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Abstract—Speedups from mapping four real-life DSP 

applications on an embedded system-on-chip that couples coarse-
grained reconfigurable logic with an instruction-set processor are 
presented. The reconfigurable logic is realized by a 2-Dimensional 
Array of Processing Elements. A design flow for improving 
application’s performance is proposed. Critical software parts, called 
kernels, are accelerated on the Coarse-Grained Reconfigurable 
Array. The kernels are detected by profiling the source code. For 
mapping the detected kernels on the reconfigurable logic a priority-
based mapping algorithm has been developed. Two 4x4 array 
architectures, which differ in their interconnection structure among 
the Processing Elements, are considered. The experiments for eight 
different instances of a generic system show that important overall 
application speedups have been reported for the four applications. 
The performance improvements range from 1.86 to 3.67, with an 
average value of 2.53, compared with an all-software execution.  
These speedups are quite close to the maximum theoretical speedups 
imposed by Amdahl’s law. 
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I.  INTRODUCTION 
ECONFIGURABLE architectures have received growing 
interest in the past few years [1]. Reconfigurable systems 

represent an intermediate approach between Application 
Specific Integrated Circuits (ASICs) and general-purpose 
processors. Such systems usually combine reconfigurable 
hardware with a microprocessor. Reconfigurable hardware is 
used to realize computational intensive parts of the 
applications, called kernels, and allows for the adaptation to 
the specific requirements of an application. The 
microprocessor executes non-critical sequential code parts and 
provides software programmability. The spatial parallelism 
present in kernels is exploited by the abundant Processing 
Elements (PEs) of the reconfigurable hardware, resulting in 
performance improvements. 

Reconfigurable logic has been widely associated with Field 
Programmable Gate Array (FPGA) based systems. An FPGA 
consists of a matrix of programmable logic cells, executing 
bit-level operations, with a grid of interconnect lines running 
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among them. However, FPGAs are not the only type of 
reconfigurable logic. Several coarse-grained reconfigurable 
architectures have been introduced and successfully built [1]-
[9]. Coarse-grained reconfigurable logic has been mainly 
proposed for speeding-up loops of multimedia and DSP 
applications in embedded systems. They consist of Processing 
Elements (PEs) with word-level data bit-widths (like 16-bit 
ALUs) connected with a reconfigurable interconnect network. 
The coarse-grained PEs exploit better than the FPGAs the 
word-level parallelism of many DSP applications. The FPGAs 
are more effective in realizing bit-level operations. The more 
regular structures within the PEs with their wider data bit-
widths and the regularity of the interconnect network between 
the PEs, greatly reduces the execution time, area, power 
consumption and reconfiguration time relative to an FPGA 
device at the expense of flexibility [1].  

In this work, we consider the most widespread subclass of 
coarse-grained architectures where the PEs are organized in a 
2-Dimensional (2D) array and they are connected with mesh-
like reconfigurable networks [1], [2], [3], [4], [5]. This type of 
reconfigurable logic is increasingly gaining interest because it 
is simple to be constructed and it can be scaled up, since more 
PEs can be added in the mesh-like interconnect. In this paper, 
these architectures are called Coarse-Grained Reconfigurable 
Arrays (CGRAs).  

Performance results from mapping four real-world DSP 
applications, coded in C language, on eight instances of a 
microprocessor/CGRA system template are presented. A 4x4 
array of PEs is used for accelerating time critical kernel code, 
while either an ARM or a MIPS processor executes the non-
critical code. Two different 4x4 CGRA architectures are 
considered that employ different connectivity among the PEs. 
An automated design flow for the microprocessor/CGRA is 
proposed that mainly consists of the following steps: (a) a 
procedure for detecting critical kernel code, (b) Intermediate 
Representation (IR) creation, (c) mapping algorithm for the 
CGRA architecture, and (d) compilation to the instruction-set 
processor. We emphasize the mapping for CGRA 
architectures which is the core of the design flow. The 
proposed mapping procedure for CGRAs is a priority (list)-
based algorithm targeting a flexible CGRA template 
architecture that allows exploration in respect to its 
characteristics. The study in respect to the system architecture 
parameters show that the overall application speedup for all 
the applications and all the platform instances ranges from 
1.86 to 3.67 relative to an all-microprocessor solution.  
Additionally, the experimental results show that the 
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performance of kernels slightly increases when a richer 
interconnection among the PEs is used in the CGRA. 

