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Abstract—As the majority of faults are found in a few of its 

modules so there is a need to investigate the modules that are 
affected severely as compared to other modules and proper 
maintenance need to be done on time especially for the critical 
applications. In this paper, we have explored the different predictor 
models to NASA’s public domain defect dataset coded in Perl 
programming language. Different machine learning algorithms 
belonging to the different learner categories of the WEKA project 
including Mamdani Based Fuzzy Inference System and Neuro-fuzzy 
based system have been evaluated for the modeling of maintenance 
severity or impact of fault severity. The results are recorded in terms 
of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared 
Error (RMSE). The results show that Neuro-fuzzy based model 
provides relatively better prediction accuracy as compared to other 
models and hence, can be used for the maintenance severity 
prediction of the software. 
 

Keywords—Software Metrics, Fuzzy, Neuro-Fuzzy, Software 
Faults, Accuracy, MAE, RMSE.  

I. INTRODUCTION 
HEN a software system is developed, the majority of 
faults are found in a few of its modules. In most of the 

cases, 55 % of faults exist within 20 % of source code. It is, 
therefore, much of interest is to find out fault-prone software 
modules at early stage of a project [1]. Using software 
complexity measures, the techniques build models, which 
classify components as likely to contain faults or not. Quality 
will be improved as more faults will be detected. Predicting 
the impact of the faults early in the software life cycle can be 
used to improve software process control and achieve high 
software reliability. Timely predictions of faults in software 
modules can be used to direct cost-effective quality 
enhancement efforts to modules that are likely to have a high 
number of faults. Prediction models based on software 
metrics, can estimate number of faults in software modules.  

Prediction of severity of faults:  
• Supports software quality engineering through improved 

scheduling and project control. 
• Can be a key step towards steering the software testing 

and improving the effectiveness of the whole process. 

 
Ebru Ardil and Erdem Uçar are with Department of Computer Engineering, 

Trakya University, Edirne, Turkey.  
Parvinder S. Sandhu is with Computer Science & 

Engineering Department, Rayat & Bahra Institute of Engineering & Bio-
Technology, Sahauran, Distt. Mohali (Punjab)-140104 India (phone: +91-
98555-32004; e-mail: parvinder.sandhu@gmail.com). 

• Enables effective discovery and identification of defects. 
• Enables the verification and validation activities focused 

on critical software components. 
• Used to improve software process control and achieve 

high software reliability. 
• Can be used to direct cost-effective quality enhancement 

efforts to modules.  
In the literature [1] [2], [3], [4], [5], [6] made prediction of 

fault prone modules in software development process and 
mostly used the metric based approach with machine learning 
techniques to model the fault prediction in the software 
modules. Khoshgoftaar [7] used zero-inflated Poisson 
regression to predict the fault-proneness of software systems 
with a large number of zero response variables. Munson and 
Khoshgoftaar [8, 9] also investigated the application of 
multivariate analysis to regression and showed that reducing 
the number of “independent” factors (attribute set) does not 
significantly affect the Accuracy of software quality 
prediction. Menzies, Ammar, Nikora, and Stefano [10] 
compared decision trees, naïve Bayes, and 1-rule classifier on 
the NASA software defect data. Emam, Benlarbi, Goel, and 
Rai [11] compared different case-based reasoning classifiers 
and concluded that there is no added advantage in varying the 
combination of parameters (including varying nearest 
neighbor and using different weight functions) of the classifier 
to make the prediction Accuracy better. Many modeling 
techniques have been developed and applied for software 
quality prediction [12], [13], [14], [15]. The software quality 
may be analyzed with limited fault proneness data [16]. 

In [17], the author has used various machine learning 
techniques for an intelligent system for the software 
maintenance prediction and proposed the logistic model Trees 
(LMT) and Complimentary Naïve Bayes (CNB) algorithms on 
the basis of Mean Absolute Error (MAE), Root Mean Square 
Error (RMSE) and Accuracy percentage. 

Soft-Computing algorithms have proven to be of great 
practical value in a variety of application domains. Not 
surprisingly, the field of software engineering turns out to be a 
fertile ground where many software development and 
maintenance tasks could be formulated as learning problems 
and approached in terms of learning algorithms.  

In this present work, various machine learning algorithms 
including Fuzzy and Neuro-Fuzzy Based techniques are 
explored and comparative analysis is performed for the 
prediction of level of impact of faults in the software modules. 

In this paper, Section two describes the Methodology part 
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of work done, which shows the steps used in order to reach 
the objectives and carry out the results. In the section three, 
results of the implementation are discussed. In the last section, 
on the basis of the discussion various Conclusions are drawn 
and the future scope for the present work is discussed. 

II.  PROPOSED METHODOLOGY  

A.  Find the Structural Code and Design Attributes  
The first step is to find the structural code and design 

attributes of software systems i.e software metrics. The real-
time defect data sets are taken from the NASA’s MDP (Metric 
Data Program) data repository. The dataset is related to the 
safety critical software systems being developed by NASA.  

B.   Select the Suitable Metric Values as Representation of 
Statement  

The suitable metrics like product module metrics out of 
these data sets are considered. The term product is used 
referring to module level data.  

