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3D Oil Reservoir Visualisation Using Octree
Compression Techniques Utilising Logical Grid

Abstract—Octree compression techniques have been used
for several years for compressing large three dimensional data
sets into homogeneous regions. This compression technique
is ideally suited to datasets which have similar values in
clusters. Oil engineers represent reservoirs as a three dimen-
sional grid where hydrocarbons occur naturally in clusters. This
research looks at the efficiency of storing these grids using
octree compression techniques where grid cells are broken
into active and inactive regions. Initial experiments yielded
high compression ratios as only active leaf nodes and their
ancestor, header nodes are stored as a bitstream to file on
disk. Savings in computational time and memory were possible
at decompression, as only active leaf nodes are sent to the
graphics card eliminating the need of reconstructing the original
matrix. This results in a more compact vertex table, which can
be loaded into the graphics card quicker and generating shorter
refresh delay times.

Keywords—3D visualisation, compressed vertex tables,
octree compression techniques, oil reservoir grids.

I. INTRODUCTION

O IL reservoirs are large, spanning several miles
horizontally but in contrast quite shallow. Seismic

sampling generates data which can be computed to give
a good representation of the sub-surface rock. In the
case of oil field exploration, this has proved vital in
developing accurate 3D geological models [1].

The past decades have seen the oil reservoir simulator
as an extremely important tool for engineers for analysis
of an oil reservoir’s performance, its production levels
and for indicating future events. The adoption of com-
puter simulator analysis can help engineers to achieve
the maximum efficiency obtainable from the reservoir
[2]. Simulators allow engineers to study the anomalous
behaviour of hydrocarbons and tracers through the reser-
voir [3].

Due to the vast volumes of these data sets, storing this
data generates large file sizes. The greater the demand for
accuracy, the greater the frequency in sampling, resulting
in larger file sizes. The computer models generated by the
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simulators take the heterogeneous reservoir’s information
and based on various attributes fed into the simulator,
accurate forecasts of oil stock and production levels can
be calculated [4].

The ultimate target of the simulator is to provide oil
engineers with a detailed depiction of the reservoir’s
physical and chemical make up modelled from the initial
surveys so that accurate simulations of oil stock extrac-
tion can be run yielding effective and true evaluations
and forecasts saving in time and eliminating pumping
out unnecessary barrels of oil. [5].

Simulators use various techniques and therefore have
varying degrees of stability and reliability which the
underlying algorithms are ultimately responsible for [6].
The more accurate the model required, the smaller dis-
tance between samples. [7], suggest that the structure
of the computer grid used for oil reservoir simulators
dictates how precise the simulation will be owing to its
interpretation of the rock formations and other attributes
such as porosity and permeability. The physical dimen-
sions and direction of the grid structure can diminish
the accuracy in simulation equations. Feed-back from
initial trials can lead to the re-design of both these
characteristics of the grid model in an attempt to optimise
simulation accuracy [8]. An actual reservoir test sample
was supplied for this research by Sciencesoft Ltd, an oil
and gas reservoir visualisation specialist company.1

II. COMPRESSION IN LOGICAL SPACE

A. Tree Structures

Tree structures have been well known for many years
for their effective and efficient storing capabilities and
their ability to accommodate fast searching of data [9].
Tree structures are hierarchical where, at its uppermost
level, level-0, is the ‘root node’. This node points to its
child nodes where these child nodes can also have child
nodes of their own and if so are referred to as ‘header
nodes’. If a child node does not point to any other node
below it then it is referred to as a ‘leaf node’.

Trees have proved to be an exceptionally effective
and efficient method for storing data where the use of

1http://www.sciencesoft.com/
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quadtrees in 2D computer graphics has become standard
practice [10]. Tree structures are used to break a multi-
dimensional space into regions containing similar values
using recursive programming techniques. Recursion is
considered to be very elegant, generally having far fewer
lines of code and thought to be more comprehensible
[11].

