
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:8, 2010

1216

Multiple Model and Neural based Adaptive
Multi-loop PID Controller for a CSTR Process

R.Vinodha S. Abraham Lincoln and J. Prakash

Abstract—Multi-loop (De-centralized) Proportional-Integral-
Derivative (PID) controllers have been used extensively in process
industries due to their simple structure for control of multivariable
processes. The objective of this work is to design multiple-model
adaptive multi-loop PID strategy (Multiple Model Adaptive-PID)
and neural network based multi-loop PID strategy (Neural Net
Adaptive-PID) for the control of multivariable system. The first
method combines the output of multiple linear PID controllers,
each describing process dynamics at a specific level of operation.
The global output is an interpolation of the individual multi-loop
PID controller outputs weighted based on the current value of the
measured process variable. In the second method, neural network
is used to calculate the PID controller parameters based on the
scheduling variable that corresponds to major shift in the process
dynamics. The proposed control schemes are simple in structure with
less computational complexity. The effectiveness of the proposed
control schemes have been demonstrated on the CSTR process,
which exhibits dynamic non-linearity.

Keywords—Multiple-model Adaptive PID controller, Multivariable
process, CSTR process.

I. INTRODUCTION

PROPORTIONAL-Integral-Derivative (PID) controllers
have been used extensively in the chemical industries

since they are simple, are often effective and represent the
basic building blocks available in many process control sys-
tems. For control application, multi-loop PID controllers are
often preferred to the multivariable approach at regulatory
level. Many plants have older or ”legacy” control systems that
do not possess the capabilities to support the implementation
of complex multivariable controllers. In that case, it may be
quite simple and easy to implement the multi-loop PID control
algorithm, as compared to multivariable control schemes.

In the paper [4], a predictive control strategy based on
neuro-fuzzy (NF) model of the plant is applied to continuous
stirred tank reactor (CSTR) which is a highly nonlinear pro-
cess. In this article, and the way in which the NF model can be
used to predict the behavior of the CSTR process over a certain
prediction horizon are described, and some comments about
the optimization procedure are made. An optimizer algorithm
based on evolutionary programming technique (EP) uses the
predicted outputs and determines the input sequence in a time
window. The present optimized input is applied to the plant,
and the prediction time window shifts for another phase of
plant output and input estimation.

In the paper [5], an adaptive neural network controller
for the control of nonlinear dynamical system is proposed.

R. vinodha is with the Department of Electrionics and Instumentation
Engineering, Annamalai University, India, e-mail: vinodhacdm@yahoo.com.

J. prakash is with the Department of Electrionics and Instumentation
Engineering, Anna University, India, e-mail: prakaiit@rediffmail.com.

Manuscript received 2009

This approach is adaptive in structure, and unlike standard
adaptive controllers, uses no explicit model of the process in
the design. Traditional neural networks are not practical in
adaptive environments because of the large number of weights
normally associated with them. In this proposed structure, the
controller network has very few connection weights and hence
is well suited for real-time implementation.

In the work suggested by Danielle and Cooper [6] a
multiple-model adaptive strategy is followed to maintain the
performance of the controller over a wide range of operating
levels for processes that are stationary in time, but nonlinear
with respect to operating levels. The technique involves de-
signing and combining multiple linear DMC controllers. Each
controller has their own step response model that describes the
process dynamics at a specific level of operation. Then finally,
global controller output forwarded to the final control element
is obtained by interpolation between the individual controller
outputs based on the values of the measured process variables.

Even though powerful artificial intelligence based control
schemes have been implemented for such processes, we intend
to design and compare the performance of different Adaptive
schemes namely Multiple model based Adaptive multi-loop
PID [MM Adap-PID] control scheme and neural network
based multi-loop PID [NN Adap-PID] control scheme, favor-
ing less computational complexity in existing PID controller
to suit industrial requirements.

The organization of the paper is as follows. Section II
discusses about the Multiple-model Adaptive Multi-loop con-
troller design and Neural network Adaptive controller design,
CSTR process is explained in section III and adaptive strate-
gies followed in multi-loop PID control of CSTR process are
discussed in section IV and V. Simulation studies are discussed
in section VI and the conclusion drawn from the simulation
studies in section VII.

