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Complexity of Multivalued Maps
David Sherwell and Vivien Visaya

Abstract—We consider the topological entropy of maps that in
general, cannot be described by one-dimensional dynamics. In par-
ticular, we show that for a multivalued map F generated by single-
valued maps, the topological entropy of any of the single-value map
bounds the topological entropy of F from below.
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I. INTRODUCTION

One measure of the complexity of a system is the positivity
of its topological entropy. The topological entropy for single-
value maps is well-known [1], while the case for multivalued
maps, in general, is not widely studied. However, it is worth
noting the works of [2] and [3] on lower bounds for topological
entropy using the Conley index theory, and works of [4]
and [5] on branch image entropy defined from the backward
iterates of a non-invertible map.

Because many systems encountered in practice cannot be
described by one-dimensional dynamics (e.g. in population
dynamics, where many observed units can occupy a state, and
are mapped to different states [6]), it is useful to consider
multivalued maps. We define in Section ll the topological
entropy of such maps, and give conditions in bounding their
topological entropy from below in Section lll. We gives two
examples in Section lV, particularly focusing on the map
studied in [6].

II. PRELIMINARIES

We give the standard definition of the topological entropy
due to Bowen [8]. Let (X, d) be a compact metric space with
distance d and let f : X → X be continuous. For any integer
� ≥ 1, define the distance function d� : X ×X → R≥0 by

d�(x, y) = max
0≤j<�

d(f j(x), f j(y)).

Definition 1: A finite set E ⊂ X is called (�, δ)-separated
if d�(x, y) ≥ δ for all x, y ∈ E. Moreover, if E has the
maximal cardinality among all the (�, δ)-separated sets, then
E is called a maximal (�, δ)-separated set.

Definition 2: The topological entropy of f is given by

htop(f) = lim
δ→0

lim sup
�→∞

log sf (�, δ)

�
,

where sf (�, δ) is the cardinality of the maximal (�, δ)-
separated set for f .

Definition 3: [9] Let X and Y be arbitrary sets. A multi-
valued map F from X to Y , denoted by F : X ⇒ Y , is such
that F (x) is assigned a set Yx ⊂ Y for all x ∈ X. Let
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1. dom(F ) = {x ∈ X | F (x) �= ∅},
2. F (X ′) =

⋃{F (x) | x ∈ X ′} for X ′ ⊂ X .
A single-valued map f : X ′(⊂ X) → Y is called a selector
for F over X ′ if g(x) ∈ F (x) for all x ∈ X ′.

Let (X, d) be a compact metric space. Let F : X ⇒ X be a
multivalued map, g : X → X be a continuous map, Sel0(F )
be the set of all continuous selectors for F , and {um}Mm=0 be
a sequence of M + 1 points such that

um+1 ∈ F (um) for m = {0, 1, . . . ,M − 1}.
Assume that the graph of F can be viewed as a union of its
continuous selectors, i.e.

F (x) =
⋃

{g(x)|g ∈ Sel0(F )} ∀x ∈ dom(F ).

Definition 4: Let (X, d) be a compact metric space and let
F : X ⇒ X be a multivalued map. Denote the set of partial
orbits of F of length � by

U� = {u = {ui, ui+1, . . . , ui+�}}M−�
i=0 ⊂ X�+1,

where ui+j ∈ F (ui+j−1) for all 1 ≤ j ≤ �. A set S ⊂ U�

is called a (�, δ)-separated set for F if for any u, u′ ∈ S,
d(u, u′) ≥ δ.

We extend the notion of topological entropy to multivalued
maps.

Definition 5: Let SF (�, δ) be the maximal (�, δ)-separated
set for F with cardinality sF (�, δ). We define the topological
entropy of F by

htop(F ) = lim
δ→0

lim sup
�→∞

log sF (�, δ)

�
.

Definition 6: [10] Let X be any set and let F : X ⇒ X
be a multivalued map. Suppose P = {P0, P1, . . . , PL−I} is
a partition of X into L disjoint regions and suppose that the
intersection of any element of P with the image under F of
another is either itself or is empty. The structure of P can be
described a transition matrix T = (Tij) defined by

Tij =

{
1 if Pj ∩ F (Pi) �= ∅
0 otherwise.