Fig. 1 shows an example of a bitmap sub-divided
into its homogeneous colour values and its resulting
tree structure stored in memory. This illustrates how the
image has been recursively, sub-divided into quadrants
of equal colour values where leaf nodes may store the
leaf node’s RGB value as a payload.

1) Octree Compression: 3D graphics can make use
of octrees where regions in 3D are broken down into
volume pixels called voxels [12]. With 3D visualisation,
octrees can be used to represent a 3D matrix as octets of
homogeneous values. This type of compression is ideally
suited to datasets which have similar values in clusters.
This is because these matrices exhibit larger homogen-
eous regions which generate shallower tree structures
containing fewer leaf nodes. This not only results in
smaller file sizes but as a result are quicker to traverse.

Oil engineers represent these reservoirs in a 3D grid
where the volumes of hydrocarbons occur naturally in
clusters. The reservoir can be first broken down into
2 distinct regions: those cells which have accessible
hydrocarbons and those which do not. These are referred
to as the active and inactive cells.

These engineers use a 3D integer array to represent
the reservoir’s active cell status in logical space where
active cells are written as a ‘1’ and inactive cells are
written as a ‘0’. The reservoir sample supplied was a
text file consisting of ‘1’s and ‘0’s. This represented
the reservoir’s active and inactive cells in 3 dimensional
space in logical terms. The recursive function adopts
sub-division at a power-of-2 so the original matrix is
superimposed into the smallest power-of-2 3D matrix
large enough to accommodate it; the file sample statistics
are shown in Table I.

Oil Reservoir Sample
Original matrix dimensions (cells) 196 x 129 x 105
New superimposed dimensions (cells) 256 x 256 x 256
Bits per cell 96
Total file size (MB) 10.13
Octree header nodes 96146
Bits per header node 32
Octree inactive leaf nodes 255621
Octree active leaf nodes 417402
Bits per leaf node 32
Total nodes stored in memory 769169
Octree saved to disk in binary format (MB) 2.93

This paper looks at compression ratios obtainable
from adopting tree compression compared to current
techniques and also details the savings in memory upon
decompression of the bitstream. The active section of the
reservoir can be replicated and visualised with no need
to regenerate the original matrix, saving memory.

Octree data compression uses the same principles of
compression but each header node can have up to 8 chil-
dren and can be used to sub-divide 3D space. An example
of an octree structure can be seen in Fig. 2 where the
white cubes represent the active cells and shaded cubes
the inactive cells. For demonstrative purposes only the
tree structure of the top nearest cube of the matrix is
illustrated.

Following is the pseudo code used to compress the 3D
array using octree compression techniques.

• Populate a 3D matrix with 1’s and 0’s.
• Superimpose the 3D matrix if necessary into a

power-of-2 3D matrix.
• Create an octree using C# node objects linking to

pointers by recursively calling the octree function
passing in the starting position and thepower-of-2
size.

– createOctree(x, y, z, cell length)
∗ If cell length equals ’1’:

Fig. 1 Quadtree structure example

Fig. 2 Octree structure example

TABLE
TEST SAMPLE STATISTICS
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∗ createLeafNode(payload).

– Else: recursively create 8 new child nodes,
{child 1, child 2, ......child 8}.

– If all 8 child nodes are the same:

∗ createLeafNode(payload).

– Else: createHeaderNode - pointers to, {child 1,
child 2, ......child 8}.

Leaf nodes store a 32 bit word as a payload indicating
whether it is active or inactive. This resulted in a file
size of 2.93 MB in memory. A more efficient method of
storing this payload would be to replace this by a single
bit, ‘1’ for active and a ‘0’ for inactive and would further
compress the file to 0.45 MB. In addition to this, the
32 bits required for storing header cell values was also
inefficient if all that was required was an active status
indicator for each of its to children. For these reasons a
data structure was required which could store a precise
number of bits for each node. Bitstreams have proved to
be an deal data structure for performing such tasks and so
was incorporated into the next stage of the compression
algorithm.

