
International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:6, 2007

811

Abstract—Speedups from mapping four real-life DSP

applications on an embedded system-on-chip that couples coarse-
grained reconfigurable logic with an instruction-set processor are
presented. The reconfigurable logic is realized by a 2-Dimensional
Array of Processing Elements. A design flow for improving
application’s performance is proposed. Critical software parts, called
kernels, are accelerated on the Coarse-Grained Reconfigurable
Array. The kernels are detected by profiling the source code. For
mapping the detected kernels on the reconfigurable logic a priority-
based mapping algorithm has been developed. Two 4x4 array
architectures, which differ in their interconnection structure among
the Processing Elements, are considered. The experiments for eight
different instances of a generic system show that important overall
application speedups have been reported for the four applications.
The performance improvements range from 1.86 to 3.67, with an
average value of 2.53, compared with an all-software execution.
These speedups are quite close to the maximum theoretical speedups
imposed by Amdahl’s law.

Keywords—Reconfigurable computing, Coarse-grained

reconfigurable array, Embedded systems, DSP, Performance

I. INTRODUCTION
ECONFIGURABLE architectures have received growing
interest in the past few years [1]. Reconfigurable systems

represent an intermediate approach between Application
Specific Integrated Circuits (ASICs) and general-purpose
processors. Such systems usually combine reconfigurable
hardware with a microprocessor. Reconfigurable hardware is
used to realize computational intensive parts of the
applications, called kernels, and allows for the adaptation to
the specific requirements of an application. The
microprocessor executes non-critical sequential code parts and
provides software programmability. The spatial parallelism
present in kernels is exploited by the abundant Processing
Elements (PEs) of the reconfigurable hardware, resulting in
performance improvements.

Reconfigurable logic has been widely associated with Field
Programmable Gate Array (FPGA) based systems. An FPGA
consists of a matrix of programmable logic cells, executing
bit-level operations, with a grid of interconnect lines running

Manuscript received April 11, 2006. This work was supported in part by
the Alexander S. Onassis Public Benefit Foundation.

Michalis D. Galanis, Gregory Dimitroulakos and Costas E. Goutis are with
the VLSI Design Lab., ECE Dept., University of Patras, Rio, Greece. (phone:
+30 2610 997324, fax: +30 2610 994798, e-mail: mgalanis@ee.upatras.gr)

among them. However, FPGAs are not the only type of
reconfigurable logic. Several coarse-grained reconfigurable
architectures have been introduced and successfully built [1]-
[9]. Coarse-grained reconfigurable logic has been mainly
proposed for speeding-up loops of multimedia and DSP
applications in embedded systems. They consist of Processing
Elements (PEs) with word-level data bit-widths (like 16-bit
ALUs) connected with a reconfigurable interconnect network.
The coarse-grained PEs exploit better than the FPGAs the
word-level parallelism of many DSP applications. The FPGAs
are more effective in realizing bit-level operations. The more
regular structures within the PEs with their wider data bit-
widths and the regularity of the interconnect network between
the PEs, greatly reduces the execution time, area, power
consumption and reconfiguration time relative to an FPGA
device at the expense of flexibility [1].

In this work, we consider the most widespread subclass of
coarse-grained architectures where the PEs are organized in a
2-Dimensional (2D) array and they are connected with mesh-
like reconfigurable networks [1], [2], [3], [4], [5]. This type of
reconfigurable logic is increasingly gaining interest because it
is simple to be constructed and it can be scaled up, since more
PEs can be added in the mesh-like interconnect. In this paper,
these architectures are called Coarse-Grained Reconfigurable
Arrays (CGRAs).

Performance results from mapping four real-world DSP
applications, coded in C language, on eight instances of a
microprocessor/CGRA system template are presented. A 4x4
array of PEs is used for accelerating time critical kernel code,
while either an ARM or a MIPS processor executes the non-
critical code. Two different 4x4 CGRA architectures are
considered that employ different connectivity among the PEs.
An automated design flow for the microprocessor/CGRA is
proposed that mainly consists of the following steps: (a) a
procedure for detecting critical kernel code, (b) Intermediate
Representation (IR) creation, (c) mapping algorithm for the
CGRA architecture, and (d) compilation to the instruction-set
processor. We emphasize the mapping for CGRA
architectures which is the core of the design flow. The
proposed mapping procedure for CGRAs is a priority (list)-
based algorithm targeting a flexible CGRA template
architecture that allows exploration in respect to its
characteristics. The study in respect to the system architecture
parameters show that the overall application speedup for all
the applications and all the platform instances ranges from
1.86 to 3.67 relative to an all-microprocessor solution.
Additionally, the experimental results show that the

Performance Improvements of DSP
Applications on a Generic Reconfigurable

Platform
Michalis D. Galanis, Gregory Dimitroulakos, and Costas E. Goutis

R

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:6, 2007

812

performance of kernels slightly increases when a richer
interconnection among the PEs is used in the CGRA.