The rest of the paper is organized as follows: section II 
outlines the previous research activities. The reconfigurable 
system architecture is presented in section III focusing on the 
description of the flexible CGRA template. The proposed 
design flow and the mapping algorithm for CGRA are 
described in section IV. Section V presents the experimental 
results, while section VI concludes this paper. 

II.  RELATED WORK 
Due to the lack of flexible architecture templates and 

automated mapping flows, there have been few works on 
thorough study on coarse-grained reconfigurable 
architectures. In [1] it was indicated that many coarse-grained 
reconfigurable architectures (RAW [2], Remarc [3], 
MorphoSys [4]) have fairly predefined architectures that do 
not allow a straightforward exploration of different 
architectural features. The Reconfigurable Pipelined Datapath 
(RaPiD) [9] architecture provides a flexible linear array of 
PEs that it is programmed using a C-like language called 
RaPiD-C. The programmer is responsible for scheduling the 
computation on a cycle-by-cycle basis by describing when and 
where each operation is performed in the data-path. Thus, a 
considerable knowledge about the underlying architecture is 
required fact that complicates the systematic exploration. The 
PipeRench [8] contains a set of physical pipeline stages, called 
stripes. Each stripe has an interconnection network and a set 
of PEs. Although the PipeRench compiler is parameterized in 
respect to the architecture, its source language is a dataflow 
intermediate language (DIL) that it is not easy to be integrated 
in a high-level design environment (like a C-based one) for 
complete application exploration.     

Bansal et al. [10] surveys the performance of a list-based 
algorithm for CGRA architectures by introducing three 
different cost functions. The mapping algorithm assumes that 
there is enough memory bandwidth to fetch data without any 
delay and there are enough registers to store all the 
intermediate and final results. However, in CGRAs [3], [4], [5], 
[6] there is a limited number of storage elements inside the PEs 
and the memory bandwidth, although high as in [4], is limited. 
Additionally, only kernels were mapped on the CGRA and not 
complete applications since the CGRA is not coupled with a 
software programmable processor that would have executed 
non-critical application parts. In [11] a generic CGRA 
template, called Dynamically Reconfigurable ALU Array 
(DRAA), is considered. The DRAA consists of identical PEs in 
a 2D array with a regular interconnection network between 
them. Vertical and horizontal lines provide the interconnections 
between the PEs of the same line, as well as the access to the 
main memory. Results from mapping only loops on an 8x8 
DRAA architecture were presented. Nevertheless, there was 
not any exploration performed to illustrate how the 
performance is influenced by the architecture’s characteristics. 

In the following, works that consider the mapping of 
complete applications on CGRAs coupled with a 
microprocessor are overviewed. The compilation framework 
of [12] achieved the acceleration of a wavelet compression 

and Prewitt detection on the MorphoSys architecture over the 
execution on a Pentium III machine. In [13], it is shown that a 
hybrid architecture composed by an ARM926EJ-S and an 8x8 
Reconfigurable Array similar to MorphoSys [4], executes 2.2 
times faster a H.263 encoder than a single ARM926EJ-S 
processor. The mapping flow for the ADRES architecture was 
applied to an MPEG-2 decoder in [14]. The the overall 
application speedup over an eight-issue VLIW processor was 
3.05. In [15], an H.264/AVC decoder was mapped on an 8x8 
array achieving application speedup of 1.88.  