II. CONTROLLER DESIGN PROCEDURE

A. Design of Multiple Model Adaptive [MM Adap-PID] Con-
troller

The multiple-model based control system consists of a fam-
ily of controllers (Local Linear Controllers) and a scheduler.
At each sampling instant the scheduler will assign weights
for each controllers and the weighted sum of the outputs will
be applied as input to the plant. The scheduler will make its
decision on the basis of a number of different variables such
as state variables, process inputs, measured disturbances and
auxiliary variables. The design procedure is discussed with
respect to a 2x2 multivariable process.
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(i) Selection of operating points to cover the entire process
operating range: Let yj be the selected n operating points for
all j = 1 to n.

(ii) Selection of scheduling variable and weight calculation:
For each operating point yj , for all j =1 to n, the weights
are calculated based on ymeas, which is the actual value of
the measured process variable at the current sampling instant,
using the algorithm as
(If ymeas≤y1),then
For i=1 to n
If (i=1), then Wi=1
If (i �=1), then Wi=0
end
For j=1 to n-1
If yj≤ymeas≤yj+1, then
For i = n to 1

If(i = j + 1), thenWi =
ymeas − yj

yj+1 + yj

If (i=j), then Wi=1-Wi+1

If (i�=j), then Wi=0
end
end
For i=1 to n
If (i=n), then Wi=1
If (i �=1), then Wi=0
end
The weighting factors are in the range of [0 1].

(iii) Calculation of adaptive controller output change:
The adaptive controller output change for the two control vari-
ables namely �uadap and �vadaprespectively is a weighted
average of each linear controller output change �ui and �vi

as given in equation (1).

�uadap =
n∑

i=1

Wi�ui;�vadap =
n∑

i=1

Wi�vi (1)

In equation (1), Wi is a weighting factor and n represents
number of linear PID controllers used to control the nonlinear
system.
(iv) Calculation of local controller output:
The change in controller outputs at each operating point is the
standard PID control in velocity form algorithm and is given
in equation (2).

�ui(k) = kc1,i(e1(k) − e1(k − 1)) +
kc1,iT

Tr1,i
e1(k)

+
kc1,iTd1,i

T
(e1(k) − 2e1(k − 1) + e1(k − 2))

�vi(k) = kc2,i(e2(k) − e2(k − 1)) +
kc2,iT

Tr2,i
e2(k)

+
kc2,iTd2,i

T
(e2(k) − 2e2(k − 1) + e2(k − 2)) (2)

In equation (2), e1 and e2 are error in loop1 and loop2
respectively, T is the sampling time,kc1,i, kc2,i, Tr1,i, Tr2,i

and Td1,i, Td2,i are the proportional gains, integral time values
and derivative time values of the ith multiloop PID controller
determined using standard optimal PID tuning methods.
(v) Calculation of global controller output:
The global multi-loop PID controller output for the two
variables is calculated as

u(k) = u(k − 1) + �uadap

v(k) = v(k − 1) + �vadap (3)

B. Design of Neural Network Adaptive [NN Adap-PID] Con-
troller

The Neural network Adaptive PID controller consists of a
set of neurons linked through suitable activation functions to
assign proper weights between the net. The net is trained with
suitable scheduling variable as input and controller parameters
as the output. At each sampling instant based on the value of
the scheduling variable, controller parameters are calculated.

III. CONTINUOUS STIRRED TANK REACTOR
(CSTR)

The first principles model of the continuous stirred tank
system and the operating point data (Refer Table.I) as specified
in the Pottman and Seborg paper has been used in the
simulation studies [3]. Highly non-linear CSTR process is
very common in chemical and petrochemical plants. In the
process considered for simulation study (as shown in Fig.1),
an irreversible, exothermic reaction A→ B occurs in constant
volume reactor that is cooled by a single coolant stream.

