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Abstract—The study of human hand morphology reveals that 

developing an artificial hand with the capabilities of human hand is 
an extremely challenging task. This paper presents the development 
of a robotic prosthetic hand focusing on the improvement of a tendon 
driven mechanism towards a biomimetic prosthetic hand. The design 
of this prosthesis hand is geared towards achieving high level of 
dexterity and anthropomorphism by means of a new hybrid 
mechanism that integrates a miniature motor driven actuation 
mechanism, a Shape Memory Alloy actuated mechanism and a 
passive mechanical linkage. The synergy of these actuators enables 
the flexion-extension movement at each of the finger joints within a 
limited size, shape and weight constraints. Tactile sensors are 
integrated on the finger tips and the finger phalanges area. This 
prosthesis hand is developed with an exact size ratio that mimics a 
biological hand. Its behavior resembles the human counterpart in 
terms of working envelope, speed and torque, and thus resembles 
both the key physical features and the grasping functionality of an 
adult hand. 
 

Keywords—Prosthetic hand; Biomimetic actuation; Shape 
Memory Alloy; Tactile sensing. 
 

I. INTRODUCTION 
MORE recent development in lightweight robotic hand, 
such as prosthetic hands, has spawned a number of 

innovations. A lightweight robotic hand with 16 controlled 
DOF and 32 independent SMA axes was developed by Cho 
et.al. [1], using a joule heated Segmented Binary Control 
(SBC) to perform various tasks required for a robotic hand. A 
coordinate transformation architecture (C-Segmentation) is 
designed automatically through an algorithm to create a set of 
desire posture (up to 256 different postures) which able to 
reduce activation signal dimensionality.  

Innovative trend of dexterous robotics multi-fingered hand 
based on biomemetic initiatives exhibits tremendous effort in 
the current research activities. For instance a tendon-drive 
actuation system with biomemetic oriented functionalities has 
been developed by Bundhoo et. al.[2], for prosthetic and 
wearable robotic hand applications. A combination between 
tendon cables and one-way shape memory alloy (SMA) wires 
is presented to form a set of artificial muscle pairs for flexion 
and extension of finger joint.  

In biomimetic robotic hand and control scheme several 
research activities have been developed for instance by 
Seokwon et. al. [3]. With respect to the dexterity and the size 
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suited for human tools, four robotic fingers were built with 
nine DOFs driven by two linear actuators coupled and linkage 
knuckles. Tactile sensors are equipped on four fingertips 
which able to influence toward objects by curved surface 
workspace in 3D-space.  

A concept for controlling a grasp for an anthropomorphic 
mechatronic prosthetic hand have presented by Wettels et.al. 
[4], utilizing a biomimetic tactile sensor, Bayesian inference 
as well as simple algorithms for estimation and control. The 
grasp control is supported by tri-axial force sensing end-
effector for calculation the normal and shear forces at the 
fingertips so that able to maintain perturbed objects and also 
prevent slip. In addition to support rapidity and reflexive 
adjustments of grip, biologically-inspired algorithms and 
heuristics are used and implemented by on-line.  

A new design for a rotary motor-based actuation system for 
a single revolute joint of a tendon-driven robotic hand has 
been created by Hellman et. al.[5]. This design is fit to N-type 
(double-acting actuation) or 2N-type (single-acting actuation) 
control configurations, where the system possesses a two-
stage, zero backlash, pretensioned pulley reduction which 
enable to control high precision of tendon displacement and 
force, as well as back-driveability of the motor.  

In the case of complex tendon configuration, Sawada et.al. 
[6], proposed a method of a joint feedback controller for 
tendon-driven mechanisms (TDMs). This method utilizes a 
concept of branching tendons in which multiple tendons are 
connected at a point so that a number of actuators required to 
create a lightweight robotic mechanisms, such as prosthetic 
hands, can be reduced. However TDMs with branching 
tendons is used only for simple adaptive grasping mechanisms 
due to under-actuation of branching tendons having 
difficulties in accuracy of control the joint motion. 

