
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

509

Abstract—A trend in agent community or enterprises is that they
are shifting from closed to open architectures composed of a large
number of autonomous agents. One of its implications could be that
interface agent framework is getting more important in multi-agent
system (MAS); so that systems constructed for different application
domains could share a common understanding in human computer
interface (HCI) methods, as well as human-agent and agent-agent
interfaces. However, interface agent framework usually receives less
attention than other aspects of MAS. In this paper, we will propose an
interface web agent framework which is based on our former project
called WAF and a Distributed HCI template. A group of new
functionalities and implications will be discussed, such as web agent
presentation, off-line agent reference, reconfigurable activation map
of agents, etc. Their enabling techniques and current standards (e.g.
existing ontological framework) are also suggested and shown by
examples from our own implementation in WAF.

Keywords—HCI, Interface agent, MAS.

I. INTRODUCTION

s the web becomes more meaningful, dynamic and
intelligent, agent based programming paradigm will play

an increasingly important role in constructing complex web
applications. Especially multi-agent system (MAS) has been
applied in a variety of application domains such as
computational market place, remote education, information
collecting and querying on the web, and many role-based
simulation environments. A trend in agent community is that
they are shifting from closed to open architectures composed of
a large number of autonomous agents. In the near future, most
software products might be delivered to users in the form of
personal agents or agent services. It is likely to see the uprising
of a new enterprise (maybe named agent enterprise) which
builds and sells customized agents to users with specific needs.

 One of its implications could be that interface agent
framework is becoming more and more important in
multi-agent system (MAS); so that systems constructed for
different application domains could share a common
understanding in human computer interface (HCI) methods, as
well as human-agent and agent-agent interfaces. However,
interface agent framework usually receives less attention than
other aspects of MAS. This is mostly due to lack of common
understandings among developers in agent based HCI (human

Manuscript received November 11, 2004.
Xizhi Li is with Zhejiang University, college of computer science,

Hangzhou, China, 310027 (website: http://www.lixizhi.net/ e-mail:
lixizhi@zju.edu.cn).

Qinming He is with Zhejiang University, college of computer science,
Hangzhou, China, 310027 (e-mail: hqm@cs.zju.edu.cn).

computer interface). For example, many MAS applications
implement only a very simple interface agent layer using the
same technology as other task agents; and some systems do not
have a formal interface agent layer at all.

In our opinion, interface agent design should be carried out
under the vision of a ubiquitous computing environment [9]
and a topology-reconfigurable web where live participants are
both human and agent. Therefore, in addition to regarding an
agent as independent software that answers user queries, we
hope that agent can also be treated in the same way as we treat
other human beings. For one example, in our imaginative mind
a person can be recalled by many different real world situations
in which it used to play a certain role; for another example,
when we are working on a plan concerning several people, we
actually manipulate them in our conscious mind to create a new
situation or simulation about a real world problem solving.

All these mental activities must have their counterparts in the
interface agent framework of any open MAS application. In our
everyday life, we accept the existence of an object only through
different perspectives and from many situations in which it
used to act. Likewise, in order to let people accept the existence
of an agent, we must allow the user to create multiple situations
in which the same agent can be referenced. This leads to, but
not limited to (1) a naming convention to be able to locate an
agent whether it is static or mobile, (2) an off-line agent
reference database to store and retrieve a short history or status
about on-line agents in the local (user) environment, (3) an
activation map of agents to allow automatic or manual
reconfiguration of the topology of intelligent agent references.

In this paper, an interface web agent framework is proposed,
which defines an easy and effective solution to aforementioned
problems in open MAS domain. It is based on our former
project called WAF and a Distributed HCI template. In [1], a
Distributed HCI template is proposed, which describes a bunch
of HCI concepts and their relationships. Although these
concepts are abstracted for general purpose distributed
applications, they can be used in the MAS context with almost a
direct mapping.