B. Compact Bitstreams

Bitstreams allows data to be written without byte
boundaries. This permits datafields which are not made
up of whole bytes to be stored compactly. This data
structure is therefore used as a compression technique
for generating smaller file sizes where only the required
bits are stored instead of unnecessary padding bits or
zeros. Bits can be written to and read from the stream
in whatever multiples are required. The bitstream is
therefore a compressed version of the initial data [13].

The octree generated was a C# structure, where along
with storing active leaf nodes and their ancestors, inactive
leaf nodes and header nodes, who’s descendants are
all inactive leaf nodes were also stored. Inactive cells
in the reservoir are of no interest to oil engineers as
only those containing hydrocarbons are of importance.
In order to further compress the tree before saving to
file, these unnecessary nodes were culled. The resulting
tree was then flattened out in a linear fashion and further
compressed using a compact bitstream data structure and
saved to file in binary format as described in Fig. 3.

1) Header Node Flag: An octree’s header node can
have up to 8 children, so a single unsigned byte flag is
incorporated into the bitstream whereby each bit in the
flag represents one of its individual child nodes. This is
shown in Fig. 3.

On decompression the bitstream is read in the same
traversal order as it is written. If a header node only
contained 3 active cells, {NW_0, NW_1, SE_1}, then
the unsigned byte flag would contain 3 ‘1’ values and 5
‘0’s. This is illustrated in Fig. 4.

As a further method of compression any header node
possessing only inactive children, indicated by an un-
signed byte flag of 8 zeros, is not stored. This more
compressed octree structure is subsequently flattened out
as it is written to a bitstream. It contains only header
nodes, their unsigned flag bytes, and active child leaf
nodes. An illustration of a header node in the bitstream
having 8 active child nodes is shown in Fig. 5 on the
next page.

Fig. 3 Unsigned byte flag

Fig. 4 Unsigned byte flag example
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A header section is added to the start of the bitstream
which stores the original dimensions of the 3D matrix,
power-of-2 dimensions and number of active leaf nodes.
The bitstream is subsequently saved to file in binary
format. Fig. 6 below shows a representation of the
bitstream where the header flag indicates it has 5 active
leaf node children to follow.

Following is a pseudo code representation of the
algorithm used to compress the octree data structure into
the bitstream.

Traverse the octree in a depth-first-traversal fashion
and write the flattened out octree to the bitstream starting
at position 192 in the stream.

readOctree(node)
• If node is a leaf node:

– If leaf node equals ’0’ it is an inactive leaf node:
∗ Ignore and do not write anything to bit-

stream.
– Else: leaf node equals ’1’ and is active.

∗ Write a ‘1’ to the stream.
∗ Increment active leaf node count.

• If node is a header node:
– Create an 8 bit unsigned bit flag inserting a ‘1’

for each active chilso as tod node as illustrated
in Fig. 4 on the previous page.
∗ If all 8 bits in the header flag are zeros

indicating all its child nodes are empty:
· Do not write anything to bitstream.

• Else: Write header flag to bitstream.

The position of the bitstream is set to zero and the
original dimensions of the 3D matrix, the power-of-2
size of the matrix and active leaf node count are written
to the bitstream. The linear array is then saved to disk
in binary format as a’dnsTree’ file. Fig. 7 shows the
octree generated from a cubic matrix of 4 X 4 X 4 cells.
The cells are sub-divided into homogeneous regions and
stored as an octree in memory. The white cubes are
taken to be inactive cells along with any cubes which
are hidden from view. The shaded cells are taken to
be active cells and if the dimensions of the matrix are
known, then the bitstream illustrated contains all the
information required to replicate the active status of the
original matrix.

As the original matrix stores 8, 32 bit single precision
floating point values, high levels of compression can
be achieved in representing this matrix in the bitstream
format described. These savings are detailed in Table II.

