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Abstract—The paper presents the potential of fuzzy logic  (FL-I) 

and neural network techniques (ANN-I) for predicting the 
compressive strength, for SCC mixtures. Six input parameters that is 
contents of cement, sand, coarse aggregate, fly ash, superplasticizer 
percentage and water-to-binder ratio and an output parameter i.e. 28-
day compressive strength for ANN-I and FL-I are used for modeling. 
The fuzzy logic model showed better performance than neural 
network model.  

 
Keywords—Self compacting concrete, compressive strength, 

prediction, neural network, Fuzzy logic. 

I. INTRODUCTION 
N todays fast paced world of increasing and innovative new 
technology, fuzzy logic is a practical mathematical addition 
to classic Boolean logic. Fuzzy logic is considered as a 

superset of standard logic which is extended to deal with 
partial truth. Fuzzy set theory is basicaly used to 
mathematically represent uncertainity and vagueness and 
provide tools to deal with the imprecision in many problems.  
For the last two decades, the different modeling methods 
based on artificial neural networks (ANN) and fuzzy logic 
(FL) systems have become popular and has been used by 
many researchers for a variety of engineering applications. 
The basic strategy for developing ANN and FL systems based 
models for material behavior is to train ANN and FL systems 
on the results of a series of experiments using that material. If 
the experimental results contain the relevant information about 
the material behavior, then the trained ANN and FL systems 
will contain sufficient information about material’s behavior 
to qualify as a material model. Such a trained ANN and FL 
systems not only would be able to reproduce the experimental 
results, but also they would be able to approximate the results 
in other experiments through their generalization capability 
[1]. Also, researchers have explored the potential of artificial 
neural networks (ANNs), a nonlinear modeling approach, in 
predicting the compressive strength of the concrete, due to its 
ability to learn input-output relation for any complex problem 
in an efficient way. Artificial neural network (ANN) does not 
need specific equation form. Instead, it only needs sufficient 
input-output data. ANNs have been investigated to deal with 
the problems involving incomplete or imprecise information. 
In recent years, ANNs have been applied to many civil 
engineering applications with some degree of success. ANNs 
have been applied to geotechnical problem like prediction of 
settlement of shallow foundations [2]. Researchers have also 
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used ANN in structural engineering [3]. Some researchers 
have recently proposed a new method of mix design and 
prediction of concrete strength using neural network [4, 5]. 
Also, several works were reported on the use of neural 
network based modelling approach in predicting the concrete 
strength [6-15]. Some attempts have been made to describe 
the compressive strength properties using traditional 
regression analysis tools and statistical models [16-18]. 

The objective of the present study was to examine the 
potential of Fuzzy Logic and ANN for predicting the 28-day 
compressive strength of SCC mixtures, with data obtained 
from literature. The successful development of self-
compacting concrete (SCC), which  is defined as the type of 
high performance concrete, filling all corners of formwork 
without vibration, and having good deformability, high 
segregation resistance and no blocking around reinforcement, 
must ensure a good balance between deformability and 
stability, requires manipulation of several mixture variables to 
ensure acceptable flowable behaviour and proper mechanical 
properties The complex relationship between mixture 
proportions and engineering properties of SCC was generated 
based on data obtained experimentally by various researchers. 
It was observed that the neural network along with fuzzy logic 
could effectively predict compressive strength in spite of 
intricate data and could be used as a tool to support decision 
making, by improving the efficiency of the process. Thus, 
study was carried out to develop and compare the 
performance of the models developed using artificial neural 
network and fuzzy logic techniques. 