III.  SYSTEM ARCHITECTURE 
Fig. 1 shows an overview of the reconfigurable system-on-

chip (SoC) architecture considered in this work. The platform 
is composed by a Coarse-Grained Reconfigurable Array 
(CGRA), global system RAM, and an embedded 
microprocessor. The reconfigurable logic includes a 2D array 
of PEs, a scratch-pad memory (SPM) serving as a local data 
RAM for quickly loading data in the PEs, a control unit and a 
set of memory-mapped registers for exchanging data with the 
microprocessor. The control unit manages the execution of the 
CGRA by generating a central configuration pointer every 
cycle for controlling the operation of the PEs, a process 
similar to the one in [3]. The microprocessor sets the control 
unit at the beginning of the kernel execution on the CGRA. 
Thus, the microprocessor does not control the execution of the 
CGRA every cycle which would have caused high overhead 
in the microprocessor and degradation of the system’s 
performance. The system RAM stores data, instructions for 
the microprocessor execution and configurations for the 
CGRA. The CGRA functions as a coprocessor to the 
microprocessor and accelerates computational intensive 
software parts of an application by exploiting the Instruction 
Level Parallelism (ILP) of these parts. The microprocessor, 
typically a RISC one like an ARM or MIPS, executes control-
dominant sequential parts.  

System
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Fig. 1 Overview of the reconfigurable SoC platform 

Data communication between the CGRA and the 
microprocessor uses shared-memory mechanism. The shared 
memory is comprised by the system RAM and the memory-
mapped registers within the CGRA. Local variables, identified 
by data-flow analysis, are transferred through the shared 
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registers, while global variables and data arrays are allocated 
in the system RAM. Both the microprocessor and the CGRA 
have access to the shared memory. The communication 
process used by the processor and the CGRA preserves data 
coherency by requiring the execution of the processor and the 
CGRA to be mutually exclusive. When a call to CGRA is 
reached in the software, the microprocessor enables the 
control unit for setting the execution of the kernel on the 
CGRA, the proper configuration is loaded on the CGRA and 
the local variables are transferred to the memory-mapped 
registers. After the completion of the kernel execution, the 
CGRA informs the processor and writes the data, required for 
the execution of the remaining software on the 
microprocessor, to the shared memory. Then, the execution of 
the applications is continued on the microprocessor. The 
mutual exclusive execution simplifies the programming of the 
reconfigurable system since complicated analysis and 
synchronization procedures are not required.  

A. CGRA template 
The generic CGRA template can represent a variety of 

existing array architectures [1], [4], [5] by being parametric in 
respect to the number and type of PEs, the interconnections 
among them and their interface to the data memory. An 
overview of the proposed CGRA template is shown in Fig. 2a. 
Each PE is connected to its nearest neighbours (Fig. 2a), while 
there are cases [4], [5] where there are also direct connections 
among all the PEs across a column and a row (Fig. 2b).  
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Fig. 2 (a) Outline of a CGRA architecture, (b) Point-to-point 

connectivity 

A PE contains one Reconfigurable Functional Unit (RFU), 
which it is configured to perform a specific word-level 
operation each time. Typical operations supported by the RFU 
are ALU, multiplication, and shifts. Fig. 3 shows an example 
of a PE architecture. For storing intermediate values between 
computations and data fetched from the scratch-pad memory, 
a small local data RAM exists inside a PE. Multiplexers are 
used to select each input operand that can come from different 
sources: (a) from the same PE’s data RAM, (b) from the 
memory buses and (c) from another PE. The output of each 
RFU can be routed to other PEs, using a demultiplexer, or to 
its local data RAM. Dissimilar to FPGAs, no switch matrices 
are used for the interconnections. The input multiplexers and 
the output demultiplexers of the PEs define the 
interconnections among them.    

There is a local configuration (context) RAM inside each 
PE that stores a few configurations locally. A configuration 

word controls the type of operation realized by the RFU, the 
(de)multiplexers, the local data RAM and the output register 
of the PE acting like an instruction in microprocessors. During 
the execution of a kernel, the local configuration RAM is 
indexed by the central configuration pointer, set by the control 
unit of the CGRA, and a proper context word is loaded 
allowing dynamic reconfiguration of a PE within a cycle. 
Each PE can operate differently in a cycle according to the 
configurations stored in each local configuration RAM.   
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Fig. 3 Example of PE architecture 

The PEs residing in a row or column share a common bus 
connection to the scratch-pad memory, as in [4], [5]. We note 
that the organization of the PEs and their interface to the 
scratch-pad memory largely resembles the MorphoSys 
reconfigurable array [4]. However, with little modifications it 
can model other CGRA architectures. For example, if we 
allow only the PEs of the first row of the CGRA to be 
connected to the scratch-pad memory through load/store units 
then, our template can model the data memory interface of the 
CGRA in [14].    

