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Abstract—This paper presents a new sufficient condition for the
existence, uniqueness and global asymptotic stability of the equilib-
rium point for Cohen-Grossberg neural networks with multiple time
delays. The results establish a relationship between the network pa-
rameters of the neural system independently of the delay parameters.
The results are also compared with the previously reported results in
the literature.
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I. INTRODUCTION

IN recent years, equilibrium and stability properties of dif-
ferent classes of neural networks such as Cohen-Grossberg

neural networks, Hopfield-type of neural networks and cellular
neural networks have been intensively studied and applied
to various engineering problems [1]-[13]. In particular, the
existence, uniqueness and global asymptotic stability of the
equilibrium point for neural networks proved to be an im-
portant property as neural networks with such a convergence
dynamics is crucial to solve optimization problems. In recent
literature, many researchers have studied the equilibria and
stability properties of neural networks and presented various
sufficient conditions for the uniqueness and global asymptotic
stability of the equilibrium point for neural networks [1]-[13].
On the other hand, it is well known that a significant time
delay may occur during the communication between neurons,
which may cause a complete change in the dynamical behavior
of neural systems. Therefore, determining the affect of the
time delays on the equilibrium and stability properties of
neural networks is of prime importance. In this paper, by
employing more general types of Lyapunov functionals, we
will present a new sufficient condition for the uniqueness and
global asymptotic stability of the equilibrium point for Cohen-
Grossberg neural networks with time delays.

II. COHEN-GROSSBERG NEURAL NETWORK
MODEL AND SOME BASIC CONCEPTS

Cohen-Grossberg neural network model we consider in this
paper is assumed to be described by the following set of
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differential equations :

ẋi(t) = di(xi(t))[−ci(xi(t)) +

n∑
j=1

aijfj(xj(t))

+

n∑
j=1

bijfj(xj(t − τij)) + ui] (1)

where n is the number of the neurons in the network, xi

denotes the state of the ith neuron, di(xi) represents an
amplification function, and ci(xi) is a behaved function
such that the solution of network model (1) remains
bounded. The constants aij denote the strengths of the
neuron interconnections within the network, the constants
bij denote the strengths of the neuron interconnections with
time delay parameters τij . Finally, the functions fi(·) denote
the neuronal activations and the constants ui are some
external inputs. In system (1), τij(t)≥0 represents the delay
parameter with τ = max(τij), 1 ≤ i, j ≤ n. Accompanying
the neural system (1) is an initial condition of the form :
xi(t) = φi(t) ∈ C([−τ, 0], R), where C([−τ, 0], R) denotes
the set of all continuous functions from [−τ, 0] to R.

We now give some usual assumptions on the functions di,
ci and fi :

A1 : The functions di(x), i = 1, 2, ..., n are continuously
bounded, and there exist positive constants μi and ρi such
that 0 < μi≤ di(x) ≤ ρi, ∀x ∈ R.

A2 : The functions ci are continuous and there exist
constants γi > 0 such that

ci(x) − ci(y)

x − y
=

|ci(x) − ci(y)|

|x − y|
≥γi > 0, i = 1, 2, ..., n,

∀x, y ∈ R, x �=y

A3 : There exist some positive constants Gi such that

0≤
fi(x) − fi(y)

x − y
≤Gi, i = 1, 2, ..., n, ∀x, y ∈ R, x �=y

We recall some basic vector and matrix norms. For x =
(x1, x2, ..., xn)T , the three commonly used vector norms are
: ||x||1 =

∑n
i=1 |xi|, ||x||2 =

√∑n
i=1 x2

i , ||x||∞ =
max

1≤i≤n
|xi|. For any matrix A = (aij)n×n, ||A||1 =

max
1≤j≤n

n∑
i=1

|aij |, ||A||∞ = max
1≤i≤n

n∑
j=1

|aij |, ||A||2 =√
λM (AT A), where λM (AT A) denotes the maximum eigen-

value of the matrix AT A.
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III. EXISTENCE AND UNIQUENESS ANALYSIS OF
EQUILIBRIUM POINT

In this section we present the following condition that
establishes the existence and uniqueness of the equilibrium
point for system (1).