 In section II, some related works are presented; in section III,
the proposed framework will be introduced by means of our
WAF project. Its enabling techniques and current standards
(e.g. existing ontological framework) are also examined by
examples from our own implementation in WAF.

II. RELATED WORKS

Related works fall into two categories. One is open MAS
application that has put more effort on its interface agent design;

WAF: an Interface Web Agent Framework

Xizhi Li Qinming He

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

510

the other is web navigation methodology.
In the first category, the Friend of a Friend (FOAF) project [4]

has some overlapping visions with us. FOAF project is about
creating a web of machine-readable homepages describing
people, the links between them and the things they create and
do. In doing so, it has proposed an RDF ontological framework
for producing XML content that is comprehensible to software
agents. In WAF, we use a similar approach, but it covers more
aspects of interface agent framework (such as navigation,
history and activation map reconfiguration, etc). Moreover, we
are describing a general framework independent of computer
technologies used.

In the second category, there is Nestor and iBrowsor. They
are not directly related to interface agent design. However, their
ideas are valuable to our proposed framework, because the
greatest potential of an agent enabled Internet lies in its wise
navigation ability and computing topology re-configurability.

Nestor [5, 6] is a free browser that draws interactive web
maps while surfing the Web. People may use web maps as
bookmark archives. It promotes “constructivist navigation".

iBrowser [7] is a convenient Internet application, one of the
first in the world that delivers "high-quality multimedia digital
content" over the Internet at extremely high speed using
conventional low-end hardwares. Innotive's iBrowser
technology allows real-time interactivity in both wired and
wireless environments to display digital image content
regardless of file size with easy, intuitive interface.

III. INTERFACE WEB AGENT FRAMEWORK

We will first introduce the example project WAF. Then we
will describe the proposed framework in translated Distributed
HCI [1] terms.

A. The example WAF project

Web agent framework or WAF is a web-alike topology [8]
multi-agent system application. It aims to create a visible
virtual human relationship on the Internet by means of using
agent to represent human master and act on their behalf
reactively or autonomously (such as providing / retrieving
information to / from other human or agent). In WAF, user’s
navigation path can be visualized in an off-line tree graph (See
Figure 1). The client browser of WAF will remember each
visited agent as well as any downloaded artifacts such as a
piece of news or a group of other related agents (e.g. friend
agents). It allows client side reconfiguration of the topology of
all these intelligent agents as well as data resources and save
them into local map files. Agents and information in these map
files can be updated automatically when they are reactivated or
re-opened from the history records kept in the local memory
pool(database); they can later be used as the starting point of a
new navigation or just provide a group of related agent services
to its user. See Figure 1.

In WAF, although most computing occurs at the place where
agents are actually situated, users (including other agents) can
customize references of external agent in different activation
maps on their local environment.

Figure 1. Several map files and user’s interaction with
agents or data in these map files.

B. Overview: the interface web agent framework

In this section and next, we will propose the interface web
agent framework. The framework is composed of seven
interrelated interface objects as listed below. It is based on
Distributed HCI template [1]. However, their names and
explanations have been changed to suit the MAS context.
Moreover, illustration of each interface object will be shown by
examples in WAF project in section IV.

List of interface objects:

- DNode: Agent prototype which defines its communication
language and schema.

- DNodeInstance: A unique agent situated in its runtime with a
set of services and a set of actions it will perform whenever an
internal state is reached. Both the agent and its actions are
protected with locks.

- DNodeReference: A reference of DNodeInstance, which is
used in off-line presentation in an activation map. The same
agent can be referenced at many different places in both client
and server runtimes

- ActivationMap: When navigating through the agent network,
users will automatically produce a map file comprised of any
visited agent. Agent references in a map file can be
reorganized to form a new computing topology.

- History: A historical record of all the above objects so that
any visited agent and navigation map files can be recollected
in an offline mode by the Runtime.

- Owner: A master of agents, who owns privileges to their
protected data and actions.