IV.  DESIGN FLOW 
The proposed design flow for the reconfigurable system 

architecture improves application’s performance by mapping 
critical software parts on the CGRA. Fig. 4 illustrates the 
diagram of the design flow. The input is an application 
described in ANSI C. Initially, a kernel detection procedure, 
based on profiling, outputs the kernels and the non-critical 
parts of the source code. For performing profiling, standard 
debugger/simulator tools of the development environment of a 
specific processor can be utilized. For example, for the ARM 
processors, the instruction-set simulator (ISS) of the ARM 
RealView Developer Suite (RVDS) [16] can be used. Kernels 
are considered loops that contribute more than a certain 
amount to the total application’s execution time on the 
processor. For example, loop code that accounts 10% or more 
to the application’s time can be characterized as kernel code. 

The kernels are moved for execution on the CGRA. The 
Intermediate Representation (IR) of the kernel source code is 
created using a compiler front-end. A representation widely 
used in reconfigurable systems is the Control Data Flow 
Graph (CDFG). In this work, a hierarchical CDFG [17] is 
used for modeling data and control-flow dependencies. The 
control-flow structures, like branches and loops, are modeled 
through the hierarchy, while the data dependencies are 
modeled by Data Flow Graphs (DFGs). For generating the 
CDFG IR from C source code, we have utilized the 
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SUIF2/MachineSUIF compiler infrastructures [18], [19]. 
Existing and custom-made compiler passes are used for the 
CDFG creation.  
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Fig. 4 Design flow for microprocessor/CGRA systems 

Then, optimizations and transformations are applied to the 
kernels for efficient mapping after taking into account the 
CGRA characteristics, like the number of PEs in the CGRA. 
Examples of optimizations are dead code elimination, 
common sub-expression elimination and constant propagation. 
Transformations typically applied are loop unrolling and loop 
normalization [20]. Operations inside the kernels that cannot 
be directly executed on the CGRA PEs are transformed into 
series of supported operations. The divisions are transformed 
to shifts, while a square root computation can be performed by 
the RFUs of the CGRA using a method, like the Friden 
algorithm [21] that has been implemented in the proposed 
flow. MachineSUIF compiler passes have been developed for 
the automatic application of the optimizations and 
transformations on the kernel’s CDFG.  The transformed 
kernels are mapped on the CGRA for improving performance 
utilizing our algorithm presented in section IV-A, which is the 
core of the design flow. A prototype tool in C++ has been 
developed for implementing the mapping algorithm. The 
second input to the mapping algorithm is a description of the 
CGRA. The mapping tool outputs the execution cycles and the 
CGRA configuration. A feedback script is included in the 
flow for optimizing the performance of the kernels executed 
on the CGRA.   

The non-critical source code is modified to include calls to 
the reconfigurable logic and to handle the transfer of local 
variables to and from the CGRA. Then, the source code is 
compiled using a compiler for the specific processor. The 
performance is estimated by cycle-accurate simulation having 
as inputs the inputs the software binary of the processor and 
the configuration of the CGRA. The dark grey boxes in Fig. 4 
represent the procedures modified or created by the authors 
for the specific flow, while the light grey ones the external 
tools used.   

The time required for executing an application on the 
reconfigurable system is:  
Timesystem = Timeproc + TimeCGRA                 (1) 

where Timeproc represents the execution time of the non-
critical software parts on the processor, and TimeCGRA 
corresponds to time required for executing the software 
kernels on the CGRA. The communication time between the 
processor and the CGRA is included in the Timeproc and in the 
TimeCGRA.  

The proposed flow requires the execution times of kernels 
on the coarse-grained reconfigurable logic. Since, those times 
can be also given by other mapping algorithm than the one 
considered in this work, the design flow can be applied in 
conjunction with other mapping algorithms for CGRAs [10], 
[11], [14]. Additionally, it is parametric to the type of coarse-
grained reconfigurable hardware, as the mapping procedures 
abstract the hardware by typically considering resource 
constraints, timing and area characteristics. Due to the 
abovementioned factors, the design flow can be considered 
retargetable to the type of coarse-grained reconfigurable 
hardware. Thus, the proposed design method can also take 
into account other types of coarse-grained reconfigurable 
hardware, like 1-D arrays [9], and not only CGRAs. 