Theorem 1: Suppose that the assumptions A1, A2 and A3

are satisfied. Then, the Cohen-Grossberg neural networks
defined by (1) has a unique equilibrium point for each u, if
the following condition holds :

Ω = 2ΓG−1 − A − AT − Q > 0

where Γ = diag(γ1, γ2, ..., γn) and G =
diag(G1, G2, ..., Gn), and Q = diag(q1, q2, ..., qn) with

qi =

n∑
j=1

(|bij | + |bji|) , i = 1, 2, ..., n

Proof: Let x∗ = (x∗
1, x

∗
2, ..., x

∗
n)T denote an equilibrium

point of neural network model (1). Then, x∗ satisfies

D(x∗)[−C(x∗) + Af(x∗) + Bf(x∗) + u] = 0 (2)

Since D(x∗) is a positive diagonal matrix, from (2), it follows
that

−C(x∗) + Af(x∗) + Bf(x∗) + u = 0 (3)

Let

H(x) = −C(x) + Af(x) + Bf(x) + u = 0 (4)

where H(x) = (h1(x), h2(x), ..., hn(x))T with

hi(x) = −ci(xi) +

n∑
j=1

aijfj(xj) +

n∑
j=1

bijfj(xj) + ui,

i = 1, 2, ..., n

Since every solution of H(x) = 0 is an equilibrium point of
(1), it follows that, for system defined by (1), there exists a
unique equilibrium point for every input vector u if H(x) is
homeomorphism of Rn (see [5]). In the following, we will
prove that H(x) is a homeomorphism of Rn.

Let choose two vectors x, y ∈ Rn such that x �= y. For
H(x) defined by (4), we can write

H(x) − H(y) = −(C(x) − C(y)) + A(f(x) − f(y))

+B(f(x) − f(y)) (5)

First, consider the case x �= y with f(x)−f(y) = 0; in this
case, we have

H(x) − H(y) = −(C(x) − C(y))

Under assumption A2, x �= y implies that C(x) �= C(y). On
the other hand, if C(x) �= C(y), then H(x) �= H(y). Hence,
x �= y implies that H(x) �= H(y). Now consider the case
where x−y �= 0 and f(x)−f(y) �= 0. Multiplying both sides
of (5) by 2(f(x) − f(y))T results in

2(f(x) − f(y))T (H(x) − H(y))

= −2(f(x) − f(y))T (C(x) − C(y))

+2(f(x) − f(y))T A(f(x) − f(y))

+2(f(x) − f(y))T B(f(x) − f(y))

= −2(f(x) − f(y))T (C(x) − C(y))

+(f(x) − f(y))T (A + AT )(f(x) − f(y))

+2(f(x) − f(y))T B(f(x) − f(y))

From the assumptions A2 and A3, we obtain

(f(x) − f(y))T (C(x) − C(y))

≥(f(x) − f(y))T Γ(x − y)

≥(f(x) − f(y))T ΓG−1(f(x) − f(y))

We also note the following inequality

2(f(x) − f(y))T B(f(x) − f(y))

=

n∑
i=1

n∑
j=1

2bij(fi(xi) − fi(yi))(fj(xj) − fj(yj))

≤
n∑

i=1

n∑
j=1

2|bij ||fi(xi) − fi(yi)||fj(xj) − fj(yj)|

≤

n∑
i=1

n∑
j=1

|bij |((fi(xi) − fi(yi))
2 + (fj(xj) − fj(yj))

2)

=
n∑

i=1

n∑
j=1

|bij |(fi(xi) − fi(yi))
2

+

n∑
i=1

n∑
j=1

|bji|(fi(xi) − fi(yi))
2

=
n∑

i=1

n∑
j=1

(|bij | + |bji|)(fi(xi) − fi(yi))
2

=

n∑
i=1

qi(fi(xi) − fi(yi))
2

= (f(x) − f(y))T Q(f(x) − f(y))

Using the above two inequalities in (6) results in

2(f(x) − f(y))T (H(x) − H(y)) (6)

≤ −2(f(x) − f(y))T ΓG−1(f(x) − f(y))

+(f(x) − f(y))T (A + AT )(f(x) − f(y))

+(f(x) − f(y))T Q(f(x) − f(y))

= −(f(x) − f(y))T Ω(f(x) − f(y)) (7)

For f(x) − f(y) �= 0, Ω > 0 implies that

2(f(x) − f(y))T (H(x) − H(y)) < 0

form which it can be concluded that H(x) �= H(y) when
f(x) − f(y) �= 0, thus proving that H(x) �= H(y) for all
x �= y.