The rest of the paper is organized as follows: section II
outlines the previous research activities. The reconfigurable
system architecture is presented in section III focusing on the
description of the flexible CGRA template. The proposed
design flow and the mapping algorithm for CGRA are
described in section IV. Section V presents the experimental
results, while section VI concludes this paper.

II. RELATED WORK
Due to the lack of flexible architecture templates and

automated mapping flows, there have been few works on
thorough study on coarse-grained reconfigurable
architectures. In [1] it was indicated that many coarse-grained
reconfigurable architectures (RAW [2], Remarc [3],
MorphoSys [4]) have fairly predefined architectures that do
not allow a straightforward exploration of different
architectural features. The Reconfigurable Pipelined Datapath
(RaPiD) [9] architecture provides a flexible linear array of
PEs that it is programmed using a C-like language called
RaPiD-C. The programmer is responsible for scheduling the
computation on a cycle-by-cycle basis by describing when and
where each operation is performed in the data-path. Thus, a
considerable knowledge about the underlying architecture is
required fact that complicates the systematic exploration. The
PipeRench [8] contains a set of physical pipeline stages, called
stripes. Each stripe has an interconnection network and a set
of PEs. Although the PipeRench compiler is parameterized in
respect to the architecture, its source language is a dataflow
intermediate language (DIL) that it is not easy to be integrated
in a high-level design environment (like a C-based one) for
complete application exploration.

Bansal et al. [10] surveys the performance of a list-based
algorithm for CGRA architectures by introducing three
different cost functions. The mapping algorithm assumes that
there is enough memory bandwidth to fetch data without any
delay and there are enough registers to store all the
intermediate and final results. However, in CGRAs [3], [4], [5],
[6] there is a limited number of storage elements inside the PEs
and the memory bandwidth, although high as in [4], is limited.
Additionally, only kernels were mapped on the CGRA and not
complete applications since the CGRA is not coupled with a
software programmable processor that would have executed
non-critical application parts. In [11] a generic CGRA
template, called Dynamically Reconfigurable ALU Array
(DRAA), is considered. The DRAA consists of identical PEs in
a 2D array with a regular interconnection network between
them. Vertical and horizontal lines provide the interconnections
between the PEs of the same line, as well as the access to the
main memory. Results from mapping only loops on an 8x8
DRAA architecture were presented. Nevertheless, there was
not any exploration performed to illustrate how the
performance is influenced by the architecture’s characteristics.

In the following, works that consider the mapping of
complete applications on CGRAs coupled with a
microprocessor are overviewed. The compilation framework
of [12] achieved the acceleration of a wavelet compression

and Prewitt detection on the MorphoSys architecture over the
execution on a Pentium III machine. In [13], it is shown that a
hybrid architecture composed by an ARM926EJ-S and an 8x8
Reconfigurable Array similar to MorphoSys [4], executes 2.2
times faster a H.263 encoder than a single ARM926EJ-S
processor. The mapping flow for the ADRES architecture was
applied to an MPEG-2 decoder in [14]. The the overall
application speedup over an eight-issue VLIW processor was
3.05. In [15], an H.264/AVC decoder was mapped on an 8x8
array achieving application speedup of 1.88.

III. SYSTEM ARCHITECTURE
Fig. 1 shows an overview of the reconfigurable system-on-

chip (SoC) architecture considered in this work. The platform
is composed by a Coarse-Grained Reconfigurable Array
(CGRA), global system RAM, and an embedded
microprocessor. The reconfigurable logic includes a 2D array
of PEs, a scratch-pad memory (SPM) serving as a local data
RAM for quickly loading data in the PEs, a control unit and a
set of memory-mapped registers for exchanging data with the
microprocessor. The control unit manages the execution of the
CGRA by generating a central configuration pointer every
cycle for controlling the operation of the PEs, a process
similar to the one in [3]. The microprocessor sets the control
unit at the beginning of the kernel execution on the CGRA.
Thus, the microprocessor does not control the execution of the
CGRA every cycle which would have caused high overhead
in the microprocessor and degradation of the system’s
performance. The system RAM stores data, instructions for
the microprocessor execution and configurations for the
CGRA. The CGRA functions as a coprocessor to the
microprocessor and accelerates computational intensive
software parts of an application by exploiting the Instruction
Level Parallelism (ILP) of these parts. The microprocessor,
typically a RISC one like an ARM or MIPS, executes control-
dominant sequential parts.

