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Collective oscillations in a magnetized plasma
subjected to a radiation field
Daniel Santos, Bruno Ribeiro, Marco Amato, Antonio Fonseca

Abstract—In this paper we discuss the behaviour of the longitu-
dinal modes of a magnetized non collisional plasma subjected to an
external electromagnetic field. We apply a semiclassical formalism,
with the electrons being studied in a quantum mechanical viewpoint
whereas the electromagnetic field in the classical context. We calcu-
late the dielectric function in order to obtains the modes and found
that, unlike the Bernstein modes, the presence of radiation induces
oscillations around the cyclotron harmonics, which are smoothed as
the energy stored in the radiation field becomes small compared to
the thermal energy of the electrons. We analyze the influence of
the number of photon involved in the electronic transitions between
the Landau levels and how the parameters such as the external
fields strength, plasma density and temperature affect the dispersion
relation.

Keywords—Collective oscillations, External fields, Dispersion re-
lation.

I. INTRODUCTION

THE quantum mechanical approach has been for a long
time an important tool to describe classical plasmas in

the presence of external fields. A broad and detailed study of
this subject is provided in [1]. Although it may seem unusual
to employ quantum mechanics and then discard the quantum
corrections by taking the classical limit, this procedure has
its advantages when more difficult problems are considered
such as those in astrophysics. Nowadays phenomena involving
laser-plasma interaction attract much attention, some of it
due to the possibility of application in thermonuclear fusion.
Another interesting aspect concerns the influence of external
electromagnetic fields on plasma wave instabilities [2].

In this paper, we study the electrostatic oscillations in a
magnetized plasma in the presence of an external radiation
field. It is well known that, when the magnetic field is the
only external field, the electrostatic oscillations supported by
the plasma are the Bernstein modes [3], [4], whose frequencies
lie between cyclotron harmonics. We shall investigate how the
presence of the electromagnetic field affects these modes. For
this, we assume an infinite and homogeneous plasma immersed
in an axial magnetostatic field. The external electromagnetic
field is considered to be a spatially independent classical plane
waves (dipole approximation) polarized along the x-direction.
The plasma electrons are described by the solution of the
Schrödinger equation for an electron subjected to both an
electromagnetic and a magnetostatic fields. To describe the
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system, we adopt the same theoretical framework used in [5]
for a free plasma.

II. THEORETICAL FORMALISM

We start from the problem of an electron subjected si-
multaneouly to a magnetostatic and radiation fields which is
described by the Schrödinger equation

H0Ψ
(0)(r, t) = ih̄

∂

∂t
Ψ(0)(r, t). (1)

The hamiltonian H0 is given by

H0 =
1

2me
(p− eA(y, t))2, (2)

p being the electron momentum and A(y, t) the potential
vector which is taken to be

A(y, t) = −E
ω

sin(ωt) x̂−B0yx̂, (3)

where ω and E are, respectively, the frequency and the
amplitude of the electrical component of the electromagnetic
field and B0 represents the magnetostatic field strength.

In the absence of radiation (E → 0), the wave functions in
Eq.(1) reduce to Landau wave functions [6]

Φn,kx,kz
(r, t) =

1√
LxLz

exp(ikxx) exp(ikzz)

· χn(y) exp

(
− i

h̄
En,kz

t

)
, (4)

where Lx and Lz are the length intervals at which the particle
is confined, k = p/h̄ is its wave vector and

χn(y) =
1

π
1
4 ac

1
2

√
2n n!

exp

[
− (y − y0)

2

2 ac2

]
Hn

(
y − y0
ac

)
.

(5)
The Hn(y) are Hermite polynomials and En,kz

= h̄ωc(n+
1/2) + h̄2kz

2/2me are the eigenenergies for an electron in
an uniform and static magnetic field. The constants ac and
ωc denote, respectively, the Larmor radius and the electron
cyclotron frequency.