Now, if we let y = 0 in (7), then we obtain :

2(f(x) − f(0))T (H(x) − H(0))

≤ −(f(x) − f(0))T Ωf(x) − f(0)
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leading to

|2(f(x) − f(0))T (H(x) − H(0))|

> (f(x) − f(0))T Ωf(x) − f(0)

from which it follows that

2|f(x) − f(0)||∞||H(x) − H(0)||1

> λm(Ω)||f(x) − f(0)||22

Considering that ||f(x) − f(0)||∞≤||f(x) − f(0)||2,
||H(x) − H(0)||1≤||H(x)||1 + ||H(0)||1 and
||f(x) − f(0))||1≥||f(x)||1 − ||f(0)||1, we obtain

||H(x)||1

>
λm(Ω)||f(x)||2 − λm(Ω)||f(0)||2 − 2||H(0)||1

2||P ||∞

Since, ||H(0)||1 and ||f(0)||2 are finite, then ||H(x)|| → ∞
as ||f(x)|| → ∞. (We should point out here that, for
unbounded activation functions, ||f(x)|| → ∞ if ||x|| → ∞.
Therefore, we can conclude that ||H(x)|| → ∞ as ||x|| → ∞.
As for the bounded activation functions, it is always true that
||H(x)|| → ∞ as ||x|| → ∞. [5]) Thus, it follows that the
map H(x) : Rn → Rn is homomorphism of Rn, hence there
exists a unique x∗ such H(x∗) = 0 which is a solution of
(1). Hence, the proof of the existence and uniqueness of the
equilibrium point is now completed.

IV. STABILITY ANALYSIS OF EQUILIBRIUM POINT

In this section, we will prove that Ω > 0 also implies
the global asymptotic stability of the equilibrium point for
neural system (1). To simplify the proofs, we will first shift
the equilibrium point of system (1) to the origin. Suppose
that x∗ is an equilibrium point of system (1). By using the
transformation z(t) = x(t)−x∗, the equilibrium point x∗ can
be shifted to the origin. The neural network model (1) can be
rewritten as :

żi(t) = αi(zi(t))[−βi(zi(t)) +
n∑

j=1

aijgj(zj(t))

+

n∑
j=1

bijgj(zj(t − τij))] (8)

For the transformed system (8), we have

αi(zi(t)) = di(zi(t) + x∗
i ), i = 1, 2, ..., n

βi(zi(t)) = ci(zi(t) + x∗
i ) − ci(x

∗
i ), i = 1, 2, ..., n

gi(zi(t)) = fi(zi(t) + x∗
i ) − fi(x

∗
i ), i = 1, 2, ..., n

Assumptions A1, A2, A3 respectively imply that

0 < μi≤ αi(zi(t)) ≤ ρi, i = 1, 2, ..., n

zi(t)βi(zi(t))≥γiz
2
i (t), i = 1, 2, ..., n

|gi(zi(t))|≤Gi|zi(t)|, zi(t)gi(zi(t))≥0, i = 1, 2, ..., n

In order to show that Ω > 0 is also a sufficient condition for
global asymptotic stability of the origin of (8), the following
positive definite Lyapunov functional will be employed :

V (z(t)) = 2n
n∑

i=1

∫ zi(t)

0

s

αi(s)
ds

+2α
n∑

i=1

∫ zi(t)

0

gi(s)

αi(s)
ds

+
n∑

i=1

n∑
j=1

α|bij |

∫ t

t−τij

g2
j (zj(ξ))dξ

+

n∑
i=1

n∑
j=1

ε

∫ t

t−τij

g2
j (zj(ξ))dξ

+
n∑

i=1

n∑
j=1

1

γi

n2b2
ij

∫ t

t−τij

g2
j (zj(ξ))dξ

where the α and ε are positive constants to be determined later.
The time derivative of the functional along the trajectories of
system (8) is obtained as follows

V̇ (z(t)) = −2

n∑
i=1

nβi(zi(t))zi(t)

+
n∑

i=1

n∑
j=1

2naijzi(t)gj(zj(t))

+
n∑

i=1

n∑
j=1

2nbijzi(t)gj(zj(t − τij))

−2α

n∑
i=1

βi(zi(t))gi(zi(t))