System
RAM

SP
M

Control
unit

CGRA

PE
array

Registers

Processor

Fig. 1 Overview of the reconfigurable SoC platform

Data communication between the CGRA and the
microprocessor uses shared-memory mechanism. The shared
memory is comprised by the system RAM and the memory-
mapped registers within the CGRA. Local variables, identified
by data-flow analysis, are transferred through the shared

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:6, 2007

813

registers, while global variables and data arrays are allocated
in the system RAM. Both the microprocessor and the CGRA
have access to the shared memory. The communication
process used by the processor and the CGRA preserves data
coherency by requiring the execution of the processor and the
CGRA to be mutually exclusive. When a call to CGRA is
reached in the software, the microprocessor enables the
control unit for setting the execution of the kernel on the
CGRA, the proper configuration is loaded on the CGRA and
the local variables are transferred to the memory-mapped
registers. After the completion of the kernel execution, the
CGRA informs the processor and writes the data, required for
the execution of the remaining software on the
microprocessor, to the shared memory. Then, the execution of
the applications is continued on the microprocessor. The
mutual exclusive execution simplifies the programming of the
reconfigurable system since complicated analysis and
synchronization procedures are not required.

A. CGRA template
The generic CGRA template can represent a variety of

existing array architectures [1], [4], [5] by being parametric in
respect to the number and type of PEs, the interconnections
among them and their interface to the data memory. An
overview of the proposed CGRA template is shown in Fig. 2a.
Each PE is connected to its nearest neighbours (Fig. 2a), while
there are cases [4], [5] where there are also direct connections
among all the PEs across a column and a row (Fig. 2b).

Control

unit

Sc
ra

tc
h-

Pa
d

M
em

or
y

(a)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

to system
RAM

(b)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Fig. 2 (a) Outline of a CGRA architecture, (b) Point-to-point

connectivity

A PE contains one Reconfigurable Functional Unit (RFU),
which it is configured to perform a specific word-level
operation each time. Typical operations supported by the RFU
are ALU, multiplication, and shifts. Fig. 3 shows an example
of a PE architecture. For storing intermediate values between
computations and data fetched from the scratch-pad memory,
a small local data RAM exists inside a PE. Multiplexers are
used to select each input operand that can come from different
sources: (a) from the same PE’s data RAM, (b) from the
memory buses and (c) from another PE. The output of each
RFU can be routed to other PEs, using a demultiplexer, or to
its local data RAM. Dissimilar to FPGAs, no switch matrices
are used for the interconnections. The input multiplexers and
the output demultiplexers of the PEs define the
interconnections among them.

There is a local configuration (context) RAM inside each
PE that stores a few configurations locally. A configuration

word controls the type of operation realized by the RFU, the
(de)multiplexers, the local data RAM and the output register
of the PE acting like an instruction in microprocessors. During
the execution of a kernel, the local configuration RAM is
indexed by the central configuration pointer, set by the control
unit of the CGRA, and a proper context word is loaded
allowing dynamic reconfiguration of a PE within a cycle.
Each PE can operate differently in a cycle according to the
configurations stored in each local configuration RAM.

out1 out2
RAM

in

..

control

Conf.
pointer

...

C
onfiguration R

A
M

Local

..

register

RFU

Fig. 3 Example of PE architecture

The PEs residing in a row or column share a common bus
connection to the scratch-pad memory, as in [4], [5]. We note
that the organization of the PEs and their interface to the
scratch-pad memory largely resembles the MorphoSys
reconfigurable array [4]. However, with little modifications it
can model other CGRA architectures. For example, if we
allow only the PEs of the first row of the CGRA to be
connected to the scratch-pad memory through load/store units
then, our template can model the data memory interface of the
CGRA in [14].

IV. DESIGN FLOW
The proposed design flow for the reconfigurable system

architecture improves application’s performance by mapping
critical software parts on the CGRA. Fig. 4 illustrates the
diagram of the design flow. The input is an application
described in ANSI C. Initially, a kernel detection procedure,
based on profiling, outputs the kernels and the non-critical
parts of the source code. For performing profiling, standard
debugger/simulator tools of the development environment of a
specific processor can be utilized. For example, for the ARM
processors, the instruction-set simulator (ISS) of the ARM
RealView Developer Suite (RVDS) [16] can be used. Kernels
are considered loops that contribute more than a certain
amount to the total application’s execution time on the
processor. For example, loop code that accounts 10% or more
to the application’s time can be characterized as kernel code.

The kernels are moved for execution on the CGRA. The
Intermediate Representation (IR) of the kernel source code is
created using a compiler front-end. A representation widely
used in reconfigurable systems is the Control Data Flow
Graph (CDFG). In this work, a hierarchical CDFG [17] is
used for modeling data and control-flow dependencies. The
control-flow structures, like branches and loops, are modeled
through the hierarchy, while the data dependencies are
modeled by Data Flow Graphs (DFGs). For generating the
CDFG IR from C source code, we have utilized the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:6, 2007

814

SUIF2/MachineSUIF compiler infrastructures [18], [19].
Existing and custom-made compiler passes are used for the
CDFG creation.