II.  ARTIFICIAL NEURAL NETWORK  
Neural networks are networks of many simple processes, 

which are called units, nodes, or neurons, with dense parallel 
interconnections. The connections between the neurons are 
called synapses. Each neuron receives weighted inputs from 
other neurons and communicates its outputs to other neurons 
by using an activation function. Thus, information is 
represented by massive cross-weighted interconnections. 
Neural networks might be single or multi layered. The basic 
methodology of neural networks consists of three processes: 
network training, testing, and implementation. The connection 
weights of the neural network are adjusted through the 
training process, while the training effect is referred to as 
learning. Then, other testing data are used to check the 
generalization. The initial weights and biases joining nodes of 
an input layer, hidden layers, and an output layer are 
commonly assigned randomly. The final sets of weights and 
biases comprise the long-term memory, or synapses, of 
respective events. Consequently, learning corresponds to 
determining the weights and biases associated with the 
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connections in the networks. The back-propagation networks 
was used in this study. Figure.1 presents a simple architectural 
layout of the back propagation networks that consist of an 
input layer, a hidden layer, an output layer, and connections 
between them. The learning mechanism of the back-
propagation networks is a generalized delta rule that performs 
a gradient descent on the error space to minimize the total 
error between the actual calculated values and the desired 
ones of an output layer during modification of connection 
weights. In other words, a least mean square procedure is 
carried out to find the values of the connection weights that 
minimize the error function by using a gradient descent 
method.   

Artificial neural networks (ANNs) have been successfully 
used to predict various concrete properties. Their prediction 
ability, however, depends, to a large extent, on the 
completeness and accuracy of the experimental database used 
in the training process. The main objective in building an 
ANN-based model is to train a specific network architecture 
using a comprehensive database to search for an optimum set 
of weights (connection strengths between its processing units) 
for which the trained ANN can predict accurate values of 
outputs for a given set of inputs from within the range of the 
training data. A neural network model requires no functional 
relationship among the variables, as is the case with most of 
other regression analysis techniques. A neural network based 
modelling algorithm requires setting up of different learning 
parameters (like learning rate, momentum), the optimal 
number of nodes in the hidden layer and the number of hidden 
layers so as to have a less complex network with a relatively 
better generalization capability. 

 

 
Fig. 1 Architecture of Artificial Neural Network 

 
The accuracy of the predictions of a network was quantified 

by the root of the mean squared error difference (RMSE), 
between the measured and the predicted values and mean 
absolute error (MAE). 

III. FUZZY LOGIC 
The concept of ‘‘fuzzy set’’ was preliminarily introduced 

by Zadeh [19], who pioneered the development of fuzzy logic 
(FL) replacing Aristotelian logic which has two possibilities 
only. FL concept provides a natural way of dealing with 
problems in which the source of imprecision is the absence of 

sharply defined criteria rather than the presence of random 
variables [20, 21]. Herein, uncertainties do not mean random, 
probabilistic and stochastic variations, all of which are based 
on the numerical data. Fuzzy set theory provides a systematic 
calculus to deal with such information linguistically. Fuzzy 
approach performs numerical computation by using linguistic 
labels stimulated by membership functions. Therefore, Zadeh 
introduced linguistic variables as variables whose values are 
sentences in a natural or artificial language. Although FL was 
brought forward by Zadeh in 1965, fuzzy concepts and 
systems attracted attention after a real control application in 
1975 conducted by Mamdani and Assilian [22]. The key idea 
in FL is the allowance of partial belongings of any object to 
different subsets of the universal set instead of belonging to a 
single set totally. Partial belonging to set can be described 
numerically by a membership function which assumes values 
between 0 and 1 contain. For instance, Fig.2 shows a typical 
membership function for small, medium and large class sizes 
in a universe, U. Hence, these verbal assignments are fuzzy 
subsets of the universal set. In this figure, set values less than 
2 are definitely ‘‘small’’; those between 4 and 6 are certainly 
‘‘medium’’; while values larger than 8 are definitely ‘‘large’’. 
However, intermediate values such as 2.2 partially belong to 
the   subsets ‘‘small’’ and ‘‘medium’’. In fuzzy terminology 
2.2 has a membership value of 0.9 in ‘‘small’’ and 0.1 in 
‘‘medium’’, but 0.0 in ‘‘large’’ subsets [20, 21, 25]. 