A. Mapping algorithm for CGRAs  
The task of mapping applications to CGRAs is a 

combination of scheduling operations for execution, mapping 
these operations to particular PEs, and routing data through 
specific interconnects in the CGRA. The mapper considers the 
resource constraints by monitoring the usage of each of the 
resources (buses, PEs, interconnections, PE’s local data 
RAMs) in time. The proposed mapping procedure traverses 
the kernel’s CDFG and maps one DFG at a time. The first 
input to the mapping algorithm is a DFG G(V, E) of the input 
kernel which is to be mapped to the CGRA. The description of 
the CGRA architecture is the second input to the mapping 
process. The CGRA architecture is modelled by a undirected 
graph, called CGRA Graph, GA(Vp, EI). The Vp is the set of 
PEs of the CGRA and EI are the interconnections among 
them. The CGRA architecture description includes parameters 
like the number of PEs, the size of the local RAM inside a PE, 
the memory buses to which each PE is connected, the bus 
bandwidth and the scratch-pad’s access times.  

The PE selection for scheduling an operation, and the way 
the input operands are fetched to the specific PE, will be 
referred to hereafter as a Place Decision (PD) for that specific 
operation. Each PD has a different impact on the operation’s 
execution time and on the execution of future scheduled 
operations. For this reason, a cost is assigned to each PD to 
incorporate the factors that influence the scheduling of the 
operations. The goal of the mapping algorithm is to find a 
cost-effective PD for each operation. The pseudocode of the 
proposed priority (list)-based mapping algorithm is shown in 
Fig. 5.  

The algorithm is initialized by assigning to each DFG node 
a value that represents its priority. The priority of an operation 
is calculated as the difference of its As Late As Possible 
(ALAP) minus its As Soon As Possible (ASAP) value. This 
result is called mobility. Also variable p, which indirectly 
points each time to the most exigent operations, is initialized 
by the minimum value of mobility. In this way, operations 
residing in the critical path are considered first in the 
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scheduling phase. During the scheduling phase, in each 
iteration of the while loop, QOP queue takes via the ROP() 
function the ready to be executed operations which have a 
value of mobility less than or equal to the value of variable p. 
The first do-while loop schedules and routes each operation 
contained in the QOP queue one at a time, until it becomes 
empty. Then, the new ready to be executed operations are 
considered via ROP() function which updates the QOP queue. 

 
Fig. 5 CGRA mapping algorithm 

The Predecessors() function returns (if exist) the PEs 
where the Op’s predecessors (Pred_PEs) were scheduled and 
the earliest time (RTime) at which the operation Op can be 
scheduled. The RTime (eq. (2)) equals to the maximum of the 
times where each of the Op’s predecessors finished executing 
tfin. P is the set having the predecessor operations of Op. 

( ) ( ) ( )( ) ( )1,..,max ,0  where    fin i ii P OpRTime Op t Op Op P Op== ∈        (2) 

The function GetCosts() returns the possible PDs and the 
corresponding costs for the operation Op in the CGRA in 
terms of the Choices variable. It takes as inputs the earliest 
possible schedule time (RTime) for the operation Op along 
with the PEs where the Pred_PEs have been scheduled. The 
function ResourceCongestion() returns true if there are no 
available PDs due to resource constraints. In that case RTime 
is incremented and the GetCosts() function is repeated until 
available PDs are found.  

The DecideWhereToScheduleTimePlace() function 
analyzes the mapping costs from the Choices variable. The 
function firstly identifies the subset of PDs with minimum 
delay cost. From the resulting PD subset, it selects the one 
with minimum interconnection cost as the one which will be 
adopted. The ReserveResources() reserves the resources 
(memory bus, PEs, local RAMs and interconnections) for 
executing the current operation on the selected PE. More 
specifically, the PEs are reserved as long as the execution 
takes place. For each data transfer, the amount and the 
duration of bus reservation is determined by the number of the 

words transferred and the memory latency, respectively. The 
local RAM in each of the PEs is reserved according to the 
lifetime of the variables [17]. Finally, the Schedule() records 
the scheduling of operation Op. After all operations are 
scheduled, the execution cycles of the input kernel and the 
CGRA configuration are reported. 