To solve Eq. (1), which has a time-dependent hamiltonian,
we make use of an unitary transformation [7] in the Landau
wave functions

Ψ
(0)
n,kx,kz

(r, t) = UΦn,kx,kz (r, t), (6)

where
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U = exp

(
i

h̄
α(t) · r

)
exp

(
i

h̄
β(t) · p

)
exp

(
i

h̄
η(t)

)
. (7)

The functions α(t) and β(t) generate a spatial and momen-
tum translation, respectively, while η(t) is a phase factor.

Substituting equation (6) into (1) and then multiplying both
members of the resulting equation by U†, we get a system of
differencial equations for the functions that define the unitary
operator (7). Solving this system, we obtain

U = exp

(
i

h̄
F (ω, t)

)
exp

(
− i

h̄
meωcγ1 (cos(ωt)− 1) y

)

· exp (−iγ1 (cos(ωt)− 1) kx) exp
(
i
ωc

ω
γ1 sin(ωt)ky

)
,

(8)

where γ1 = eE/me(ωc
2 − ω2), γ2 = e2E2/8meω(ωc

2 − ω2)
and F (ω, t) = 2γ2ωt− γ2 sin(2ωt).

The wave function given by (6) with the unitary operator
derived in (8), just describes an electron subjected to both
magnetostatic and radiation fields. However it does not take
into account the presence of the self-consistent electrostatic
field of the plasma. In order to take this into account on
the electron dynamics, we introduce an additional term in the
hamiltonian (2) and the equation of motion takes the form

ih̄
∂

∂t
Ψm(r, t) = (H0 − eϕ(r, t))Ψm(r, t), (9)

where the index m on the wave function represents the elec-
tron states |n(m), k

(m)
x , k

(m)
z 〉 and the electrostatic potential

can be written as a Fourier series expansion

ϕ(r, t) =
∑
q

∑
Ω

exp(iq · r) exp(−iΩt)ϕ(q,Ω). (10)

The wave functions given in the left hand side of equation
(6) form an orthonormal basis on which we can expand the
new wave function Ψm(r, t) into

{
Ψ

(0)
i (r, t)

}

Ψm(r, t) =
∑
i

ai,m(t)Ψ
(0)
i (r, t). (11)

Assuming a weak potential (|eϕ(r, t)| � H0), so that we
can expand the coeficients ai,m(t) in a convergent series

al,m(t) = a
(0)
l,m(t) + a

(1)
l,m(t) + a

(2)
l,m(t) + · · · , (12)

where a(j)l,m(t) = O(|eϕ(r, t)|j), we can, by using perturbation
theory, determine the coefficients of zero and first order

a
(0)
l,m(t) = δm,l, (13)

a
(1)
l,m(t) =

ie

h̄

∫ t

−∞
dτ ϕl,m(r, τ), (14)

where ϕl,m(r, τ) = 〈Ψ(0)
l (r, τ)|ϕ(r, τ)|Ψ(0)

m (r, τ)〉.
Once obtained the expression for the coefficients of expan-

sion (11), the wave function with first order correction is given
by

Ψm(r, t) = Ψ(0)
m (r, t) +

ie

h̄

∑
l

∫ t

−∞
dτ ϕl,m(r, τ)Ψ

(0)
l (r, t).

(15)
The second term in the right hand side of Eq.(15) represents

the first correction in the wave function owing to the presence
of the perturbative potential ϕ(r, t). Using the Jacobi-Anger
expansion

exp(ix cos θ) =
+∞∑

m=−∞
imJm(x)eimθ, (16)

exp(ix sin θ) =
+∞∑

m=−∞
Jm(x)eimθ, (17)

we can carry out the integral and then rewrite the first
correction as

Ψ(1)
m (r, t) = e

∞∑
n(l)=0

∑
q,Ω

∑
m1,m2

ϕ(q,Ω) Θm1,m2
(qx, qy)

exp(iγ1qx)
exp

(
i
h̄ (ΔE + (m1 +m2)h̄ω − h̄Ω)t

)
ΔE + (m1 +m2)h̄ω − h̄Ω− i0+

〈n(l)| exp(iqyy)|n(m)〉 ψ(0)

n(l),k
(m)
x +qx,k

(m)
z +qz

(r, t), (18)

where

ΔE = E
n(l),k

(l)
z

− E
n(m),k

(m)
z
, (19)

〈n(l)| exp(iqyy)|n(m)〉 =
∫
dy χn(l)(y) exp(iqyy)χn(m)(y),

(20)
and, for a matter of notation, we define the function

Θm1,m2
(qx, qy) = (−1)m1+m2im1Jm1

(γ1qx)·Jm2

(
γ1
ωc

ω
qy

)
.