 
Fig. 2 typical membership function 

 

A. Fuzzy Logic Inference System 
A general fuzzy inference system (FIS) has basically four 

components: fuzzification, fuzzy rule base, fuzzy output 
engine and defuzzification [26]. Moreover, input and output 
data can be added. Fuzzification converts each piece of input 
data to degrees of membership by a lookup in one or more 
several membership functions. Fuzzy rule base contains rules 
that include all possible fuzzy relation between inputs and 
outputs. These rules are expressed in the IF–THEN format. In 
this study, the Sugeno-type fuzzy rules were constituted. 
Fuzzy inference engine takes into consideration all the fuzzy 
rules in the fuzzy rule base and learns how to transform a set 
of inputs to corresponding outputs. There are basically two 
kinds of inference operators: minimization (min) and product 
(prod). In this study, the prod method was employed because 
of its better performance. Defuzzification converts the 
resulting fuzzy outputs from the fuzzy inference engine to a 
number. There are many defuzzification methods such as 
weighted average (wtaver) or weighted sum (wtsum). In this 
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study, the weighted average method was employed. Fuzzy 
inference systems are powerful tools for the simulation of 
non-linear behaviors with the help of FL and linguistic fuzzy 
rules [27]. A FIS employing fuzzy ‘‘IF–THEN rules’’ can 
model the qualitative aspects of human knowledge and 
reasoning processes without employing precise quantitative 
analyses [23–30].  

There are various FIS methodologies, such as Mamdani and 
Sugeno [22–29]. The fuzzy modeling or fuzzy identification, 
first explored systematically by Sugeno and Kang [28] and 
Takagi and Sugeno [29], has found numerous practical 
applications in control, prediction and FIS [28–30]. In the 
Sugeno FIS,(Fig.3) outcomes of fuzzy rules are characterized 
by function crisp outputs. From mathematical viewpoint, if F 
denotes a real continuous mapping within a closed interval, 
then the parameterized non-linear mapping of a Sugeno-type 
FIS may be given in the following equation:   
 

                     
  F  =  

 
 

Where m denotes number of rules, n defines number of data 
points, and Ai is the membership function of fuzzy set A. 
Considering a first-order Sugeno-type FIS, a fuzzy model 
contains two rules [26, 29]: 

 
Rule1 : IF x is A1 and y is B1; THEN z1 = p1x + q1y + r1 
Rule2 : IF x is A2 and y is B2; THEN z2 = p2x + q2y + r2 

 
Fig. 3 Interference methodology of first order Sugeno type model 

with two fuzzy rules 
 
All of the proposed membership functions in this study 

consist of six inputs and one output. The membership function 
plots of input variables and output variable used in the 
training are shown in Fig. 4-Fig. 5 respectively. In Fig. 6, 
based on the results of prediction runs of the model; shows the 
effects of two factors at a time on each surface plot of the 
strength.  

IV. DATABASE  
The model’s success in predicting the behaviour of SCC 

mixtures depends on comprehensiveness of the training data. 
Availability of large variety of experimental data was required 
to develop the relationship between the mixture variables of 
SCC and its measured properties. The basic parameters 
considered in this study were cement content, sand content, 
coarse aggregate content, pulverised fly ash (PFA) content, 
water-to-powder ratio and superplasticizer dosage. A database 
of 60 mixes from the literature was retrieved having mixture 

composition with comparable physical and chemical 
properties.  The exclusion of one or more of SCC properties in 
some studies and the ambiguity of mixture proportions and 
testing methods in others was responsible for setting the 
criteria for identification of data. The ANNs were designed 
using 60 pairs of input and output vectors for strength 
prediction, collected from studies [17,31-33].The predicted 
results obtained from neural network were compared with the 
results obtained from FL-I. The training of models was carried 
out using pair of input vector and output vector. Input vector 
consisted of mixture variables and an output vector of one 
element i.e. 28-day compressive strength. The complete list of 
data is given in Table I, where the name and the source of 
each specimen are referenced.  

Fuzzy modeling is a system identification task, which 
involves two phases: structure identification and parameter 
prediction. Structure identification contains the issues like 
selecting relevant input variables, choosing a specific type of 
FIS, determining the number of fuzzy rules, their antecedents 
and consequents, and determining the type and number of 
membership functions. Parameter prediction is determination 
of aimed values response to evident input values of 
constituted model. For this aim, in the study 60 data results 
from literature were used in the processes of Sugeno-type 
fuzzy inference model in FL system. The limit values of input 
and output variables used in Sugeno-type fuzzy inference 
model are listed in Table II. 