II. INITIAL PROTOTYPE OF UITM HAND  
The first robotic hand developed in Universiti Teknologi 

MARA (UiTM) consists of five permanent fingers and a palm. 
In the grasping motions, the thumb comes from the opposite 
direction to the other fingers to produce a better grip. Each 
finger is driven by a servo motor, and the rotation is 
transmitted through a gear belt mechanism. Thus, there are 5 
DOF [7]. The motor generates finger movement through three 
gears in the fingers, one for each member connected with a 
belt and with a fixed gear on the last segment, as shown in Fig. 
1. Exclusion is the thumb with only two members, but the 
functions and working principle remains the same. Three 
modes of system control for the robotic hand are possible, i.e. 
manual control by means of a joystick or a graphical user 
interface as well as autonomous operation. 
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Fig. 1 Initial UiTM Robotic Hand 

 
Joystick control: A joystick is a control board. Pressing the 

buttons on the board triggers the motion of a motor in the 
forward or reverse direction. As such a finger is stretched or 
bent. A switch is used for controlling the power supply and 
device reset. A red LED indicates the operation state.  

Graphical User Interface: A Graphical User Interface 
(GUI) as shown in Fig. 2 has been developed using Visual 
Basic.net. Each of the fingers can be controlled individually. 
Selection of multiple fingers is also possible. Besides, there 
are two buttons for performing the grasping and release 
movements. All fingers can operate at the same time and can 
simulate human hand motion using the GUI.  

Autonomous operation: Two types of sensors are used, i.e. 
a force sensor and a light dependent resistor (LDR). With the 
LDR added to the palm, it is feasible to detect an approaching 
object and react on this event with a grasping movement. 
Programming is downloaded to microcontroller to make each 
finger to act like human hand. The force sensor will measure 
the force performed by a finger on a grasped object variable 
size.  

In order to produce a better hand grip, a light dependent 
resistor (LDR) sensor is added to the palm. The LDR come 
into operation with the aim to detect approaching objects. The 
light dependent resistor value changes in relation to the 
incident light. It is placed in the middle of the palm. 
Therefore, approaching objects will reduce the incident light 
and cause a decrease in the resistance. This change will be 
captured by the micro-controller in the form of a number of 
voltages provided by the voltage divider. If the object comes 
closer than this limit, the hand will perform grasping 
movements. 

Additionally, FlexiForce sensors are integrated into the 
fingertips. Force ranging from 0 N to 15 N is applied during 
testing to mimic the natural ability of the human fingers in 
applying force to an object. The sensor acts as a resistor in an 

electrical circuit that is changing. Resistance change when 
force is applied to the sensor. The prototype allows grasping 
objects with all five fingers, as shown in Fig. 2. Tests were 
carried out with cylindrical objects such as screwdriver. These 
tests have shown that this system is able to perform gross 
grasping movements. This initial prototype uses servo motor 
as the prime mover of the tendons that connects to each cable 
connection. Finger robot can follow the shape of the object but 
the griping power generated to the object is not satisfactory. 
 

 
Fig. 2 Grasping of a Screwdriver 

 
Realizing the importance of robotic technology to the 

amputees, improvements in terms of both actuation and 
sensing are carried out towards a UiTM robotic prosthetic 
hand.  

III. IMPROVEMENT ON ACTUATION METHOD 
Actuators for hand prosthesis must be installed in a 

confined space and can produce force and stroke which are 
large enough to allow motion as a means for grasping fingers. 
Therefore, selection of actuators in prosthetic hands is very 
important. Some challenges include achieving consistent 
motion like a natural human hand, light weight, noiseless 
operation, anthropomorphic size and appearance, agility, 
compact, controllability, low cost, and safety of the amputees. 
This part focuses on the factors driving the selection of an 
appropriate actuator for use in prosthetic hand. Research 
focuses on the use of two types of SMA wire actuators and a 
DC motor.  