+α
n∑

i=1

n∑
j=1

2aijgi(zi(t))gj(zj(t))

+α
n∑

i=1

n∑
j=1

2bijgi(zi(t))gj(zj(t − τij))

+α

n∑
i=1

n∑
j=1

|bij |g
2
j (zj(t))

−α
n∑

i=1

n∑
j=1

|bij |g
2
j (zj(t − τij))

+

n∑
i=1

n∑
j=1

εg2
j (zj(t)) −

n∑
i=1

n∑
j=1

εg2
j (zj(t − τij))

+
n∑

i=1

n∑
j=1

1

γi

n2b2
ijg

2
j (zj(t))

−

n∑
i=1

n∑
j=1

1

γi

n2b2
ijg

2
j (zj(t − τij))

We have
n∑

i=1

n∑
j=1

2naijzi(t)gj(zj(t))

≤

n∑
i=1

n∑
j=1

γiz
2
i (t) +

n∑
i=1

n∑
j=1

1

γi

n2a2
ijg

2
j (zj(t))
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n∑
i=1

n∑
j=1

2nbijzi(t)gj(zj(t − τij))

≤

n∑
i=1

n∑
j=1

γiz
2
i (t) +

n∑
i=1

n∑
j=1

1

γi

n2b2
ijg

2
j (zj(t − τij))

α

n∑
i=1

n∑
j=1

2bijgi(zi(t))gj(zj(t − τij))

≤α
n∑

i=1

n∑
j=1

|bij |g
2
i (zi(t))

+α

n∑
i=1

n∑
j=1

|bij |g
2
j (zj(t − τij))

−2α

n∑
i=1

βi(zi(t))gi(zi(t)) ≤ −2α

n∑
i=1

γizi(t)gi(zi(t))

≤ −2α
n∑

i=1

γiG
−1
i g2

i (zi(t))

In the light above inequalities, V̇ (z(t)) can be written as
follows

V̇ (z(t)) ≤

n∑
i=1

n∑
j=1

1

γi

n2a2
ijg

2
j (zj(t))

+

n∑
i=1

n∑
j=1

1

γi

n2b2
ijg

2
j (zj(t))

−2α
n∑

i=1

γiG
−1
i g2

i (zi(t))

+α
n∑

i=1

n∑
j=1

2aijgi(zi(t))gj(zj(t))

+α

n∑
i=1

n∑
j=1

|bij |g
2
j (zj(t))

+α
n∑

i=1

n∑
j=1

|bij |g
2
i (zi(t)) +

n∑
i=1

n∑
j=1

εg2
i (zi(t))

=

n∑
i=1

n∑
j=1

1

γi

n2[a2
ji + b2

ji]g
2
i (zi(t))

+

n∑
i=1

n∑
j=1

εg2
i (zi(t)) − 2α

n∑
i=1

γiG
−1
i g2

i (zi(t))

+α

n∑
i=1

n∑
j=1

2aijgi(zi(t))gj(zj(t))

+α

n∑
i=1

n∑
j=1

(|bij | + |bji|)g
2
i (zi(t))

Let

δ = max(
1

γi

n2[a2
ji + b2

ji])

Then, we have

V̇ (z(t)) ≤

n∑
i=1

n∑
j=1

δg2
i (zi(t)) +

n∑
i=1

n∑
j=1

εg2
i (zi(t))

−2αgT (z(t))ΓG−1g(z(t))

+αgT (z(t))(A + AT )g(z(t))

+αgT (z(t))Qg(z(t))

= n(δ + ε)||g(z(t))||22 − αgT (z(t))Ωg(z(t))

≤ n(δ + ε)||g(z(t))||22 − αλm(Ω)||g(z(t))||22

= −(αλm(Ω) − n(δ + ε))||g(z(t))||22

in which α > n(δ+ε)
λm(Ω) implies that V̇ (z(t)) is negative definite

for all g(z(t)) �= 0. ( We know that g(z(t)) �= 0 implies that
z(t) �= 0). Now let g(z(t)) = 0. In this case V̇ (z(t)) satisfies

V̇ (z(t)) = −2
n∑

i=1

nβi(zi(t))zi(t)

+
n∑

i=1

n∑
j=1

2nbijzi(t)gj(zj(t − τij))