(21)
The knowledge of the wave function allows us to calculate

the fluctuation on the charge density, for the m-state electrons,
due to the presence of the perturbative electrostatic potential

δρ
n(m),k

(m)
z

(r, t) = −eΨ∗
m(r, t)Ψm(r, t)− ρ

(0)

n(m)(r), (22)

where ρ(0)
n(m) is the unperturbed charge density

ρ
(0)

n(m)(r) = −eΨ(0)∗
m (r, t)Ψ(0)

m (r, t). (23)

Neglecting the second order term in ϕ(q,Ω), and noting
that the sums in q, Ω, m1 and m2 occur in a symmetrical
interval, using the properties

J−m(x) = (−1)mJm(x), Jm(−x) = (−1)mJm(x), (24)

ϕ∗(−q,−Ω) = ϕ(q,Ω), (25)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:11, 2012

1467

and considering again the identities (16) and (17), we found
the charge density fluctuation as

δρ
n(m),k

(m)
z

(r, t) = − e2

LxLz
χn(m)(y)

+∞∑
l=−∞

∑
q,Ω

∑
m1,m2
m3,m4

· ϕ(q,Ω) exp(−Ωt) exp(iqx) exp(iqzz)χn(m)+l(y)

· Ξm1,m2
m3,m4

(qx, qy) exp(i(m1 +m2 +m3 +m4)ωt)

· 〈n(m) + l| exp(iqyy)|n(m)〉{� + �
}
, (26)

where we define the integer l = n(l) − n(m) related to the
energy gap between two Landau levels and the function

Ξm1,m2
m3,m4

(qx, qy) = (−1)m1+m2 im1+m3Jm1
(γ1qx)

·Jm2

(
γ1
ωc

ω
qy

)
Jm3(γ1qx)Jm4

(
γ1
ωc

ω
qy

)
. (27)

The terms within braces in Eq.(26) are given by

� =
(
h̄ωcl +

h̄2

2me
(k(m)

z + qz)
2 − h̄2

2me
k(m)2

z

+(m1 +m2)h̄ω − h̄Ω
)−1

, (28)

� =
(
h̄ωcl +

h̄2

2me
(k(m)

z + qz)
2 − h̄2

2me
k(m)2

z

−(m1 +m2)h̄ω + h̄Ω
)−1

. (29)

For a maxwellian electron distribution function fn,kz
, the

total density fluctuation can be written as

δρ(r, t) =
∑
n,kz

fn,kz
δρn,kz

(r, t). (30)

This fluctuation induces a potential in the medium which can
be calculated via Poisson equation

∑
q,Ω

q2 exp(−iΩt)exp(iq · r)ϕind(q,Ω) =
δρ(r, t)

ε0
, (31)

where we express the induced potential as a Fourier series
along the same lines as those discussed to obtain Eq.(10).

From equations (30) and (31) we find an expression for
the induced potential. Taking the time average of the induced
potential over the period of the radiation field, we notice from
the factor exp(i(m1 +m2 +m3 +m4)t), that only the terms
in the sums that satisfy m1 +m2 +m3 +m4 = 0 contribute.
Then, we obtain

ϕind(q,Ω) = − e2

ε0LxLz

ϕ(q,Ω)

q2

∑
l

∑
n,kz

χn(y)

· exp(−iqyy)χn+l(y)〈n+ l| exp(iqyy)|n〉
·

∑
m1+m2

+m3+m4=0

Ξm1,m2
m3,m4

(qx, qy) fn,kz

{
� + �

}
. (32)