T is called the transition matrix for F .

From the definiton above, if x ∈ Pi, then F (x) ∈ Pj .

Definition 7: [11] Given a transition matrix T = (Tij) with
Tij ∈ {0, 1}, let

Σ+
T = {w = (w0w1 . . .) | Twm,wm+1 = 1 (∀m ≥ 0)}.

The shift map σT : Σ+
T → Σ+

T is such that (σT (w))m = wm+1

(∀m ≥ 0). The pair (σT ,Σ+
T ) is called the one-sided subshift

of finite type (SFT) for the matrix T .
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Theorem 1: [11] Let T be a transition matrix and let σT :
Σ+

T → Σ+
T be the associated SFT. Then

htop(σT ) = ln(λmax)

where λmax is the maximum eigenvalue of T .

III. RESULTS

Theorem 2: Let (X, d) be a compact metric space and let
F : X ⇒ X be a multivalued map. For any continuous
selector g : X → X of F , the following inequality holds

htop(F ) ≥ sup{htop(g)|g ∈ Sel0(F )}.

Proof . Take an arbitrary g ∈ Sel0(F). Let Sg be the
maximal (k, δ)-separated set for g. We show that the maximal
(�, δ)-separated set for any g ∈ Sel0(F) is a (�, δ)-separated
set for F . For all x ∈ Sg , denote by

S�
g = {x�g = (x, g(x), . . . , g�(x))} ⊂ U�

the subset of the partial orbits of g of length �. Clearly,
#Sg = #S�

g . Since

d�(u, v) = max
0≤j<�

(uj , vj)

for u, v ∈ X�+1 and uj , vj ∈ X , then for any two distinct
x, y ∈ Sg ,

d(x, y) ≥ δ ⇒ d�(x
�
g, y

�
g) ≥ δ,

where x�g, y
�
g ∈ S�

g . Thus, S�
g is a (�, δ)-separated set for F .

Note however that Sg may not be maximal for F so

sF (�, δ) ≥ sg(�, δ).

Passing to the limits, we establish the claim.

Corollary 1: Let (X, d) and F be as in Theorem 2. If
g1, g2 : X → X are continuous selectors of F , then g = g1◦g2
is also a continuous selector of F , and that

htop(F ) ≥ htop(g).

IV. EXAMPLES

Example A. Consider the case on the interval X = [0, 1],
where the multivalued map F : X ⇒ X is generated by two
self-maps

g1 =

{
2x 0 ≤ x ≤ 1

2
2− 2x 1

2 ≤ x ≤ 1

and

g2 =

{
2ax 0 ≤ x ≤ 1

2
2a− 2ax 1

2 ≤ x ≤ 1
, 1/2 ≤ a < 1.

It is well-known that the topological entropy of g1 and g1 are
log 2 and log 2a respectively. Hence,

htop(F ) ≥ sup{log 2, log 2a}.
Example B. We consider the method in analysing longitudinal
data, studied in [6]. Longitudinal data is simply a repeated
measurement of the same variables (observed units) in time.
Let N0 be the set of non-negative integers, and let the integer

Fig. 1. The graph of the multivalued map F as a union of g1 and g2.

n ≥ 1. Let In = {0, 1, . . . , n− 1}, Cn = P(In) be the power
set of In, and x∗i be such that

x∗i =

{
1 if xi = 0
0 if xi = 1.

Let
Γn
2 =

{
(xj)

n−1
j=0 : xj ∈ {0, 1}

}
and let

Γn
n =

{
(ij)

n−1
j=0 : ij ∈ In, i

′
js distinct

}
,

where the subscripts 2 and n are the cardinalities of the sets
{0, 1} and In, respectively. Let

Sn = {p = (x, y) : x ∈ Γn
2 , y ∈ Γn

n}
= Γn

2 × Γn
n.

Given n, we have |Γn
2 | = 2n, |Γn

n| = n!, and so Sn is a finite
space composed of L = 2n × n! states.