1) Description of the costs 
The Choices variable includes the delay and the 

interconnection costs. The delay cost for placing operation Op 
in a specific PEx refers to the operation’s earliest possible 
execution time there. As shown in eq. (3), the delay is the sum 
of the RTime (which is the earliest possible schedule time) 
plus the maximum of the times tf required to fetch the Op’s 
input operands to PEx.   

( ) ( )[ ]1,..,.dly , ( ) max ,0  x P ii PChoices PE Op RTime Op tf== +          (3) 

When an operand comes from the scratch-pad memory, then tf 
equals the scratch-pad’s latency, while when it originates from 
a CGRA’s PE, equals the time for routing the operand to PEx. 

The interconnection overhead refers to the interconnections 
that must be reserved in order to transfer the operands to the 
destination PE. As shown in eq. (4), it is the sum of the CGRA 
interconnections which were used to transfer the predecessor 
operands. Higher interconnection overhead causes future 
scheduled operations to have larger execution start time due to 
conflicts. 

( ) ( )
( )

.intercon ,  x Op xi
i P Op

Choices PE Op PathLength PE PE
∈

= →∑       (4) 

A greedy approach was adopted for calculating the time for 
routing the operands and the number of interconnections 
(eq.(4)) required for routing an operand. For each operand the 
shortest paths, which connect the source and destination PE, 
are identified. From this set of paths, the one with the 
minimum routing delay is selected. The delay and the length 
of the selected path gives the delay and interconnection costs 
through eq.(3) and eq.(4), respectively.  

V.  EXPERIMENTAL RESULTS 

A. Set-up 
The four DSP applications, described in C language, used 

in the experiments are given in Table I. A brief description of 
each application is shown in the second column, while in the 
third one the input used is presented. 

TABLE I  
APPLICATIONS’ CHARACTERISTICS  

Application Description Input 

JPEG enc. Still-image JPEG encoder   256x256 byte 
image 

OFDM 
trans. 

IEEE 802.11a OFDM 
transmitter 

4 payload  
symbols 

Compressor Wavelet-based image 
compressor [22] 

512x512 byte 
image 

Cavity det. Medical imaging technique  [23] 640x400 byte 
image 

 
The performance of the applications is estimated via cycle-

accurate simulation, using the proposed design flow, in eight 
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instances of the reconfigurable system. Two CGRA 
architectures are used each time for accelerating kernels. Both 
of them consist of 16 PEs organized in a 4x4 array. We list the 
common features of both CGRAs. Each CGRA’s data-width 
is 16-bits. The RFU in each PE can execute an operation in 
one CGRA’s clock cycle. Each PE has a local data RAM of 
size of eight 16-bit words, while the local configuration 
RAM’s size is 32 contexts. The size of configuration RAMs is 
large enough for the considered applications to store the 
whole configuration for executing a kernel; thus there is no 
time overhead for loading the configuration RAMs during the 
kernel execution. Two buses per CGRA row are dedicated for 
transferring data to the PEs from the scratch-pad memory. The 
delay of fetching one word from the scratch-pad memory is 
one cycle. We have described in VHDL both CGRA 
architectures and we have synthesized them with the Synopsys 
Design Compiler using a 130nm process. The timing reports 
showed that the clock frequency for both CGRA architectures 
can be set to 100MHz.  

The two CGRA architectures differ in respect to the 
interconnection network among the PEs. In the first 
architecture (CGRA1), each PE is connected only to its nearest 
neighbour PEs in the same row and column as shown in Fig. 
2a. In the second one (CGRA2), the PEs are directly connected 
to all other PEs in the same row and same column through 
vertical and horizontal interconnections as illustrated in Fig. 
2b. In the CGRA2, more internal bandwidth than the CGRA1 
is available to transfer data among the PEs due to the richer 
interconnection topology. These two alternatives architectures 
were chosen to show the effect of the interconnection 
topology on the performance of the kernels.   