The full potential ϕ(q,Ω) can be written as a sum of two
terms [8]

ϕ(q,Ω) = ϕext(q,Ω) + ϕind(q,Ω) =
ϕext(q,Ω)

ε(q,Ω)
, (33)

where ε(q,Ω) is the dielectric function which can be written
as

ε(q,Ω) = 1− ϕind(q,Ω)

ϕ(q,Ω)
(34)

Proceeding further, the spatial average of the dielectric
function ε(q,Ω) = 〈ε(q,Ω)〉 is found to be

ε(q,Ω) = 1 +
e2

ε0V q2

∑
l

∑
n,kz

|〈n+ l| exp(iqyy)|n〉|2

∑
m1,m2
m3,m4

Ξm1,m2
m3,m4

(qx, qy) fn,kz

{
� + �

}
. (35)

The fact that the sums over n and kz are infinite along with
the conditions l � n and qz � kz allow us to make the
transformations n → n− l and kz + qz → kz into term � in
Eq.(35) and then rewrite the dielectric function as

ε(q,Ω) = 1 +
e2

ε0V q2

∑
m1,m2
m3,m4

Ξm1,m2
m3,m4

(qx, qy)
∑
l

∑
n,kz

fn−l,kz−qz − fn,kz

h̄2

2me
k2z − h̄2

2me
(kz − qz)2 + h̄ωcl + (m1 +m2)h̄ω − h̄Ω

· |〈n+ l| exp(iqyy)|n〉|2. (36)

In the classical limit the summations over n, kz and the
Landau energies become

∑
n,kz

(...) −→
V →∞ V

∫
(...)d3v, (37)

h̄ωc

(
n+

1

2

)
→ m

2
v2⊥, (38)

and, according to [9]

|〈n+ l|exp(iqyy)|n〉|2 → J2
l

(
q⊥v⊥
ωc

)
. (39)

Under these assumptions, the dielectric function may be
written as

ε(q,Ω) = 1 +
e2

meε0q2

∑
m1,m2
m3,m4

Ξm1,m2
m3,m4

(qx, qy)

∑
l

∫
d3v

J2
l

(
q⊥v⊥
ωc

)
Ω− ωcl − (m1 +m2)ω − qzvz[

lωc

v⊥
∂F

∂v⊥
+ qz

∂F

∂vz

]
, (40)

where we expand fn−l,kz−qz to first order around (n, kz).
In the absence of external fields, the argument of the Bessel

functions vanish, and it may be expressed as Jm(0) = δm,0.
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Thus, in this limit we can immediately check that our results
are in agreement with those derived in [1] for the dielectric
function of a magnetized plasma.

To investigate the collective oscillations perpendicular to
the magnetostatic field we take the axial component of the
plasmon wave number equal to zero, which yields

ε(q,Ω) = 1 +
e2

meε0q2

∑
m1,m2
m3,m4

Ξm1,m2
m3,m4

(qx, qy)

∑
l

∫
d3v

J2
l

(
q⊥v⊥
ωc

)
Ω− ωcl − (m1 +m2)ω

lωc

v⊥
∂f

∂v⊥
. (41)

The integral in Eq.(41) can be performed in cylindrical coor-
dinates by using Weber’s second exponential integral formula
[10]. The result, in terms of the more convenient adimensional
variables ξ = (kBTe/ω

2
cme)

1/2 q and Ω̄ = Ω/ωc, is given by

ε(ξ, Ω̄) = 1− ω2
p

ω2
c

exp(−ξ2⊥)
ξ2⊥

∑
m1,m2
m3,m4

Ξm1,m2
m3,m4

(qx, qy)

+∞∑
l=−∞

l

Ω̄− l − (m1 +m2)ω̄
Il(ξ

2
⊥), (42)

where Il(x) is the modified Bessel function, ωp =
(n0e

2/ε0me)
1/2 is the plasma frequency and we define the

constants ω̄ = ω/ωc, γ3 =
√
2(vd/vth)(1−ω̄2)−1, γ4 = γ3/ω̄,

vth = (2kBTe/me)
1/2 being the thermal electron velocity and

vd = E/B0 the maximum value for the drift velocity.
Finally, to obtain numerical results, we take the longitudinal

oscillations along the x-axis, namely, ξy = 0, ξ⊥ = ξx = ξ.
Under this assumption we obtain