- Runtime: An environment where a set of activation maps are
managed. This is usually an agent platform or runtime
environment where computing and visualization of the
interface agent framework occurs.

IV. WAF IMPLEMENTATION

The framework proposed here are trying to be general,
although its current implementation is based on extant language
and tools. Because the framework is an interface layer that

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

511

might be adopted by heterogeneous MAS applications, we also
try to minimize the amount of work to install it into an existing
MAS framework. Besides MAS, other applications can also
consider applying a similar approach such as in distributed
computer games as in our previous work [2]. In the following
text, details of the seven interface objects are given together
with their implementations in WAF.

1) Agent prototype (DNode)

DNode := < , In, Out, URI>
:= alphabet in the agent’s top-level communication language.

In:= All possible input, which can be further defined as a

language(
*

) acceptable by this agent.

Out := All possible output, which can be further defined as a

language(
*

) used in its outgoing message.

URI := A resource identifier where the agent prototype is
defined

Several agents may be created from the same agent prototype,
which must be made available in the form of a global Internet
asset. Because most agent platforms choose to use one of the
agent communication languages (ACL) [10] and RDF ontology
[4] (or XML schema) in the form of XML encoding, an agent
prototype can be defined in XML files on the Internet.

2) Agent Instance (DNodeInstance)

DNodeInstance := < DNode, address, state, actions, , lock>
address := <namespace, local path>
state := <PublicState, ProtectedState>

PublicState: = public data or state that is accessible by other
DNodeInstance

ProtectedState:= protected information which can be either
static or dynamic.

actions := <visualization, lock>
visualization := an imagery that is reported to the user or fed

to the (possibly virtual) environment
 := A transition function from ()state In to ()state Out

Service:= {<name, IOPairs>}, where IOPairs In Out AND

(,) { 1, 2 [(1,) (2,)]}i o IOPairs s s state s i s o .

lock := require keys to open it
An agent instance is usually implemented as web services.

However, we will introduce a more light-weighted approach to
represent agent instances on the network. In this approach, we
will insert a middle (file) layer between computing entities (i.e.
between agents and users). Please see Figure 2.

We can regard the XML file layer as a collection of personal
web pages owned by agents. Unlike human’s web pages, they
are managed by interface agents and written in machine
readable format (Please refer to Semantic web). Common
information is always included in each file in one or several
predefined RDF schema. For example, the FOAF project [4]
has proposed an ontological framework for specifying common
agent information and their relationships (friendships).

Figure 2. Entity layers on the Internet
The advantage of using an additional file layer is that (1) file

is the most light-weighted approach to interface agent, (2) file
address is usually static, while agents could be mobile or static,
(3) by allowing interface agents to publish information to their
own unique web page, public (unprotected) information about
the agent can be retrieved by users or other agents in a more
efficient and convenient way, (4) file is more available on the
network than an entity with computing capabilities. (e.g. either
active agents or humans may be off-line, but file is always
available.)

To increase the efficiency for software agents to access the
XML file layer, web agent servers can use file databases to
store files in the middle layer and provide a simple web service
for their retrieval. Another advantage of using a file database
with a query interface such as web service is that it enables a
much secure and fine-grained retrieval and update to data
sections in an XML file. For either approach, each file must be
given a unique address on the Internet. In WAF, we use the
database approach for the middle (file) layer. And the address
of an agent instance is the web service’s URL plus a local path
name. Please see Figure 3.

Figure 3. Download an agent reference by its address
In special cases, such as for personal information agents, we

can get most public (unprotected) information solely from the
middle layer. However, in most cases, we need to talk to the
real software agent directly. Thus, the method to contact the
agent layer should also be included in the XML file layer.