We have used four different architectures of 32-bit 
embedded RISC processors coupled each one of them with the 
4x4 CGRA: an ARM7, an ARM9 [16], and two SimpleScalar 
processors [24]. The SimpleScalar processor is an extension 
of the MIPS IV core. The first type of the MIPS processor 
(MIPSa) uses one integer ALU unit, while the second one 
(MIPSb) has two integer ALU units. We have used 
instruction-set simulators for the considered embedded 
processors for estimating the number of execution cycles. 
More specifically, for the ARM processors, the ARM 
RealView Developer Suite (RVDS) (version 2.2) was utilized, 
while the performance for the MIPS-extended processors is 
estimated using the SimpleScalar simulator tool [24]. Typical 
clock frequencies, for 130nm CMOS process, are considered 
for the four processors: the ARM7 runs at 133 MHz, the 
ARM9 at 250 MHz, and the MIPS processors at 200 MHz. 
The four applications were compiled to generate binary files 
for the processors using the highest level of software 
optimizations. 

B. Experimentation 
The results from profiling the four applications on the 

ARM7 processor, using the ARM RVDS tool, are presented in 
Table II. The applications were compiled to generate binary 
files for the ARM processors using the highest level of 
software optimizations. The threshold for the kernel detection 
was set to 10% of the total execution time of the application. It 
was observed that a threshold smaller than 10% leads in 

marginal additional improvements when the identified kernels 
are mapped on the CGRA. The Total size corresponds to the 
application’s static size in terms of instructions bytes, while 
the % size to the percentage of the kernels’ contribution to the 
total static size. The % time is the percentage of the execution 
time spent in the kernels. The Ideal speedup is the theoretical 
maximum speedup, according to Amdahl’s law, if the 
application’s kernels were ideally executed on the CGRA in 
zero time. The ideal speedup equals 100 / (100 - %time). The 
number of the kernels detected in each application is also 
given. The kernels of the four applications are innermost loops 
and they consist of word-level operations (ALU, 
multiplications, shifts) that match the granularity (data bit-
width) of the PEs in the CGRA.  

From the results of Table II, it is inferred that an average of 
7.9% of the code size, representing the kernels’ size, 
contributes 66.2% on average to the total execution time. 
Furthermore, the average ideal speedup for the ARM7 systems 
equals 3.10. The geometrical means of the % size, % time and 
of the Ideal speedup are also given. Thus, it is deduced that 
important overall application speedups will come from 
accelerating few small kernels. We mention that the detected 
loops are also kernels for the rest three microprocessors. For 
the MIPS-extended processor, the SimpleScalar tool was used 
for profiling.   

TABLE II   
KERNEL IDENTIFICATION RESULTS FOR THE ARM7 

Application Total 
size 

(bytes) 

% 
size 

% 
time 

Ideal 
speedup 

# of  
kernels 

JPEG enc. 36,592 10.4 74.7 3.96 4 
OFDM  
trans. 15,579 9.0 71.8 3.54 4 

Compressor 12,835 4.8 60.2 2.51 4 
Cavity det. 12,039 7.4 58.0 2.38 4 
Average   7.9 66.2 3.10  
Geo. mean  7.6 65.8 3.03  
 

We have unrolled the bodies of the detected loops 16 times 
for mapping them on the two CGRAs. We have investigated 
that unrolling the kernels of the considered applications more 
than 16 times, the execution cycles, when these kernels were 
mapped on the 4x4 CGRAs, slightly decrease. Thus, we have 
selected the unroll factor equal to 16 since it gives significant 
cycles reductions over the execution of the original kernel 
body on both 4x4 CGRAs. 

The performance results from applying the design flow in 
the four applications are presented in Table III. For every 
application, each one of the four considered processor 
architectures (Proc.) is used for estimating the execution time 
(Timesw) required from executing the whole application on the 
processor. The Ideal speedup is the maximum theoretical 
speedup if the kernels are executed on the CGRA in zero time. 
The estimated speedup (Speedup) over the execution of the 
whole application on the microprocessor is calculated as:   

Speedup=Timesw/Timesystem                (5) 
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where Timesystem represents the execution time after 
accelerating kernels on the CGRA. All execution times are 
normalized to the software execution times on the ARM7. 