ANSI C

Kernel detection

Transformations &
optimizations

Compilation

IR

Non critical codeKernel code

Configuration Software binary

Code modification

Simulation

Execution time

CGRA mapper
CGRA

description

Front-end

Non critical +
communication code

Fig. 4 Design flow for microprocessor/CGRA systems

Then, optimizations and transformations are applied to the
kernels for efficient mapping after taking into account the
CGRA characteristics, like the number of PEs in the CGRA.
Examples of optimizations are dead code elimination,
common sub-expression elimination and constant propagation.
Transformations typically applied are loop unrolling and loop
normalization [20]. Operations inside the kernels that cannot
be directly executed on the CGRA PEs are transformed into
series of supported operations. The divisions are transformed
to shifts, while a square root computation can be performed by
the RFUs of the CGRA using a method, like the Friden
algorithm [21] that has been implemented in the proposed
flow. MachineSUIF compiler passes have been developed for
the automatic application of the optimizations and
transformations on the kernel’s CDFG. The transformed
kernels are mapped on the CGRA for improving performance
utilizing our algorithm presented in section IV-A, which is the
core of the design flow. A prototype tool in C++ has been
developed for implementing the mapping algorithm. The
second input to the mapping algorithm is a description of the
CGRA. The mapping tool outputs the execution cycles and the
CGRA configuration. A feedback script is included in the
flow for optimizing the performance of the kernels executed
on the CGRA.

The non-critical source code is modified to include calls to
the reconfigurable logic and to handle the transfer of local
variables to and from the CGRA. Then, the source code is
compiled using a compiler for the specific processor. The
performance is estimated by cycle-accurate simulation having
as inputs the inputs the software binary of the processor and
the configuration of the CGRA. The dark grey boxes in Fig. 4
represent the procedures modified or created by the authors
for the specific flow, while the light grey ones the external
tools used.

The time required for executing an application on the
reconfigurable system is:
Timesystem = Timeproc + TimeCGRA (1)

where Timeproc represents the execution time of the non-
critical software parts on the processor, and TimeCGRA
corresponds to time required for executing the software
kernels on the CGRA. The communication time between the
processor and the CGRA is included in the Timeproc and in the
TimeCGRA.

The proposed flow requires the execution times of kernels
on the coarse-grained reconfigurable logic. Since, those times
can be also given by other mapping algorithm than the one
considered in this work, the design flow can be applied in
conjunction with other mapping algorithms for CGRAs [10],
[11], [14]. Additionally, it is parametric to the type of coarse-
grained reconfigurable hardware, as the mapping procedures
abstract the hardware by typically considering resource
constraints, timing and area characteristics. Due to the
abovementioned factors, the design flow can be considered
retargetable to the type of coarse-grained reconfigurable
hardware. Thus, the proposed design method can also take
into account other types of coarse-grained reconfigurable
hardware, like 1-D arrays [9], and not only CGRAs.

A. Mapping algorithm for CGRAs
The task of mapping applications to CGRAs is a

combination of scheduling operations for execution, mapping
these operations to particular PEs, and routing data through
specific interconnects in the CGRA. The mapper considers the
resource constraints by monitoring the usage of each of the
resources (buses, PEs, interconnections, PE’s local data
RAMs) in time. The proposed mapping procedure traverses
the kernel’s CDFG and maps one DFG at a time. The first
input to the mapping algorithm is a DFG G(V, E) of the input
kernel which is to be mapped to the CGRA. The description of
the CGRA architecture is the second input to the mapping
process. The CGRA architecture is modelled by a undirected
graph, called CGRA Graph, GA(Vp, EI). The Vp is the set of
PEs of the CGRA and EI are the interconnections among
them. The CGRA architecture description includes parameters
like the number of PEs, the size of the local RAM inside a PE,
the memory buses to which each PE is connected, the bus
bandwidth and the scratch-pad’s access times.

The PE selection for scheduling an operation, and the way
the input operands are fetched to the specific PE, will be
referred to hereafter as a Place Decision (PD) for that specific
operation. Each PD has a different impact on the operation’s
execution time and on the execution of future scheduled
operations. For this reason, a cost is assigned to each PD to
incorporate the factors that influence the scheduling of the
operations. The goal of the mapping algorithm is to find a
cost-effective PD for each operation. The pseudocode of the
proposed priority (list)-based mapping algorithm is shown in
Fig. 5.