−α

n∑
i=1

n∑
j=1

|bij |g
2
j (zj(t − τij))

−

n∑
i=1

n∑
j=1

εg2
j (zj(t − τij))

−

n∑
i=1

n∑
j=1

1

γi

n2b2
ijg

2
j (zj(t − τij))

≤ −2
n∑

i=1

nβi(zi(t))zi(t)

+
n∑

i=1

n∑
j=1

2nbijzi(t)gj(zj(t − τij))

−

n∑
i=1

n∑
j=1

1

γi

n2b2
ijg

2
j (zj(t − τij))

Since

−
n∑

i=1

nβi(zi(t))zi(t) +
n∑

i=1

n∑
j=1

2nbijzi(t)gj(zj(t − τij))

−

n∑
i=1

n∑
j=1

1

γi

n2b2
ijg

2
j (zj(t − τij))≤0

we obtain

V̇ (z(t)) ≤ −
n∑

i=1

nβi(zi(t))zi(t)

implying that V̇ (z(t)) < 0 for all z(t) �= 0. Now consider the
case where g(z(t)) = z(t) = 0. In this case, for V̇ (z(t)), we
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have

V̇ (z(t)) = −α
n∑

i=1

n∑
j=1

|bij |g
2
j (zj(t − τij))

−

n∑
i=1

n∑
j=1

εg2
j (zj(t − τij))

−

n∑
i=1

n∑
j=1

1

γi

n2b2
ijg

2
j (zj(t − τij))

in which V̇ (z(t)) < 0 if there exists at least one nonzero
gj(zj(t − τij)). Hence, we can conclude that V̇ (z(t)) = 0 if
and only if g(z(t)) = z(t) = 0 and gj(zj(t− τij)) = 0 for all
i, j, V̇ (z(t)) < 0 otherwise. In addition, V (z(t)) is radially
unbounded since V (z(t)) → ∞ as ||z(t)|| → ∞. Thus, the
origin system (8), or equivalently the equilibrium point of
system (1) is globally asymptotically stable [14].

Now, we will compare our result with two previously
published results, which are restated in the following :

Theorem 2 (3): Consider the delayed system (1) and as-
sume that conditions (A1) − (A2) − (A3) are satisfied. If
there exists positive constants mi, i = 1, 2, ..., n, r1 ∈ [0, 1],
r2 ∈ [0, 1], and following conditions holds:

max
1≤i≤n

{
1

γimi

(
mi

n∑
j=1

(G2r1

j |aij | +

G2r2

j |bij |) +

n∑
j=1

mj(G
2(1−r1)
i |aji| + G

2(1−r2)
i |bji|)

)}
< 2

then the equilibrium point x∗ for system (1) is globally
asymptotically stable.

Theorem 3 (4): Assume that system (1) satisfies the as-
sumptions (A1), (A2) and (A3) are satisfied and there exist
constants pij , qij , sij , tij ∈ R, i, j = 1, 2, ...., n, such that

γi −
1

2

n∑
j=1

[|aij |
2−qij G

2−pij

j + |aji|
qjiG

pji

i + |bij |
2−sij G

2−tij

j

+|bji|
sjiG

tji

i ] > 0

then the equilibrium point x∗ for system (1) is globally
asymptotically stable.

We now give the following examples :

Example 1: We consider the example where the network
parameters are given as follows :

A =

[
0 −1
1 0

]
, B =

[
b b
b b

]
,

Γ = G =

[
1 0
0 1

]
Let mi = 1. When applying the result of Theorem 2 to this
example, stability condition is ensured if only if |b| = 0.

However, for the same network parameters, our theorem gives
the result as 0 < |b| < 1/2.

Example 2: Now consider the example where the network
parameters are given as follows :

A =

[
1 −1
1 1

]
, B =

[
1 1
1 1

]
Let Gi = 1. Applying the result of Theorem 3 to this

example yields conditions γ1 > 4 and γ2 > 4. For the same
network parameters, our theorem gives the conditions γ1 > 3
and γ2 > 3.

V. CONCLUSION

This paper presented a new sufficient condition for the ex-
istence, uniqueness and global asymptotic stability of Cohen-
Grossberg neural networks with time delays. The proposed
condition has been derived by using a more general type of
Lyapunov functionals. The obtained results have been shown
to be considered an alternative result to the previous results
derived in the literature.
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