 
The data is given in Table I with ranges listed in Table II. 
The six major variables used for ANN-I and FL-I 
Cement content 
Sand  content  
PFA content  
Coarse aggregate content 
Water-binder ratio 
SP (%)  
In other words, the input layer of the neural network ANN-I 

and FL-I consisted of six processing units representing these 
six variables, and the output layer included one neuron 
representing 28-day strength. 

 
TABLE I 

DETAILS OF THE DATA FROM LITERATURE 

Sr. 
No. Cement PFA W/B SP San

d 

Coars
e  

Agg 

Strengt
h Researcher 

1 250 261 0.55 0.5 478 837 17 

Sonebi 
 2004) 

2 210 100 0.65 0.8 910 837 19.1 
3 210 220 0.45 0.8 768 837 26.7 
4 290 220 0.45 0.2 625 837 32.9 
5 250 160 0.38 0.5 919 837 36.3 
6 250 160 0.55 1 746 837 26.7 

7 220 180 0.39 0.3
5 916 900 49 

8 160 240 0.39 0.3
5 886 900 44 

9 193 158 0.39 0.3
5 

102
4 900 44 

10 220 180 0.45 0.3
5 850 900 38 
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11 198 232 0.34 0.2 874 900 46 

12 248 203 0.39 0.3
5 808 900 50 

13 237 133 0.36 0.2 103
4 900 49 

14 220 180 0.39 0.3
5 916 900 49 

15 237 133 0.43 0.5 960 900 46 
16 275 155 0.43 0.5 827 900 48 

17 280 120 0.39 0.3
5 946 900 45 

18 170 200 0.43 0.2 930 900 31 
19 220 180 0.39 0.6 916 900 43 

Patel et al.  
(2004) 

20 220 180 0.39 0.3
5 916 900 47 

21 220 180 0.39 0.1 916 900 44 
22 198 232 0.36 0.5 872 900 52 

23 220 180 0.39 0.3
5 916 900 45 

24 220 180 0.33 0.3
5 982 900 51 

25 170 200 0.43 0.5 928 900 33 
26 275 155 0.43 0.2 830 900 36 

27 247 165 0.45 0.1
2 845 846 34.6 

28 238 159 0.4 0.2
9 844 844 37.8 

29 232 155 0.35 0.3
8 846 847 48.3 

30 207 207 0.45 0.4 845 843 33.2 

31 200 200 0.4 0.1
7 842 843 34.9 

32 197 197 0.35 0.2
8 856 856 38.9 

33 169 254 0.45 0 853 853 30.2 
34 163 245 0.4 0.2 851 851 26.2 
35 161 241 0.35 0.3 866 864 35.8 

36 350 162 0.59 0.0
9 768 840 51.7 

37 350 133 0.52 0.1
6 815 883 55.3 

38 250 257 0.77 0.1
1 787 853 51.5 

39 427 115 0.45 0.1
2 779 844 59.4 

40 350 90 0.48 0.1
4 852 923 46.5 

Bouzouba
a  

and  
Lachemi  
(2001) 

41 427 173 0.53 0.2 902 803 61.6 

42 380 145 0.48 0.1
3 988 621 65.5 

43 380 192 0.53 0.1 931 621 67.8 

44 275 250 0.67 0.0
9 775 840 54.5 

45 325 60 0.65 0.4
3 899 850 30.8 

46 325 60 0.65 0.4
3 899 850 32.6 

47 325 120 0.75 0.4
3 755 850 32.2 

48 249 60 0.68 0.4
3 

107
9 850 24 

49 370 96 0.57 0.2
5 833 850 39.5 

Bui et al.  
(2002) 