The algorithm is initialized by assigning to each DFG node
a value that represents its priority. The priority of an operation
is calculated as the difference of its As Late As Possible
(ALAP) minus its As Soon As Possible (ASAP) value. This
result is called mobility. Also variable p, which indirectly
points each time to the most exigent operations, is initialized
by the minimum value of mobility. In this way, operations
residing in the critical path are considered first in the

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:6, 2007

815

scheduling phase. During the scheduling phase, in each
iteration of the while loop, QOP queue takes via the ROP()
function the ready to be executed operations which have a
value of mobility less than or equal to the value of variable p.
The first do-while loop schedules and routes each operation
contained in the QOP queue one at a time, until it becomes
empty. Then, the new ready to be executed operations are
considered via ROP() function which updates the QOP queue.

Fig. 5 CGRA mapping algorithm

The Predecessors() function returns (if exist) the PEs
where the Op’s predecessors (Pred_PEs) were scheduled and
the earliest time (RTime) at which the operation Op can be
scheduled. The RTime (eq. (2)) equals to the maximum of the
times where each of the Op’s predecessors finished executing
tfin. P is the set having the predecessor operations of Op.

() () ()() ()1,..,max ,0 where fin i ii P OpRTime Op t Op Op P Op== ∈ (2)

The function GetCosts() returns the possible PDs and the
corresponding costs for the operation Op in the CGRA in
terms of the Choices variable. It takes as inputs the earliest
possible schedule time (RTime) for the operation Op along
with the PEs where the Pred_PEs have been scheduled. The
function ResourceCongestion() returns true if there are no
available PDs due to resource constraints. In that case RTime
is incremented and the GetCosts() function is repeated until
available PDs are found.

The DecideWhereToScheduleTimePlace() function
analyzes the mapping costs from the Choices variable. The
function firstly identifies the subset of PDs with minimum
delay cost. From the resulting PD subset, it selects the one
with minimum interconnection cost as the one which will be
adopted. The ReserveResources() reserves the resources
(memory bus, PEs, local RAMs and interconnections) for
executing the current operation on the selected PE. More
specifically, the PEs are reserved as long as the execution
takes place. For each data transfer, the amount and the
duration of bus reservation is determined by the number of the

words transferred and the memory latency, respectively. The
local RAM in each of the PEs is reserved according to the
lifetime of the variables [17]. Finally, the Schedule() records
the scheduling of operation Op. After all operations are
scheduled, the execution cycles of the input kernel and the
CGRA configuration are reported.

1) Description of the costs
The Choices variable includes the delay and the

interconnection costs. The delay cost for placing operation Op
in a specific PEx refers to the operation’s earliest possible
execution time there. As shown in eq. (3), the delay is the sum
of the RTime (which is the earliest possible schedule time)
plus the maximum of the times tf required to fetch the Op’s
input operands to PEx.

() ()[]1,..,.dly , () max ,0 x P ii PChoices PE Op RTime Op tf== + (3)

When an operand comes from the scratch-pad memory, then tf
equals the scratch-pad’s latency, while when it originates from
a CGRA’s PE, equals the time for routing the operand to PEx.

The interconnection overhead refers to the interconnections
that must be reserved in order to transfer the operands to the
destination PE. As shown in eq. (4), it is the sum of the CGRA
interconnections which were used to transfer the predecessor
operands. Higher interconnection overhead causes future
scheduled operations to have larger execution start time due to
conflicts.

() ()
()

.intercon , x Op xi
i P Op

Choices PE Op PathLength PE PE
∈

= →∑ (4)

A greedy approach was adopted for calculating the time for
routing the operands and the number of interconnections
(eq.(4)) required for routing an operand. For each operand the
shortest paths, which connect the source and destination PE,
are identified. From this set of paths, the one with the
minimum routing delay is selected. The delay and the length
of the selected path gives the delay and interconnection costs
through eq.(3) and eq.(4), respectively.

V. EXPERIMENTAL RESULTS

A. Set-up
The four DSP applications, described in C language, used

in the experiments are given in Table I. A brief description of
each application is shown in the second column, while in the
third one the input used is presented.

TABLE I
APPLICATIONS’ CHARACTERISTICS

Application Description Input

JPEG enc. Still-image JPEG encoder 256x256 byte
image

OFDM
trans.

IEEE 802.11a OFDM
transmitter

4 payload
symbols

Compressor Wavelet-based image
compressor [22]

512x512 byte
image

Cavity det. Medical imaging technique [23] 640x400 byte
image

The performance of the applications is estimated via cycle-

accurate simulation, using the proposed design flow, in eight

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:6, 2007

816

instances of the reconfigurable system. Two CGRA
architectures are used each time for accelerating kernels. Both
of them consist of 16 PEs organized in a 4x4 array. We list the
common features of both CGRAs. Each CGRA’s data-width
is 16-bits. The RFU in each PE can execute an operation in
one CGRA’s clock cycle. Each PE has a local data RAM of
size of eight 16-bit words, while the local configuration
RAM’s size is 32 contexts. The size of configuration RAMs is
large enough for the considered applications to store the
whole configuration for executing a kernel; thus there is no
time overhead for loading the configuration RAMs during the
kernel execution. Two buses per CGRA row are dedicated for
transferring data to the PEs from the scratch-pad memory. The
delay of fetching one word from the scratch-pad memory is
one cycle. We have described in VHDL both CGRA
architectures and we have synthesized them with the Synopsys
Design Compiler using a 130nm process. The timing reports
showed that the clock frequency for both CGRA architectures
can be set to 100MHz.