From 3) to 7), we propose the rest of the framework with
explanations followed.
3) Agent reference (DNodeReference)

DNodeReference := <DNodeInstance, visibility>

User layer

XML file layer

Agent layer

web services or other
platform support

Entity layers on the Internet Technology used

human users or browser
applications on the client

static file server or a database
of files with a query interface
possibly by web service

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:3, 2007

512

visibility := A customized appearance of DNodeInstance that
is used to display DNodeReference

4) Agent map file (ActivationMap)

ActivationMap := <name, nodes, edges>
nodes := {DNodeReference}
edges := {< in , out>}

in := DNodeReference
out := DNodeReference

5) History

History := {< keywords, object, data>}
keywords := {time | name | address | …}
object := DNodeInstance | ActivationMap

6) Owner

Owner := <UserID, keys, privileges, {DNodeInstance}>
keys := {key}
privileges := {create | delete | modify | …}

Figure 4. Create a master account
In WAF, after registering on an agent provider’s website,

users are given a master account and the address of its agent.
7) Client browser (Runtime)

Runtime := <address, {ActivationMap}, {Owner}>

Figure 5. History in WAF browser
Once an agent instance has been downloaded to an agent

map file of a browser, it becomes a reference of this agent on
the map. Please see Figure 2, 3. An agent reference is a separate
local copy of the web agent. (i.e. files in the middle layer are
automatically stored in history of the browser after downloaded
by it.) Disk files or a light-weight database system is usually the
medium for storing agent map files and agent references.
Figure 1, 5 shows some ways in WAF to retrieve off-line
objects from the history such as by selecting disk files, entering
query strings or date. Any agent reference in a map file can also

be edited or annotated (the second one in Figure 1) and their
topologies in map files can be reconfigured such as by drag and
drop operations.

V. CONCLUSION

This paper examines the trends in open agent system
especially in its HCI aspect, proposes an interface web agent
framework and showed one possible implementation through
our previous WAF project.

Applications of this interface framework include open
multi-agent systems, 2D and 3D navigation systems with
annotated links on its maps, web service browsers with
reconfigurable service calls.

Conventions of existing user interfaces (like HTML,
windows common controls, web forms) have a great impact on
the design and functionality of current software applications.
By making recommendations to a set of new user interface
concepts, we hope it will help unleash the creativity of
programmers, improve end-user experiences and promote
distributed computing environment and agent technology.

ACKNOWLEDGMENT

Xizhi Li would like to thank his father for the insightful
opinions about agent technology and also his friends WangTian
et al for their involvement in the WAF project development and
testing.

REFERENCES

[1] Xizhi Li, “An HCI Template for Distributed Applications,” IJCI.
 International Conference on Computational Intelligence 2004.

[2] Xizhi Li, “Using Neural Parallel Language in Distributed Game World
Composing,” in Conf. Proc. IEEE Distributed Framework of

Multimedia Applications. 2005.
[3] Ricardo Choren et al. “Software Engineering for Large-Scale

Multi-Agent Systems – SELMAS’04.” Proceedings of the 26th
International Conference on Software Engineering (ICSE’04).

[4] The Friend of a Friend (FOAF) project.
http://www.foaf-project.org/

[5] Zeiliger, R., “Beyond Bookmarks: Enriching Web information,” in
proceedings of the Webnet 2000 Conference, San Antonio, USA, October
30- Nov 4, AACE (2000)

[6] Lilavati Pereira Okada, A., Zeiliger, R., “The Building of Knowledge
through Virtual Maps in Collaborative Learning Environments,” in
proceedings of the ED-MEDIA 2003 conference, AACE, Hawaii, USA.

[7] iBrowsor. http://www.innotive.com/
[8] David Benyon, “The new HCI? Navigation of information space,”

Elsevier. Knowledge-Based System (2001).
[9] Irene. “The evoluation of objects into hyper-objects: will it be most

harmless?.” Personal and Ubiquitous Computing. Vol 7,no 3-4,2003.
[10] Haw Siang Hon. Agent Communication Language. ISE. 2001.