DC motor: DC motor operating noise and limited energy 
density leads to large motor drive system and heavy weight 
[8]. Therefore, many researchers started using micro-sized DC 
motor with a diameter of 6mm to 15mm as a solution to this 
problem. Commonly used micro-sized DC motors include 
Faulhaber [9],[10] and Maxon DC motor [11], [12]. The 
advantage of using DC micro motor is that it can be easily 
adapted in prosthetic hand because of its small size. In 
addition, the motor is equipped with a special type of head 
gear and encoder direction which makes it feasible for 
precision application. However, DC micro motor is not the 
best solution for prosthetic hand. This is because a DC motor 
only offers one DOF. This affects the weight of the hand. In 
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addition, the smaller the diameter of a motor, the lower is the 
motor torque value. 

Shape Memory Alloys: Shape memory alloys are used 
extensively beginning in 1960 by the U.S. Naval Ordnance 
Laboratory. Nitinol is an abbreviation to Nickel (NI) Titanium 
(TI) marine laboratory equipment (NOL) [13]. Nitinol wire is 
commercially available under the trademark "Flexinol" by 
Dynalloy. SMA wires are small compared to motors or 
solenoids, cheap and generally easier to use for a wide variety 
of applications [14]. SMA has been identified as an ideal 
candidate to move the finger joints because of its small size, 
high power to weight ratio and operational similarity to human 
muscles [15]. In recent years, SMA has attracted the attention 
of researchers in the field of robotic prosthesis. Some famous 
SMA actuated prosthetic hand including Hitachi Hand [16], 
Hands Rutgers [17], Hand SBC [1] and other recorder authors 
like K. Andrianesis, [18], Beng Guey Lau [12], V.  Bundhoo 
[15]. 

Hybrid Solution: In order for prosthetic hands to be more 
viable, a new mechanism should be designed to enhance the 
ability of the prosthetic hand. The solution is to combine the 
micro DC motor and SMA wire. The advantage of a hybrid 
solution is shown in Fig. 3. It improves response and reduces 
both noise and weight. The SMA wire with a small size and 
strong actuation force improves the anthropomorphism of the 
device one step closer to the human hand. 

 
 

 
Fig. 3 Advantages of a hybrid actuation solution  

 
The design concept for a hybrid solution is shown in Fig. 4. 

Small DC motor and SMA wires are used to move the MCP 
joint and PIP joints independently. SMA wires are integrated 
into the mechanism of hand prosthesis. DIP joint rotates in 
correspondence to the PIP joint rotation by means of a 
mechanical linkage. MCP joint can be rotated without forcing 
the PIP joint to rotate together. 

 
 

 
Fig. 4 Design concept of a hybrid actuation solution  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 Experiments setup for testing of a hybrid actuated prosthetic 
finger (SMA wire and Faulhaber DC Micromotor) 

 
The key task is to ensure that SMA wires produce 

substantial contraction and stable force. Therefore, tests were 
carried out to identity the characteristics of SMA wire and to 
obtain the range of parameters to be used later as actuators in 
the prosthetic hand [19]. In addition, a finger prototype 
actuated by SMA wires and Faulhaber DC Micro Motor was 
developed. The finger prototype and the experimental set-up 
are shown in Fig. 5. The Faulhaber DC Micromotor is 
controlled by graphical User Interface (GUI) programmed in 
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(a) 

    
(b) 
 

Fig. 8 Comparation of resistivity behaviour of QTC Pills between 
0.5mm and 0.25mm separation gap 

V. CONCLUSION 
The development of a UiTM robotic prosthetic hand has 

been presented, focusing on improvements of the actuation 
and tactile sensing methods. Hybrid actuation solution by 
combination of a SMA wire and a DC micromotor promises 
great potential for improvements of actuation in hand 
prosthesis. Besides reducing the weight of prosthetic hand to a 
satisfactory level, the noise generated from actuation is also 
reduced. The force generated by the actuator has been tested 
and is satisfactory for prosthetic applications. Furthermore, 
QTC pills are evaluated to be suitable materials that can be 
used for tactile sensing as it produces stable and reproducible 
values.  
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