Definition 8: Let Δ ∈ Cn and let j ∈ Δ. The change map
φ

Δ
: Sn → Sn is defined by

φ
Δ
(x0x1 · · ·xj · · ·xn−1, y) = (x0x1 · · ·x∗j · · ·xn−1, y).

The jump map φ
J
: Sn → Sn is defined by

φ
J
(x0x1 · · ·xj · · ·xn−1, i0i1 . . . ij . . . in−1) =

(x0x1 . . . xj−1xj+1 . . . xn−1xj , i0i1 . . . ij−1ij+1 . . . in−1ij).
Let j, j′ ∈ Δ. Then xj and xj′ both change values under φ

Δ
.

If j < j′, then φ
J

is first applied to j′. That is,
φ

J
(x0x1 · · ·xj · · ·xj′ · · ·xn−1, i0i1 · · · ij · · · ij′ · · · in−1) =
(x0x1 · · ·xj−1xj+1 · · ·xj′−1xj′+1 · · ·xn−1xj′xj ,

i0i1 . . . ij−1ij+1 . . . in−1ij′ij).

Consider an observed unit (variable) k in the longitudinal
data, and questionnaire Q of n ≥ 1 questions. Denote by

Qk
t =

{
Qik

0t
, Qik

1t
, . . . , Qik

(n−1)t

}
(∗)

:=
{
Qi0 , Qi1 , . . . , Qin−1

}k

t
, ij , ijt ∈ In

any reordering of questions of unit k at time t,

Ak
t =

{
xk0t, x

k
1t, · · · , xk(n−1)t

}
:= {x0, x1, · · · , xn−1}kt

the set of coded answers to Qk
t ,

xkt = xk0tx
k
1t · · ·xk(n−1)t :=

(
x0x1 · · ·x(n−1)

)k
t
=

(
xkjt

)n−1

j=0

the concatenation of elements of Ak
t , and

ykt = ik0ti
k
1t · · · ik(n−1)t :=

(
i0i1 · · · i(n−1)

)k
t
=

(
ikjt

)n−1

j=0

the concatenation of indices in Qk
t .
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Definition 9: For each observed unit k, define Δk
t ∈ Cn by

Δk
t = {j : ij is a question index of unit k at time t that

changes answer value at t+ 1, ordered in ascending
order, as in (*)}.

Definition 10: Fix observed unit k and let pk
0

be the initial
state of k. Define the map ϕ : (N0, Cn,Sn) → Sn such that

ϕ(t,Δk
t , p

k
t ) = ϕ

[Δk
t]

(pk
t
)

= (φ
J
◦ φ

Δk
t

)(pk
t
)

= pk
t+1
.

The set Δk
t ∈ Cn is given by the longitudinal data for

all t. The action of φΔk
t

is data dependent while φ
J

is a
strictly deterministic reordering of the position of the question
indices and answer values in Δk

t . At any time t, we can always
trace the answer to its corresponding question such that the
coded answer value xj corresponds to question ij . For each k,
the nonautonomous map ϕ

[Δk
t ]

displaces the most frequently
changing answers to the right, while slowly changing answers
displace to the left.

Given k, if pkt ∈ p and pkt+1 ∈ p′, then we say that there is
a transition from p to p′ under Δt ∈ Cn. A self-transition is
under the empty set Δ = ∅ (i.e. there is no change in answer).
A transition from p to p′, and from p′ to p, under the same set
Δ is reversible. A way to visualize the state transitions of unit
k in Sn is by a directed graph (digraph) G whose vertices are
points in Sn, with an edge from p to p′ if there is a transition
from p to p′. A path of length m in G is a sequence of vertices
v0, v1, . . . , vm such that there is a directed edge from vj to
vj+1.

Fig. 2. All possible transitions between states in (a) S1 and (b) S2.

Fig. 2 illustrates all possible transitions between states in S1

and S2. Transitions alternating between states 1 and 2 in Fig.
2(a) denote alternating answer between 0 and 1, to question
0. On the other hand, transitions alternating between states 1
and 2 in Fig. 2(b) denote constant answer=0 to question 1, and
alternating answer between 0 and 1, to question 0. Because
question 1 has constant answer, it is positioned on the left of
question order ‘10’.