50 400 60 0.63 0.4
3 718 850 30.4 

51 325 60 0.65 0.4
3 899 850 35.3 

52 370 24 0.87 0.6
2 770 850 18.7 

53 325 0 0.55 0.4
3 

104
2 850 41.2 

54 280 96 0.87 0.2
5 820 850 19.6 

55 325 60 0.65 0.7
5 896 850 27.7 

56 325 60 0.65 0.4
3 898 850 35 

57 370 96 0.57 0.6
2 830 850 38.8 

58 325 60 0.65 0.4
3 898 850 34.3 

59 280 96 0.87 0.6
2 817 850 15.9 

60 370 24 0.69 0.2
5 772 850 26.4 

 
 

TABLE II 
RANGE OF PARAMETERS IN DATA BASE FOR ANN-I AND FL-I 
Parameters Data base  

Range (ANN-I) 
Data base  
Range (FL-I) 

cement (kg/m3) 160-427 160-427 
sand (kg/m3) 478-1079 478-1079 
coarse aggregate (kg/m3) 621-923 621-923 
 PFA  (kg/m3) 0-261 0-261 
water-binder ratio  0.35-0.87 0.35-0.87 
superplasticizer  0-1.0(%) 0-1.0(%) 

V. TRAINING AND TESTING OF MODELS  
Training means to present the network with the 

experimental data and have it learn, or modify its weights, 
such that it correctly reproduces the strength behaviour of 
mix. However, training the network successfully requires 
many choices and training experiences. After a number of 
trials, the values of the network parameters considered by this 
study are as given in Table III. 

 
TABLE III 

SUMMARY OF ARTIFICIAL NEURAL NETWORK PARAMETERS 

Network  
parameters 

No. of  
hidden  
layers 

Number  
of  hidden  
neurons 

Learning  
rate Momentum Iterations 

ANN-I 1 6 0.3 0.2 500 

VI. RESULTS AND ANALYSIS  
The acceptance / rejection of the model developed is 

determined by its ability to predict the strength of SCC. Also, 
a successfully trained model is characterized by its ability to 
predict strength values for the data it was trained on. A 10-
fold cross validation is used to predict the strength for the data 
set used in this study. The cross validation is the method of 
accuracy of a classification or regression model. The input 
  

 
Fig. 4a Membership Functions 
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Fig. 4b Membership functions of input parameters 

 

 
Fig. 4c Membership functions of input parameters 

 

 
Fig. 4d Membership functions of input parameters 

 

 
Fig. 4e Membership functions of input parameters 

 
Fig. 4f Membership functions of input parameters 

 

 
Fig. 5 Membership functions of output parameters (strength) 

 
data set is divided into several parts (a number defined by the 
user), with each part intern used to test a model fitted to the 
remaining part. The correlation coefficient, root mean square 
error (RMSE) and MAE are used to judge the performance of 
the neural network and fuzzy logic approach in predicting the 
strength (Table IV). 

Statistical methods are commonly used in the development 
of empirical relationships between various interacting factors. 
This is often complex and circuitous, particularly for 
nonlinear relationships. Also, to formulate the statistical 
model, the important parameters must be known. By 
comparison, the modeling process in back-propagation neural 
networks is more direct, as there is no necessity to specify a 
mathematical relationship between the input and output 
variables.  

 
TABLE IV 

SUMMARY OF ACTUAL STRENGTH AND PREDICTED STRENGTHS 
Sr. 
no. 

Actual 
Strength (MPa) 

Predicted strength (MPa) 
Fuzzy logic model 
 

ANN model 

1 17 18.8 16.765 
2 19.1 22.4 14.851 
3 26.7 28.8 27.09 
4 32.9 41.2 35.092 
5 36.3 42.3 42.43 
6 26.7 23.4 23.299 
7 49 41.2 45.697 
8 44 41.9 39.914 
9 44 40.5 44.742 