The two CGRA architectures differ in respect to the
interconnection network among the PEs. In the first
architecture (CGRA1), each PE is connected only to its nearest
neighbour PEs in the same row and column as shown in Fig.
2a. In the second one (CGRA2), the PEs are directly connected
to all other PEs in the same row and same column through
vertical and horizontal interconnections as illustrated in Fig.
2b. In the CGRA2, more internal bandwidth than the CGRA1
is available to transfer data among the PEs due to the richer
interconnection topology. These two alternatives architectures
were chosen to show the effect of the interconnection
topology on the performance of the kernels.

We have used four different architectures of 32-bit
embedded RISC processors coupled each one of them with the
4x4 CGRA: an ARM7, an ARM9 [16], and two SimpleScalar
processors [24]. The SimpleScalar processor is an extension
of the MIPS IV core. The first type of the MIPS processor
(MIPSa) uses one integer ALU unit, while the second one
(MIPSb) has two integer ALU units. We have used
instruction-set simulators for the considered embedded
processors for estimating the number of execution cycles.
More specifically, for the ARM processors, the ARM
RealView Developer Suite (RVDS) (version 2.2) was utilized,
while the performance for the MIPS-extended processors is
estimated using the SimpleScalar simulator tool [24]. Typical
clock frequencies, for 130nm CMOS process, are considered
for the four processors: the ARM7 runs at 133 MHz, the
ARM9 at 250 MHz, and the MIPS processors at 200 MHz.
The four applications were compiled to generate binary files
for the processors using the highest level of software
optimizations.

B. Experimentation
The results from profiling the four applications on the

ARM7 processor, using the ARM RVDS tool, are presented in
Table II. The applications were compiled to generate binary
files for the ARM processors using the highest level of
software optimizations. The threshold for the kernel detection
was set to 10% of the total execution time of the application. It
was observed that a threshold smaller than 10% leads in

marginal additional improvements when the identified kernels
are mapped on the CGRA. The Total size corresponds to the
application’s static size in terms of instructions bytes, while
the % size to the percentage of the kernels’ contribution to the
total static size. The % time is the percentage of the execution
time spent in the kernels. The Ideal speedup is the theoretical
maximum speedup, according to Amdahl’s law, if the
application’s kernels were ideally executed on the CGRA in
zero time. The ideal speedup equals 100 / (100 - %time). The
number of the kernels detected in each application is also
given. The kernels of the four applications are innermost loops
and they consist of word-level operations (ALU,
multiplications, shifts) that match the granularity (data bit-
width) of the PEs in the CGRA.

From the results of Table II, it is inferred that an average of
7.9% of the code size, representing the kernels’ size,
contributes 66.2% on average to the total execution time.
Furthermore, the average ideal speedup for the ARM7 systems
equals 3.10. The geometrical means of the % size, % time and
of the Ideal speedup are also given. Thus, it is deduced that
important overall application speedups will come from
accelerating few small kernels. We mention that the detected
loops are also kernels for the rest three microprocessors. For
the MIPS-extended processor, the SimpleScalar tool was used
for profiling.

TABLE II
KERNEL IDENTIFICATION RESULTS FOR THE ARM7

Application Total
size

(bytes)

%
size

%
time

Ideal
speedup

of
kernels

JPEG enc. 36,592 10.4 74.7 3.96 4
OFDM
trans. 15,579 9.0 71.8 3.54 4

Compressor 12,835 4.8 60.2 2.51 4
Cavity det. 12,039 7.4 58.0 2.38 4
Average 7.9 66.2 3.10
Geo. mean 7.6 65.8 3.03

We have unrolled the bodies of the detected loops 16 times
for mapping them on the two CGRAs. We have investigated
that unrolling the kernels of the considered applications more
than 16 times, the execution cycles, when these kernels were
mapped on the 4x4 CGRAs, slightly decrease. Thus, we have
selected the unroll factor equal to 16 since it gives significant
cycles reductions over the execution of the original kernel
body on both 4x4 CGRAs.

The performance results from applying the design flow in
the four applications are presented in Table III. For every
application, each one of the four considered processor
architectures (Proc.) is used for estimating the execution time
(Timesw) required from executing the whole application on the
processor. The Ideal speedup is the maximum theoretical
speedup if the kernels are executed on the CGRA in zero time.
The estimated speedup (Speedup) over the execution of the
whole application on the microprocessor is calculated as:

Speedup=Timesw/Timesystem (5)

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:6, 2007

817

where Timesystem represents the execution time after
accelerating kernels on the CGRA. All execution times are
normalized to the software execution times on the ARM7.