ε(ξ, Ω̄) = 1− ω2
p

ω2
c

exp(−ξ2)
ξ2

+∞∑
m=−∞

J2
m(γ3 ξ)

+∞∑
l=−∞

l

Ω̄− l −mω̄
Il(ξ

2). (43)

III. DISPERSION RELATION

The zeros of the dielectric function provide the dispersion
relation for the longitudinal modes

1 + 2
ω2
p

ω2
c

exp(−ξ2)
ξ2

∞∑
m=−∞

J2
m(γ3 ξ)

+∞∑
l=1

l

l2 − (Ω̄−mω̄)2
Il(ξ

2) = 0, (44)

where we used the property I−n(x) = In(x) of the modified
Bessel funtions.

The dispersion relation in (44) relates the variables Ω̄ and
ξ by means of an implicit equation. To solve it, we create a
routine in C language where we define the dielectric function,
fix in it ξ = ξ∗ and then, through the Newton-Raphson method,

determine its corresponding Ω̄∗, such that ε(ξ∗,Ω∗) = 0. In
other words, we solve numerically the equation ε(ξ∗, Ω̄) = 0
in the Ω̄ variable an then, sweeping values for ξ∗, we were
able to plot the dispersion relation graphs. However, the
function ε(ξ∗, Ω̄) admits distinct roots Ω∗ for different ranges
of frequency. Thus, to obtain the graphs, we had to pass as
parameter of the root finding routine the interval at which
we are search for solution. For the plots we restrict ourselves
to the first two ranges of frequencies. The functions Jm and
Il were implemented in such a way to prevent numerical
divergence by means of a downward recurrence formula [11].
Their respective summations were truncated such that the
higher orders, with negligible contributions, were not taken
into account. For all plots we assume L = 30 as limit of
summation in l. We used, for density and temperature, typical
values of a gas discharge plasma, whilst the external radiation
field was assumed in microwave range, in order to respect the
dipole approximation assumed in our calculations.

(a)

(b)

Fig. 1. Collective mode frequency as a function of the wave number for
the first two gaps of frequency. The black line represents the Bernstein mode
and the others refer to the distinct number of photons M involved in the
process. For the plotting, we used a plasma with density n0 = 1019 m−3

and temperature kBT = 10−19 J. We assumed as values for the fields E =
10 V/m and B0 = 2 T.
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We notice, immediately, that when there is no radiation field
(γ3 = 0), the result shown in (44) reduces to the dispersion
relation for the Bernstein modes as we should expect. The
influence radiation is closely related to the factor γ3, given by

γ3 =
√
2
vd
vth

1

1− ω̄2
. (45)

As we see in the dispersion relation graphs, Figures 3 and
4, as this factor increases the influence of radiation is more
noticeable. From definition (45), we can check that as the
radiation and cyclotron frequencies approach the same value
(ω̄ → 1) they contributes for a larger value of γ3. An increase
in this parameter also occurs when the drift velocity prevails
upon thermal velocity. On the other hand, for small values of
γ3 the curves tend to the Bernstein modes. We work here only
the case ω ≈ ωc by taking |ω − ωc| = 10−6 in our numerical
code.

(a)

(b)

Fig. 2. We observe that the oscillations around the cyclotron harmonics are
more pronounced in a denser plasma. A point to note is that the first cyclotron
mode is independet of the plasma density, which is ilustrated by the intercept
point of the curves. For the plot, we fix the temperature kBT = 1, 6×10−18 J
and M = 5. For the fields, we assume the same values used previously. We
analyse the following values of density: 1019 m−3, 1020 m−3, 1021 m−3

and 1022 m−3.