10 38 39.8 38.375 
11 46 47.9 44.982 
12 50 41 45.993 
13 49 44.4 47.8 
14 49 41.2 45.697 
15 46 41.3 46.316 
16 48 41.5 45.283 
17 45 41.1 49.381 
18 31 38.6 31.688 
19 43 42.3 45.977 
20 47 41.2 45.697 
21 44 42.2 39.41 
22 52 44.4 46.107 
23 45 41.2 45.697 
24 51 47.8 49.982 
25 33 38.6 40.54 
26 36 40.9 42.759 
27 34.6 42.4 30.636 
28 37.8 42.2 35.529 
29 48.3 43 39.037 
30 33.2 39.7 33.283 
31 34.9 40.6 29.305 
32 38.9 42.7 37.145 
33 30.2 33.3 25.02 
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34 26.2 32 29.421 
35 35.8 37.7 37.03 
36 51.7 44.4 44.881 
37 55.3 45.3 46.246 
38 51.5 45.2 47.501 
39 59.4 58.5 51.655 
40 46.5 46.6 47.011 
41 61.6 58.5 62.436 
42 65.5 67.9 61.508 
43 67.8 68 66.739 
44 54.5 44.6 49.004 
45 30.8 40.1 31.101 
46 32.6 40.1 31.101 
47 32.2 38.3 25.54 
48 24 31.9 24.327 
49 39.5 43.8 43.291 
50 30.4 42.4 34.686 
51 35.3 40.1 31.101 
52 18.7 16.8 16.413 
53 41.2 34.6 40.621 
54 19.6 17.1 23.34 
55 27.7 23.9 32.983 
56 35 40.1 31.206 
57 38.8 38.8 38.948 
58 34.3 40.1 31.026 
59 15.9 17.8 15.339 
60 26.4 36.1 21.86 

 
 

Neural networks can be effective for analyzing a system 
containing a number of variables, to establish patterns and 
characteristics not previously known. In addition, it can 
generalize correct responses that only broadly resemble the 
data in the training set. Since the neural networks are trained 
on actual test data, they are trained to deal with inherent noisy 
or imprecise data. As new data become available, the neural 
network model can be readily updated by retraining with 
patterns which include these new data.  

Table V provides the correlation coefficient (R2) and RMSE 
obtained with this data using to predict various strengths. To 
compare the performance of models, graphs between actual 
and predicted strength are plotted. The performance of ANN-I 
model in predicting the compressive strength is shown in 
Fig.7 and the performance of FL-I model in predicting the 
compressive strength is shown in Fig.8 Results suggest that 
most of the points are lying within ± 20% of the line of perfect 
agreement, which suggest that neural network, can effectively 
be used to predict the strength for self-compacting concrete 
data. A correlation coefficient of 0.919 (RMSE = 5.557) was 
achieved for ANN-I and a correlation coefficient of 0.987 
(RMSE = 5.626) was achieved for FL-I. 

 
TABLE V 

SUMMARY OF COEFFICIENTS FOR NEURAL NETWORK AND FUZZY LOGIC 
MODELS 

Models Strength 
Correlation  
Coefficient 

Mean Absolute  
Error 

Root Mean  
Square Error 

ANN-I 28 days 0.919 4.438 5.557 
FL-I 28 days 0.987 4.885 5.626 

VII. CONCLUSIONS 
Compressive strength estimations have so far been obtained 

in the literature experimentally. The herein developed fuzzy 
algorithm can adjust itself to any type of linear or non linear 
form through fuzzy subsets of linguistic compressive strength 

variables. It is also possible to augment the conditional 
statements in the fuzzy implications used in this paper to 
include additional relevant characteristics of aggregate 
variables that might increase the precision of compressive 
strength estimation. The necessary fuzzy rule bases of the 
compressive strength estimation from available experimental 
results are given and applied to some test data. The application 
of the proposed fuzzy subsets and rule bases is straight 
forward for compressive strength of SCC.   

 
Fig. 6a Surface diagrams for various inputs with output 

 
Fig. 6b Surface diagrams for various inputs with output 

 

 
Fig. 6c Surface diagrams for various inputs with output 
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Fig. 6d Surface diagrams for various inputs with output 

 
Fig. 6e Surface diagrams for various inputs with output 

 
Fig.7 Actual v/s predicted value for 28-day strength (MPa) for ANN-

I 

 
Fig.8 Actual v/s predicted value for 28-day strength (MPa) for FL-I 
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