TABLE II
64 CELL STATISTICS

Oil Reservoir Sample - (4 x 4 x 4 cells)
Uncompressed 3D matrix file size 256 Bytes
Number of header nodes stored 2
Number of active leaf nodes stored 8
Compressed octree bitstream file size 26 bits
Compression Ratio percentage 1.27 %

Fig. 5 Bitstream header example

Fig. 6 Bitstream snippet showing header node with 5 active
child leaf nodes

Fig. 7 Octree structure of a simple 64 cell matrix
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III. DECOMPRESSION

What has been described so far is a technique for
compressing the logical structure of a simulated oil
reservoir. The geometry of the original has not been
saved on file. It is however possible to regenerate a
logical version of the original structure in which all the
cells are represented as cubes. In an actual geological
model, these cells, whilst 8 sided may deviate from a
cubic shape.

The compressed logical structure can be visualised
on the screen using the graphics hardware. In order to
visualise a 3D model on screen a 3D imaginary world
is created in the computer’s memory. Each object is
created using triangles, each of which having their vertex
positions stored as x, y and z co-ordinates. These are
stored as floating point numbers in an array called a
‘vertex table’, so that each leaf node has 8 vertex points,
equivalent to 24 floating point numbers. The vertex
table can then be sent to a graphics package for 3D
visualisation.

When reading back in the binary bitstream file there
is no need to replicate the original 3D matrix as only
the active regions of the matrix are required. A recurs-
ive depth-first-traversal method is adopted for reading
the bitstream. Initially the first 192 bits are read from
bitstream.

These first bits are made up of 6, 32 bit words. These
words contain the dimensions of the original 3D matrix
along with the power-of-2 size and active leaf node count
of the octree. A linear, one-dimensional array is created
and acts as the vertex table. This table stores the origin
vertex position of each of the active leaf nodes along
with its cell length as the number of cells it encapsulates
in a single dimension. This is illustrated in Fig. 8.

Following is the pseudo code used for decompressing
the bitstream.

• Pass the starting co-ordinates, power-of-2 size, bit-
stream and vertex table to the recursive function.

• readFromStream(x, y, z, cell length, stream, ver-
texTable)

– If first bit equal ‘1’:
∗ populate the vertex table with the z, x, y co-

ordinates and cell length)
– Else: Read the following 8 bit header flag

and for each bit in the bit flag which equals

a ‘1’recursively read from the bitstream. For
example, if the first bit in flag equals ‘1’:
∗ recursively call the NW_0 child node.
∗ readFromStream (x, y, z, cell length / 2,

stream, vertexTable).
∗ populate the next position of the vertex table

with the cell length, z, x and y co-ordinate
values.

• At the end of the stream, send the vertex table to
the graphics card for visualization.

IV. VISUALISATION

The surface of the leaf node can be depicted by
drawing 2 triangles using the origin co-ordinates and the
cell length value. This is accomplished by plotting each
subsequent vertex perpendicular to one-another other,
forming cuboids. Although these vertex positions are
based on logical positions, the resulting visualisations
are of an acceptable standard for the human eye. This
is because these models can contain millions of cells,
sometimes more than the pixel count on most computer
screens. The graphics card renders the entire scene using
the frame buffer and displays it on screen. The vertex
table holds each of the active leaf node’s origin x, y
and z co-ordinate values and cell length as illustrated in
Fig. 8.

The graphic card renders each frame typically,
between 60 and 100 times a second and is referred to
as the refresh rate [14]. If the refresh rate is set too
high, a proportion of the frames will be identical and
not updated as this allows the graphic card to catch up.
Smoother animations sometimes require slower refresh
rates and waiting functions written into the code [15].

V. RESULTS

As the bitstream only contains the information of each
active leaf node and parent header nodes, a high level of
compression can be achieved. The sample, reservoir test
file used for evaluations, has an aspect ratio of 196 x 129
x 105 cells producing a 3D matrix of 2654820 elements.
It has an active percentage of 56.28% and its level of
clustering was deemed typical by Sciencesoft Ltd. Table
III details its octree header node and leaf node values.

TABLE III
TEST SAMPLE OCTREE STRUCTURE

Oil Reservoir Sample - (196 x 129 x 105 cells)
Header nodes Active leaf nodes Total cells stored
96146 417402 513548

The compression ratio generated from this test sample
is detailed in Table IV.