Consider our state space Sn. In [6], the map ϕ
[Δk

t ]
is con-

structed for each observed unit k. By defining a multivalued
map F : Sn ⇒ Sn, we can describe all possible paths of
observed units in Sn. Denote by ϕ

[Δ]
: Sn → Sn the case

where Δt in Definition 9 is constant. Let

G = {ϕ
[Δ]

: Δ ∈ Cn}.

It is clear that ϕ
[Δ]

is a selector for F over Sn, and is
continuous if Sn is endowed with the discrete metric. Define

F (p) = {p′ : g(p) = p′, g ∈ G}.
Observe that |F (p)| = 2n, i.e. F is a 1 to 2n map. Define

Gt = {g
�t−1

◦ · · · ◦ g
�0

: Sn → Sn| g�i
∈ G}.

For g
�t

= ϕ
[Δk

t ]
for all t ≥ 1, we define the orbit of p ∈ Sn

under F by

O
F
(pk0) = {pkt }t≥0

= {Gt(p
k
0)}t≥1,

where under F , the state pkt+1 ∈ F (pkt ). The multivalued map
F can be interpreted as a digraph whose N = n!2n vertices are
the points in Sn, and edge p→ p′ if p′ ∈ F (p). Equivalently,
F can be defined as a square matrix of size N . Orbits of the
nonautonomous map ϕ[Δk

t ]
respect paths in the digraph F .

Consider Sn as a union of L disjoint states labeled
i = 1, 2, . . . N = 2nn!, i.e.,

Sn =

N⋃
i=1

si.

A way of labeling si is via the map

ψ : Sn → {1, 2, . . . , N}, si �→ ψ(si) = i.

Definition 11: Let n ≥ 1, V = {1, 2, . . . , N}, and
i, j,∈ V . For p, p′ ∈ Sn, let ψ(p) = i , and ψ(p′) = j. The
transition matrix for F is denoted by T (F )

n = (T
(F )
ij ), where

T
(F )
ij =

{
1 if p′ ∈ F (p)
0 otherwise.

Remarks.
(i) From Fig. 2, the transition matrices for n = 1 and n = 2

are

T
(F )
1 =

[
1 1

1 1

]
T

(F )
2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 1 0 1

1 1 0 0 0 1 0 1

0 0 1 1 1 0 1 0

0 0 1 1 1 0 1 0

0 1 0 1 1 1 0 0

0 1 0 1 1 1 0 0

1 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

In [6], the analysis of longitudinal data from household
units is studied in S3. We do not give the matrix here,
however, we illustrate in the Appendix A all possible
transitions in S3.

(ii) Because F (p) is a 1 to 2n map, then by properties
of non-negative matrices, T (F )

n has λmax = 2n. By
Theorem 1, htop(σT (F )

n
) = ln(2n).

(iii) For constant Δ, we have

htop(ϕ[Δ]) = 0.

We illustrate in Appedix B the case where Δ = I3, i.e.
where all three answers are constantly changing. The
transition from any point p to p′ = ϕ[Δ](p) is reversible.
For example, ϕ[I3] takes state 1 to state 48, and state 48
back to state 1. Note that the strict inequality in Theorem
2 is satisfied.
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V. CONCLUSIONS

We have presented a definition of the topological entropy of
multivalued maps. For the case where the multivalued map F
is generated by single-valued maps, then we are able to give a
lower bound for the complexity of F . If we can find a selector
g for a multivalued map F , and find that the topological
entropy of g is positive, then we can say that F is at least
as complicated as g. In the case that we can define a partition
for the state space of F (as in Example B), then we can encode
F as a transition matrix T , and analysis of F is through the
subshift associated to T . Then any selector, or composition of
selectors of F , has complexity bounded by the complexity
of F . We note that this paper does not suggest a general
techniques for computing selectors, but will be persued in a
following paper.
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APPENDIX B
REVERSIBLE TRANSITIONS UNDER CONSTANT Δ = I3.
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