C.   Analyze and Refine Metrics   
In the next step the metrics are analyzed and refined and 

then used for modeling of software fault severity in software 
systems. 

D.   Explore the Different Machine Learning Algorithms 
including Fuzzy and Neuro-Fuzzy Inference System  

In this step aim is to find the best algorithm for 
classification of software components into different levels of 
impact of fault. Forty Six Machine learning algorithms are 
used for modeling of the data. 

As per Abraham in [18], A Mamdani Neuro-Fuzzy system 
uses a supervised learning technique (backpropagation 
learning) to learn the parameters of the membership functions 
[19]. Architecture of Mamdani Neuro-Fuzzy system is 
illustrated in Fig. 1. The detailed function of each layer is as 
follows: 

Layer-1 (Input Layer): No computation is done in this layer. 
Each node in this layer, which corresponds to one input 
variable, only transmits input values to the next layer directly. 
The link weight in layer 1 is unity. 

Layer-2 (Fuzzification Layer): Each node in this layer 
corresponds to one linguistic label (excellent, good, etc.) to 
one of the input variables in layer 1. In other words, the output 
link represents the membership value, which specifies the 
degree to which an input value belongs to a fuzzy set, is 
calculated in layer 2. A clustering algorithm will decide the 
initial number and type of membership functions to be 
allocated to each of the input variable. The final shapes of the 
MFs will be fine tuned during network learning. 

Layer-3 (Rule Antecedent Layer): A node in this layer 
represents the antecedent part of a rule. Usually a T-norm 
operator is used in this node. The output of a layer 3 node 
represents the ring strength of the corresponding fuzzy rule. 

Layer-4 (Rule Consequent Layer): This node basically has 
two tasks. To combine the incoming rule antecedents and 

determine the degree to which they belong to the output 
linguistic label (high, medium, low, etc.). The number of 
nodes in this layer will be equal to the number of rules. 

Layer-5 (Combination and Defuzzification layer): This 
node does the combination of all the rules consequents using a 
T-conorm operator and finally computes the crisp. 

 

 
Fig. 1 Mamdani Neuro-Fuzzy System Structure [18] 

 
According to [20], a fuzzy system can be considered to be a 

parameterized nonlinear map, called f, which can be 
expressed as (1): 
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Where  yl is a place of output singleton if Mamdani 

reasoning is applied or a constant if Sugeno reasoning is 
applied. The membership function µAi

l(xi) corresponds to the 
input x=[ x1, x2, x3,… xm] of the rule l . The “and” connective 
in the premise is carried out by a product and defuzzification 
by the center-of-gravity method. Consider a Sugeno type of 
fuzzy system having the rule base 

Rule1:  If x is A1 and y is B1, then f1= p1x + q1y + 1 
Rule2:  If x is A2 and y is B2, then f2= p2x+ q2y + r2 

Let the membership functions of fuzzy sets Ai, Bi, i=1,2, be , 
µAi , µBi . 
-Evaluating the rule premises results in wi =µAi(x) * µBi (y) 
where i = 1,2 for the rule rules stated above. 
-Evaluating the implication and the rule consequences gives 
(2). 
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Then  f can be written as (4). 
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E.  Comparison Criteria   
The comparisons of machine learning algorithms are made 

on the basis of the least value of MAE and RMSE values. 
Accuracy value of the prediction model is also used for the 
comparison. The best algorithm is picked up after the 10 fold 
cross validation results and tested for the testing dataset. The 
Accuracy of the model is compared with the results of 
Mamdani based FIS and Neuro-Fuzzy based systems. The 
details of the MAE and RMSE are: 

• Mean Absolute Error 
Mean absolute error, MAE is the average of the difference 

between predicted and actual value in all test cases; it is the 
average prediction error [21]. The formula for calculating 
MAE is given in equation shown below: 

 

n
cacaca nn

−++−+− ...
2211                     (5) 

 
Assuming that the actual output is a, expected output is c. 
 

• Root Mean-Squared Error  
RMSE is frequently used measure of differences between 

values predicted by a model or estimator and the values 
actually observed from the thing being modeled or estimated 
[21]. It is just the square root of the mean square error as 
shown in equation given below: 
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F.  Conclusions Drawn   
The conclusions are made on the basis of the comparison 

made in the previous section. 

III. RESULTS & DISCUSSION 
The real-time defect data set used is taken from the 

NASA’s MDP (Metric Data Program) data repository, the 
details of that dataset contains 60 modules  of Perl 
Programming language with different values of software fault 
severity labeled as 1, 2, 3, 4 and 5. Details of the Type of 
Modules in the Dataset are shown in Fig. 2. 

The first step is to find the structural code and design 
attributes of software systems i.e. software metrics. As most 
of the values of the other metrics are zero or metrics are 
redundant in nature. So, selected five metrics representing 
input attributes are: 

• Branch_Count 
• Cyclometric_Complexity 
• Design_Complexity 
• Essential_Complexity 
• Number_Of_Lines 
 

 
 

Fig. 2 Graphical Representation of Details of the Type of Modules in 
the Dataset 

 
The algorithms which are explored are already built java 

classes in WEKA project [22]. For this a variety of many 
machine learning algorithms and neural network techniques 
are analyzed. 

