) clustering; Expectation Maximization (EM) clustering; 
volume rendering. 

I. INTRODUCTION 
HE term “brain arteriovenous malformation” refers to a set 
of cerebral blood vessels comprising tangled abnormal 

vessels called the nidus, feeding arteries and draining veins [1]. 
Due to BAVMs, the blood directly flows from the arterial to 
the venous system without passing through the capillaries. This 
can cause an increasing in the veins pressure that can become 
extremely fragile and prone to bleeding. The most common 
BAVM symptoms include spontaneous hemorrhages, epileptic 
seizures, headaches, neurological deficits and progressive 
neurological deficits [2].  

The gold standard for treatment of BAVMs is microsurgery, 
which was proved to be safe and effective for the majority of 
AVMs smaller than 3 cm in diameter [3]. Another approach is 
endovascular embolization that can be used alone or as a 
component of a multidisciplinary management [4]. BAVMs 
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can also be treated via a radiosurgery [5] delivered by gamma 
knife, linear accelerator or heavy charged particle.  

It is essential to precisely locate the position of vessels 
entering and leaving the malformation, as well as their radii 
and bending angles before treatment. Therefore many imaging 
techniques have been developed for this purpose. Conventional 
catheter angiography (CCA) is used at the end of follow-up to 
confirm complete occlusion [1], while for intermediate controls 
magnetic resonance angiography (MRA) with time of flight 
(TOF) or phase contrast techniques or computed tomography 
angiography (CTA) are usually used [6]-[8]. Digital subtraction 
angiography (DSA) with 3-D rotational angiography (3DRA) 
remains the standard technique [9], providing substantial 
additional information on BAVM angioarchitecture [10]-[11]. 

Despite the numerous different acquisition techniques, the 
neuroradiologists need a robust image processing techniques 
(vessel extraction, contrast enhancement, etc.) to be efficient 
during the intervention. Reviews on vessels extraction 
techniques [12]-[13] show that most techniques used in clinical 
purposes are semi-automatic requiring user intervention. Such 
techniques include specific geometric models problems [14], 
shape and flow driven methods [15], region growing and 
mathematical morphology [16]. One major problem for those 
methods is that they are not able to cope with the wide range of 
blood vessel pixel intensities. Weiler et al. [17] introduced a 
system (AVM-Explorer) for multi-volume visualization on 
vascular structures starting from MRI images. D. Babin et al. 
[18] proposed a segmentation algorithm based on projections in 
3-D CTA images. M. Hernandez and A. Frangi [19] proposed 
an automatic method based on non-parametric geodesic active 
regions for segmentation of cerebrovascular structures with 
application to brain aneurysms in 3DRA and CTA images. 

In the case of endovascular embolization treatment, the 
separation between the BAVM and the vessels is required in 
order to isolate the malformation. An automatic vessels' 
segmentation of 3DRA images is considered highly important 
and useful for the clinician, guiding him through the 
embolization process.  

In this study, a framework that allows an automatic 
segmentation of the brain vessels from 3DRA images using 
different clustering methods is proposed. It allows extracting 
the vascular structures and the BAVMs from the background. 
The clustering algorithms: K-Means (KM), Fuzzy C-Means 
(FCM) and Expectation Maximization (EM) were separately 
tested and, the resulting outputs from each of the clustering 
algorithms where analyzed and compared. The rest of the paper 
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This is repeated until ݉ܽݔ௜௝ ቄ|ߤ௜௝
ሺ௞ାଵሻ െ ௜௝ߤ

ሺ௞ሻ|ቅ ൏  ߝ where ,ߝ
is a termination criterion between 0 and 1, and ݇ is the number 
of iteration steps. 

Many image segmentation techniques were proposed using 
fuzzy clustering; these include Fuzzy Clustering with Spatial 
Probability, Fuzzy Logic Information C-Means Clustering 
Algorithm, Novel Fuzzy C-Means Clustering Algorithm and 
Improved Spatial Fuzzy C-Means Clustering Algorithm [26].  

Besides, the application of FCM algorithm is explored as 
modified for MR brain tumor detection in [27], and with 
histogram based centroid initialization for brain tissue 
segmentation in MRI of head scans in [28]. 

3. Expectation Maximization (EM) 
Expectation Maximization is one of the most common 

algorithms used for density estimation of data points in an 
unsupervised setting and it relies on finding the maximum 
likelihood estimates of parameters when the data model 
depends on certain latent variables [23],[29]. The EM 
algorithm consists of two steps: an expectation step, followed 
by a maximization step. The expectation is with respect to the 
parameters and conditions upon the observations while the 
maximization step provides a new estimate of parameters. The 
parameters found on the M step are used to begin another E 
step, and the process is repeated until convergence. EM is 
regularly used in image segmentation. It is combined with a 
Markov Random Field model for brain MR images in [28] and 
with distance measure for color image segmentation in [29]. 

C. Clustering Refinement 
1. Filtering 

The clustering result is not yet good enough; it showed to be 
still noisy, hence median filtering [30] is applied on the 
clustered image. 

2. Masking 
Even after filtering, some unwanted components remain in 

the image as shown in Fig. 2-d. A mask that would cover only 
the wanted components was needed. Such a mask is very 
helpful in this step as well as in the still to come cleaning step. 
Canny edge detection is used [31] to mark the boundaries of 
the image components. After obtaining the boundaries, they are 
filled up using basic morphological operations to result in a 
neat binary mask. 

3. Cleaning 
Since it is difficult to make the mask tight enough, one more 

refinement step was applied as follow: select each connected 
component in the mask, the mode of the pixels in the masked 
image under it is found and all pixels that have a different 
value from that mode value are set to zero. 

D.  Volume Rendering 
Finally, a 3-D volume is constructed from the processed 

slices. Shear-warp colored volume rendering [32] with bilinear 
interpolation is used with the color map jet. 

IV. RESULTS 
In the following, the obtained results for each step of the 

process are presented.  
The best image enhancement results for each clustering 

algorithm clipped the input range into: [0.357±0.077 , 
0.881±0.184] for KM, [0.357±0.077 , 1±0] for FCM and 
[0.34±0.09 , 0.983±0.04] for EM. The range of [0.325, 1] was 
applied on all cases. An enhanced image for the case of KM 
clustering is shown in Fig. 2-b. 

At the clustering step, the number of clusters was set to 3 
aiming at segmenting arteries from veins and from background. 
However, the image intensity did not carry enough information 
for such segmentation and clear distinction between arteries 
and veins was not achieved. Fig. 2-c shows the output after 
KM clustering. The outputs from each of the tested clustering 
algorithms were almost identical as shown in Fig. 3 when 
compared to Fig. 2-c. However, KM had the best convergence 
time followed by EM and FCM. 

 

 

Fig. 2 (a) The original image showing AVM, (b) Contrast 
enhancement, (c) Resulting image after KM clustering, (d) Filtered 

clustered output showing small, unwanted component to be masked, 
(e) Edge detection, (f) Filled mask, (g) Masked output and (h) 

Cleaned output 
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manually by the clinician in order to support the automatic 
process, by identifying critical points or paths.  

On the other hand, image intensity standardization [33] 
could also be combined to this anatomical knowledge for better 
segmentation results on 3DRA images. 

In work under progress, the proposed approch is to be 
combined with an anatomical knowledge reference that is 
currently under preparation, to achieve better results 
concerning the separation of arteries and veins. 
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