From the results given in Table III, it is evident that
significant overall performance improvements are achieved
when critical software parts are mapped on a 4x4 CGRA. For
the systems composed by the CGRA1, the application
speedups range from 1.86 to 3.65, with an average speedup
for all the processor systems and the four applications, of
2.53. Furthermore, the average application speedups for each
processor system are: 2.77 for the ARM7 system, 2.40 for the
ARM9, 2.56 for the MIPSa, and 2.41 for the MIPSb.

TABLE III
EXECUTION TIMES AND SPEEDUPS FOR THE PROCESSOR/CGRA1

SoCs

Proc./CGRA1 Application Proc. Timesw Ideal
Sp. Timesystem Speedup

ARM7 1.000 3.96 0.274 3.65
ARM9 0.461 3.24 0.162 2.85
MIPSa 0.996 3.32 0.333 2.99

JPEG enc.

MIPSb 0.568 3.24 0.199 2.86
ARM7 1.000 3.54 0.312 3.21
ARM9 0.485 3.43 0.164 2.95
MIPSa 0.768 3.43 0.249 3.08 OFDM trans.

MIPSb 0.590 3.29 0.206 2.87
ARM7 1.000 2.51 0.457 2.19
ARM9 0.424 2.32 0.221 1.92
MIPSa 1.608 2.49 0.728 2.21 Compressor

MIPSb 1.044 2.34 0.514 2.03
ARM7 1.000 2.38 0.493 2.03
ARM9 0.480 2.29 0.258 1.86
MIPSa 1.749 2.34 0.902 1.94 Cavity det.

MIPSb 1.154 2.23 0.617 1.87
Average 2.90 2.53
Geo. mean 2.84 2.47

Fig. 6 illustrates the application speedups for the

processor/CGRA2 systems. The CGRA2 architecture enables
direct connectivity among all the PEs of the same row and
column. Also, the average speedup for each system is also
given. By comparing the respective values of Fig. 6 and of
Table III, it is inferred that for the microprocessor/CGRA2
systems the overall application speedups are marginally larger
than the CGRA1 architecture. This is due to the fact that for
the CGRA2 systems, the acceleration of kernels is slightly
larger than the CGRA1 case owing to the richer interconnect
among the PEs in the former case. The average speedup for all
the processor systems and the four applications, equals 2.55
for the CGRA2 case.

From the performance improvements shown in Table III
and Fig. 6, it is noticed that better performance gains are
accomplished for the ARM7 system than the ARM9-based
one. This occurs since the speedup of kernels on the CGRA
has greater effect when the CGRA is coupled with a lower-
performance processor, as it is the ARM7 relative to the
ARM9. Additionally, the speedup is greater for the MIPSa
system than the MIPSb case, since the latter processor
employs one more integer ALU unit.

Such amounts of speedups as the ones reported in Table III
and Fig. 6 were also considered as important in previous
works considering processor/CGRA systems [13], [14], [15].
Furthermore, it is easily inferred that the reported speedups for
each application and for each system are quite close to the
ideal speedups, especially for the ARM7 systems. Thus, the
proposed design flow efficiently utilized the processing
capabilities of the 4x4 CGRAs for improving the overall
performance of the DSP applications near to the theoretical
bounds.

3.
67

3.2
3

2.
21

2.0
3

2.7
92.8
8

2.9
9

1.9
6

1.8
6

2.4
2

3.0
1

3.1
0

2.2
2

1.9
4

2.5
72.8

9

2.9
0

2.0
4

1.8
7

2.4
3

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

JPEG enc. OFDM trans. Compressor Cavity det. Average
Application

Sp
ee

du
p

ARM7 ARM9 MIPSa MIPSb

Fig. 6 Application speedups for the processor/CGRA2 SoCs

VI. CONCLUSIONS

Performance figures by mapping four DSP applications on
eight instances of a processor/CGRA platform were given. A
design flow for improving system performance by executing
critical kernel code on the CGRA was introduced. A mapping
algorithm that considers a flexible CGRA template is the core
of the design flow. The results showed that the CGRAs are
efficient in accelerating kernel code even when the available
internal bandwidth among the PEs for exchanging data values
is restricted. Important application speedups, over the
software only execution on the processor, were reported.

REFERENCES
[1] R. Hartenstein, “A Decade of Reconfigurable Computing: A Visionary

Retrospective”, in Proc. of ACM/IEEE DATE ’01, pp. 642-649, 2001.
[2] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,

M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, A. Agarwal.
“Baring it all to software: RAW machines”, in IEEE Computer, vol. 30,
no. 9, pp. 86-93, Sept. 1997.