To analyze the influence of the number of photons in the
electronic transitions, we truncated the summation over m in
Eq.(44) at a maximum number M of photons, namely, we
change the summation limits to m = −M and m = M .
Thereby we obtain dispersion relations of the kind εM (ξ, Ω̄) =
0 which provided us the dispersion relation graphs Ω̄ vs. ξ in
the Figures 1(a) and 1(b).

From the graphs shown in Figures 1(a) and 1(b), we observe
that, as the wave number increases, the presence of the
radiation accelerates the mitigation of the modes toward the
stationary cyclotron harmonic modes. Futhermore, the curves
exhibit an oscillatory character not seen in the Bernstein
modes. Another interestig aspect is that, for the first range
of frequencies, there is no mode with frequency less than ωc

when a single photon involved in the electronic transitions
is considered. The second range does not allow modes with
frequency less than 2 ·ωc when we consider up to two photons
(M ≤ 2) in the process. We may expect this behavior to repeat
for more energetic harmonics, namely, that in the n-th branch
there is no mode such that Ω̄ < n (or equivalently Ω < n ·ωc)
for M ≤ n.

We also note by the inset in Figures 1(a) and 1(b), that, with
the data used in the plotting, the curves for M = 4 and M = 5
practically do not differ and hence truncating the summation
at M = 5 represents a good approximation.

Fig. 3. Collective modes for different number of photons M and for different
temperatures. We notice an approach of the curves for distinct values of M
and that they tend to the Bernstein modes as the temperature increases. The
red and light blue lines represent M = 1 and M = 5 respectively. The
parameters for the plasma and for the fields were assumed as n0 = 1018 m3,
E = 1, 0 V m−1 and B0 = 0, 5 T .

It is clear in Figures 3 and 4 mainly for kBT = 1 eV
that multiphoton processes have to be taken into account
in low temperatures plasmas. On the other hand, for higher
temperatures, the curves for different values of M practically
do not differ and, then, the multiphoton processes are less
significant. We also note that as the temperature increases, all
curves tend to the Bernstein modes (black line). This behavior
can be justified because the influence of the temperature takes
place only through the γ3 factor in the Bessel function which,
in turn, is proportional to v−1

th . Thus, as temperature increases,
we have that Jm(γ3ξ) → δm,0. A physical interpretation
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Fig. 4. The tending of the collective modes to the Bernstein modes and the
approaching of the curves for differents values of M is also verified for the
second range. We employed the same data used in the previously figure.

of this fact is that the energy stored in the radiation field
becomes less expressive in high-energetic plasmas and, hence,
this external field does not act as a mechanism able to excite
new modes. In a quantum mechanical viewpoint, we say that
the electron-photon interactions are suppressed by those which
involve electrons and plasmons.

Fig. 5. We note that the decay of the electrostatic oscillations to the cyclotron
mode is intensify as the magnitude of the electromagnetic field increases. We
assume n0 = 1019 m−3, kBT = 150 eV and B0 = 1, 0 T .

IV. CONCLUSION

Through mathematical tools of quantum mechanics we were
able to describe the propagation of longitudinal modes of a
classical magnetoplasma subjected to an external radiation
field. The expression derived in Eq.(43) for the dielectric
function reduces to that found by Bernstein [3] when the
amplitude of the radiation field is taken to be zero.

We notice that the presence of radiation in the quasi-
resonant regime (ω ≈ ωc) excites new electrostatic modes
in the plasma since the energy stored in the radiation field
is not so low to be neglected when compared to the thermal

(a)

(b)

Fig. 6. The magnetic field strength acts to smooth the oscillations around
the cyclotron harmonics and cofinate the modes close to the cyclotron one.
For the dispersion relation graph we used B0 from 0.250 T to 1.000 T ,
M = 5 and E = 10 V m−1. The peaks in the second branch are due to
numerical fluctuations in the program and therefore do not represent modes
which deserve more interest.

energy of the plasma. For each range, we found, the possibility
of electrostatic modes with frequency lower than the cyclotron
harmonics frequencies. We also observed the importance of the
multiphoton processes in the limit of low temperature plasmas.
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