From the results given in Table III, it is evident that 
significant overall performance improvements are achieved 
when critical software parts are mapped on a 4x4 CGRA. For 
the systems composed by the CGRA1, the application 
speedups range from 1.86 to 3.65, with an average speedup 
for all the processor systems and the four applications, of 
2.53. Furthermore, the average application speedups for each 
processor system are: 2.77 for the ARM7 system, 2.40 for the 
ARM9, 2.56 for the MIPSa, and 2.41 for the MIPSb.  

TABLE III  
EXECUTION TIMES AND SPEEDUPS FOR THE PROCESSOR/CGRA1 

SoCs 

Proc./CGRA1 Application Proc. Timesw Ideal 
Sp. Timesystem Speedup 

ARM7 1.000 3.96 0.274 3.65 
ARM9 0.461 3.24 0.162 2.85 
MIPSa 0.996 3.32 0.333 2.99 

JPEG enc. 

MIPSb 0.568 3.24 0.199 2.86 
ARM7 1.000 3.54 0.312 3.21 
ARM9 0.485 3.43 0.164 2.95 
MIPSa 0.768 3.43 0.249 3.08 OFDM trans. 

MIPSb 0.590 3.29 0.206 2.87 
ARM7 1.000 2.51 0.457 2.19 
ARM9 0.424 2.32 0.221 1.92 
MIPSa 1.608 2.49 0.728 2.21 Compressor 

MIPSb 1.044 2.34 0.514 2.03 
ARM7 1.000 2.38 0.493 2.03 
ARM9 0.480 2.29 0.258 1.86 
MIPSa 1.749 2.34 0.902 1.94 Cavity det. 

MIPSb 1.154 2.23 0.617 1.87 
Average   2.90  2.53 
Geo. mean   2.84  2.47 

 
Fig. 6 illustrates the application speedups for the 

processor/CGRA2 systems. The CGRA2 architecture enables 
direct connectivity among all the PEs of the same row and 
column. Also, the average speedup for each system is also 
given. By comparing the respective values of Fig. 6 and of 
Table III, it is inferred that for the microprocessor/CGRA2 
systems the overall application speedups are marginally larger 
than the CGRA1 architecture. This is due to the fact that for 
the CGRA2 systems, the acceleration of kernels is slightly 
larger than the CGRA1 case owing to the richer interconnect 
among the PEs in the former case. The average speedup for all 
the processor systems and the four applications, equals 2.55 
for the CGRA2 case. 

From the performance improvements shown in Table III 
and Fig. 6, it is noticed that better performance gains are 
accomplished for the ARM7 system than the ARM9-based 
one. This occurs since the speedup of kernels on the CGRA 
has greater effect when the CGRA is coupled with a lower-
performance processor, as it is the ARM7 relative to the 
ARM9. Additionally, the speedup is greater for the MIPSa 
system than the MIPSb case, since the latter processor 
employs one more integer ALU unit.  

Such amounts of speedups as the ones reported in Table III 
and Fig. 6 were also considered as important in previous 
works considering processor/CGRA systems [13], [14], [15]. 
Furthermore, it is easily inferred that the reported speedups for 
each application and for each system are quite close to the 
ideal speedups, especially for the ARM7 systems. Thus, the 
proposed design flow efficiently utilized the processing 
capabilities of the 4x4 CGRAs for improving the overall 
performance of the DSP applications near to the theoretical 
bounds.  
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Fig. 6 Application speedups for the processor/CGRA2 SoCs 

VI.  CONCLUSIONS 

Performance figures by mapping four DSP applications on 
eight instances of a processor/CGRA platform were given. A 
design flow for improving system performance by executing 
critical kernel code on the CGRA was introduced. A mapping 
algorithm that considers a flexible CGRA template is the core 
of the design flow. The results showed that the CGRAs are 
efficient in accelerating kernel code even when the available 
internal bandwidth among the PEs for exchanging data values 
is restricted. Important application speedups, over the 
software only execution on the processor, were reported.  
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