[3] T. Miyamori and K. Olukutun, “REMARC: Reconfigurable Multimedia
Array Coprocessor”, in IEICE Trans. on Information and Systems, vol.
E82-D, no. 2, pp. 389-397, Feb. 1999.

[4] H. Singh, M.-H. Lee, G. Lu, F.J. Kurdahi, N. Bagherzadeh, E.M. Chaves
Filho, “MorphoSys: An Integrated Reconfigurable System for Data-
Parallel and Communication-Intensive Applications”, in IEEE Trans. on
Computers, vol. 49, no. 5, pp. 465-481, May 2000.

[5] Morpho Reconfigurable DSP (rDSP) IP core, Morpho Technologies,
www.morphotech.com, 2005.

[6] V. Baumgarte, G. Ehlers, F. May, A. Nuckel, M. Vorbach, M. Weinhardt,
“PACT XPP - A Self-Reconfigurable Data Processing Architecture”, in
the Journal of Supercomputing, Springer, vol. 26, no. 2, pp. 167-184,
September 2003.

[7] J. Becker, M. Vorbach, “Architecture, Memory and Interface Technology
Integration of an Industrial/Academic Configurable System-on-Chip
(CSoC)”, in Proc. of ISVLSI, IEEE Computer Society Press, pp. 107-112,
2003.

International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:1, No:6, 2007

818

[8] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, R. R.
Taylor, “PipeRench: A Reconfigurable Architecture and Compiler”, in
IEEE Computer, vol. 33, no. 4, pp. 70-77, April 2000.

[9] D. C. Cronquist, P. Franklin, S. G. Berg, C. Ebeling, “Specifying and
Compiling Applications for RaPiD,” in Proc. of FCCM ’98, pp. 116-125,
1998.

[10] N. Bansal, S. Gupta, N. Dutt, A. Nikolau, R. Gupta, “Interconnect Aware
Mapping of Applications to Coarse-Grain Reconfigurable Architectures”,
in Proc. of FPL ’04, pp. 891-899, 2004.

[11] J. Lee, K. Choi, N. D. Dutt, “Compilation Approach for Coarse-Grained
Reconfigurable Architectures”, in IEEE Design & Test of Computers, vol.
20, no. 1, pp. 26-33, Jan.-Feb., 2003.

[12] G. Venkataramani, W. Najjar, F. Kurdahi, N. Bagherzadeh, W. Bohm
and J. Hammes, “Automatic Compilation to a Coarse-Grained
Reconfigurable System-on-Chip”, in ACM Transactions on Embedded
Computing Systems, vol. 2, no. 4, pp 560-589, Nov. 2003.

[13] Y. Kim, C. Park, S. Kang, H. Song, J. Jung, K. Choi, “Design and
Evaluation of a Coarse-Grained Reconfigurable Architecture”, in Proc. of
ISOCC ’04, pp. 227-230, 2004.

[14] B. Mei, S. Vernalde, D. Verkest, R. Lauwereins, “Mapping methodology
for a Tightly Coupled VLIW/Reconfigurable Matrix Architecture, A Case
Study”, in Proc. of ACM/IEEE DATE ’04, pp. 1224-1229, 2004.

[15] F.-J. Veredas, M. Scheppler, W. Moffat, B. Mei, “Custom
implementation of the Coarse-Grained Reconfigurable ADRES

architecture for Multimedia purposes”, in Proc. of FPL ’05, pp. 106-111,
2005.

[16] ARM Corp., www.arm.com, 2005.
[17] G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-

Hill, 1994.
[18] SUIF2 compiler infrastructure,

http://suif.stanford.edu/suif/suif2/index.html, 2005.
[19] M. D. Smith and G. Holloway, “An Introduction to Machine SUIF and

its Portable Libraries for Analysis and Optimization”, Technical Report,
Harvard University, 2002.
http://www.eecs.harvard.edu/hube/research/machsuif.html.

[20] K. Kennedy and R. Allen, “Optimizing compilers for modern
architectures”, Morgan Kauffman Publishers, 2002.

[21] J.W. Crenshaw, “MATH Toolkit for Real-Time Programming”, CMP
Books, 2000.

[22] S. Kumar, L. Pires, S. Ponnuswamy, C. Nanavati, J. Golusky, M. Vojta,
S. Wadi, D. Pandalai, H. Spaanenberg, “A Benchmark Suite for
Evaluating Configurable Computing Systems - Status, Reflections, and
Future directions”, in Proc. of FPGA, pp. 126-134, 2000.

[23] M. Bister, Y. Taeymans, J. Cornelis, “Automatic Segmentation of
Cardiac MR Images”, in Proc. of Computers in Cardiology, IEEE
Computer Society Press, pp.215-218, 1989.

[24] SimpleScalar LLC, http://www.simplescalar.com, 2005.