A. Compression f Information

Fig. 8 Leaf node vertex structure
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TABLE IV
TEST SAMPLE FILE SIZES AND COMPRESSION RATIO
Oil Reservoir Sample - (196 x 129 x 105 cells)
Uncompressed 3D matrix file size 10.13 MB
Compressed octree bitstream file size 156.6 KB
Compression Ratio percentage 1.5%

A vertex table can be generated from the bitstream
whereby a single 32 bit word is sufficient to represent
an active leaf node’s surface area in logical terms irre-
spective of the number of active cells it encapsulates. The
sample had 1494128 individual active cells out of a total
of 2654820. A vertex table generated from each of these
individual cells would normally be stored as 3, x, y and z
co-ordinate, single precision floating point numbers. The
savings in vertex table size is detailed in Table V.

TABLE V
TEST SAMPLE’S VERTEX TABLE MEMORY SAVINGS

Oil Reservoir Sample - (196 x 129 x 105 cells)
Uncompressed vertex table 136.79 MB
Compressed octree vertex table 1.59 MB
Compression Ratio percentage 1.16 %

In addition to these savings in memory, the graphic
card does not have to perform as many calculations to
replicate the model. The graphic card draws 12 triangles
to form an active cuboid but as a single octree leaf node
can represent multiple active 3D matrix cells there is
a substantial saving in graphic card calculations. The
results of this can be viewed below in Table VI.

TABLE VI
SAVINGS IN GRAPHIC CARD TRIANGLE CALCULATIONS
Oil Reservoir Sample - (196 x 129 x 105 cells)
Triangles in uncompressed vertex table 17929536 ~ 1.7� 107

Triangles in compressed vertex table 5008824 ~ 5.0×106

Every face drawn by the graphics card comprises of 2
triangle calculations.The savings in triangle calculations
are illustrated below in Fig. 9 where a typical octree
leaf node encapsulates 64 cells. As every cell within the
leaf node is considered to be similar there is no need
for the graphics card to draw the internal unexposed
cell faces, instead only the 6 faces of the leaf node are
drawn. There is therefore a substantial saving in required
triangle calculations. This is illustrated in Fig.9 where
768 triangles are required to draw all the cells, whereas,
using the octree compression algorithms, only 12 are
required.

The savings made by only generating a vertex table
based on the number of active leaf nodes not only
occupies less memory but can be loaded into the graphics
card quicker. In addition to this, this smaller vertex table
allows the graphics card to refresh quicker resulting in
less of a delay.

TABLE VII
LOADING AND GRAPHICS CARD TIME

Vertex Table Style Loading Vertex Table Graphics Card
Into Graphics Card Refresh Delay
(seconds) (milliseconds)

Uncompressed 2.49 119
Octree Compressed 0.89 14
Compression Ratio - (%) 35.7 11.8

VI. CONCLUSIONS

The greater the density of clustering of active cells
within the oil reservoir the lower the entropy. This results
in a shallower and less dense octree structure required for
its storage. As the oil reservoir’s octree representation
only contains those active leaf nodes and their ancestors,
oil reservoirs of low activity can be compressed to an
even greater extent. This is partly because the entropy of
the oil reservoir would still be low and the majority of the
leaf nodes would be discarded inactive leaf nodes. The
resulting octree generated would therefore be shallow
and sparse resulting in a very compact binary file.

Oil reservoirs displaying high levels of entropy may
not prove to be a suitable candidate for octree compres-
sion techniques. This is primarily due to the number of
leaf nodes and levels required to represent it. The octree
generated from such a reservoir would be deep and dense
resulting in large file sizes. It is also worthwhile pointing
out that reservoirs displaying high levels of entropy may
also prove to be insufficiently clustered due to their lack
of active cell continuity and therefore deemed unsuitable
for oil extraction by engineers.

It can also be deduced that the more cells contained
within the leaf node, the greater the saving in triangle
calculations. Additionally, the more dense the clustering

Reduced face calculations of Leaf nodesFig. 9
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of active cells within a reservoir, the faster, its more
compact vertex table can be loaded into the graphics card
and ultimately visualised with shorter refresh delays.
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