When analyzing performance of all the algorithms, Logistic 
Model Trees (LMT) and Simple Logistic algorithms have 
outperformed all the other algorithms used in the comparative 
study with Accuracy, MAE and  RMSE values  as 65, 0.2145 
and 0.3285 respectively when the 10 fold cross validation is 
performed. 

When Logistic Model Trees (LMT) and Simple Logistic 
algorithms are tested for the fifteen exemplar inputs 86.66% 
accuracy is obtained. 

In the Mamdani based fuzzy inference system model five 
metrics are considered as input attributes and one attribute 
named as “software maintenance severity level” is used as 
output attribute as shown in Fig. 3. 

Each input and output attribute is represented with fifteen 
fuzzy sets and the membership function value of the each 
attribute is shown in Fig. 4. Different membership function 
values that are used to convert the crisp values into the fuzzy 
values and that process is called fuzzification. Once you have 
got the fuzzy values then you can use the values in the fuzzy 
rule evaluation which is the next step in the Fuzzy Inference 
system. In Fig. 5, fifteen rules used for the inference of the 
Mamdani based FIS are shown. 
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Fig. 3 Mamdani Based FIS Inference System 

 
Fig. 4 Membership Functions of the Input and Output Attributes 

 

Fig. 5 Fifteen Rules of the Mamdani Based FIS 
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During the testing phase of the Mamdani Based Fuzzy 
Inference System fifteen inputs are used and it shows 0.2183,  
0.3066 and 80 percentage as MAE, RMSE and Accuracy 
values. 

As performance of Adaptive Neuro Fuzzy Inference System 
is found to be the best out of all the hybrid NF systems [23] 
and the extra complexity in structure and computation of 
Mamdami based Adaptive NF Inference system with max-min 
composition does not necessarily imply better learning 
capability or approximation power [24]. Hence, in MATLAB 
7.4, the Sugeno based Adaptive Neuro-fuzzy Inference 
System is used for modeling of software maintenance severity. 
The ideal inference system for the evaluation of software 
components should be less complex and more precision. The 
inference system, which is already trained, will get the metric 
values from the earlier stages and estimate the software 
maintenance severity value of the software components or 
modules.  

The following is the information regarding the structure of 
the adaptive Neuro-fuzzy Based Inference system and 
pictorially represented in Fig. 6:  

• Number of nodes: 32 
• Number of linear parameters: 12 
• Number of nonlinear parameters: 20 
• Total number of parameters: 32 
• Number of training data pairs: 60 
• Number of checking data pairs: 0 
• Number of fuzzy rules: 2 
 

 
Fig. 6 Structure of Adaptive Neuro-Fuzzy Inference System 

 

 
Fig. 7 Training Data for the Neuro-fuzzy system 

 

The graphical representation of the input exemplars for the 
NF system is shown in Fig. 7. 

The NF system is trained using a hybrid learning algorithm 
using both least squares method and backpropagation. In the 
forward pass the consequent parameters are identified using 
least squares and in the backward pass the premise parameters 
are identified using backpropagation. The trained NF system 
is then tested for the fifteen inputs and it shows 0.1571, 
0.2140 and 93.3333 as MAE, RMSE and Accuracy values 
respectively. 

The plot of the expected and the output of the NF system 
for the different inputs are shown in Fig. 8. Fig. 8 shows the 
plot of the result of accuracy of the system that is developed. 
The red star is the expected vale and the blue dot is the value 
calculated by our model. Means the overall accuracy picture is 
shown with help of that chart. 

 

 
Fig. 8 Plot of the Testing Data V/S FIS Output 

IV. CONCLUSION 
On comparing all the classes of WEKA’s machine learning 

algorithms, it is observed that Logistic Model Trees and 
Simple Logistic algorithms are better techniques as compared 
with other classes of machine learning algorithms with the 
65% Accuracy in prediction of fault tolerance. In both the 
algorithms of the WEKA project the classification algorithm 
is the same i.e. logistic classifier. Both the algorithms have 
least Mean Absolute Error and Root Mean Square Error 
values: 0.2145 and 0.3285.  During the testing phase LMT and 
Simple Logistic algorithm has shown 86.66% Accuracy.   

The results of the Mamdani based fuzzy inference system 
are comparatively equivalent for the testing data as that of the  
Logistic Model Trees and Simple Logistic algorithm with 
0.2183,  0.3066 and 80 as  Mean Absolute Error, Root Mean 
Square Error and Accuracy values. 

The Neuro-fuzzy based Modeling technique has 
outperformed the other technique on the basis of the testing 
data with 0.1571, 0.2140 and 93.3333 as Mean Absolute 
Error, Root Mean Square Error and Accuracy values. 

It is therefore, concluded the model is implemented and the 
best algorithm for classification of the software components 
into different level of severity of impact of the fault is found 
to be Neuro-Fuzzy based technique. The algorithm can be 
used to develop model that can be used for identifying 
modules that are heavily affected by the faults and those can 
be debugged.  
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