The CSTR system has two state variables, namely the
reactor temperature and the reactor concentration. The process
is modeled by the following equations:

dCA(t)
dt

=
q(t)
V

(CA0(t) − CA(t)) − k0CA(t)exp(
−E
RT (t)

) (4)

dT (t)
dt

=
q(t)
V

(T0(t) − T (t)) − (−�H)k0CA(t)
ρCp

∗ exp( −E
RT (t)

)

+
ρcCpc

ρCpV
∗ qc(t) ∗ (1 − exp

−hA
ρCpqc(t)

) ∗ (Tc0(t) − T (t)) (5)

The state x(t) and input u(t) vectors are given by x(t)=[CA ;
T] and u(t)=[q ; qc]. The continuous linear state space model
is obtained by linearizing the differential equations (4 and
5) around the nominal operating point CAS and TS . The
objective of the proposed work is to control the essential CSTR
variables namely the concentration and Temperature.
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Fig. 1. CSTR Process

TABLE I
STEADY STATE OPERATING DATA

Process variable Normal operating condition

Measured product concentration (CA) 0.0989 mol/ l

Reactor temperature (T) 438.7763 K

Coolant flow rate (qc) 103 l/ min

Process flow rate (q) 100.0 l/ min

Feed concentration (CA0) 1 mol/ l

Feed temperature (T0) 350.0 K

Inlet coolant temperature (Tc0) 350.0 K

CSTR volume (V) 100 l

Heat transfer term (hA) 7 ∗ 105 cal/ (min.k)

Reaction rate constant(k0) 7.2 ∗ 1010 min−1

Activation energy term (E/R) 1 ∗ 104 K

Heat of reaction (-�H ) -2 ∗ 105 cal/ mol

Liquid density (ρ, ρc) 1 ∗ 103 g/l

Specific heats(Cp, Cpc) 1 cal/ (g.k)

TABLE II
OPERATING POINTS

operating points q (lpm) qc (lpm) CA (mol/l) T (K)
Operating point 1 102 97 0.0762 444.7
Operating point 2 100 103 0.0989 438.77
Operating point 3 98 109 0.1275 433

IV. MM ADAP-PID CONTROLLER FOR CSTR
PROCESS

In this subsection, design of multi-loop PID controllers on
the basis of linear models developed at different operating
points and the method to combine the multi-loop PID con-
troller outputs to yield a global controller output has been
outlined. In this work we have intended to interpolate three
multi-loop PID controllers.The transfer function matrix at
selected operating point is as follows.

At operating level 1

G(s) =
( 0.0092s−0.0241

s2+5.8359s+16.9521
0.0448

s2+5.8359s+16.9521−0.947s−10.0538
s2+5.8359s+16.9521

−0.9413s−12.5760
s2+5.8359s+16.9521

)

At operating level 2

G(s) =
( 0.0090s−0.0244

s2+2.7792s+11.1625
0.0412

s2+2.7792s+11.1625−0.8878s−7.4215
s2+2.7792s+11.1625

−0.8878s−8.8960
s2+2.7792s+11.1625

)

Fig. 2. MM Adap-PID Control Scheme for CSTR Process

At operating level 3

G(s) =
( 0.0087s−0.0236

s2+0.628s+6.9612
0.0375

s2+0.628s+6.9612−0.83s−5.3028
s2+0.628s+6.9612

−0.82s−6.3148
s2+0.628s+6.9612

)

The weights are calculated with measured concentration
using the algorithm described in section II. In this work,
reactor concentration is controlled based on coolant flow rate
and temperature is controlled by feed flow rate as directed
by RGA matrix by Bristol in [2]. The reactor concentration
versus coolant flow rate is in the form

G1,i(s) =
kp1,i

s2 + 2δiωn,is+ 1
∀i = 1to3 (6)

The IMC based PID tuning procedure proposed in [1]and
[2] will yield the following controller parameters:

Kc1,i =
2δi

ωn,iKp1,iλ1
;Tr1,i =

2δi
ωn,i

;Td1,i =
1

2δiωn,i
(7)

The temperature versus feed flow rate is in the form

G2,i(s) =
kp2,i(−βis+ 1)
s2 + 2δiωn,is+ 1

∀i = 1to3 (8)

The IMC based PID tuning procedure will yield the follow-
ing controller parameters:

Kc2,i =
2δi

ωn,iKp2,i(βi + λ2)
;Tr2,i =

2δi
ωn,i

;Td2,i =
1

2δiωn,i
(9)

The PID controller’s parameters at three different operating
points have been reported in Table III. It should be noted that
the controller gain has been found to be function of the filter
time constant lamda (λ1 and λ2). The lamda values chosen
here are λ1 =3 and λ2=14.
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TABLE III
PID CONTROLLER’S PARAMETERS AT THREE DIFFERENT

OPERATING POINTS

operating points Region1 Region2 Region3
At q=102 At q=100 At q=98
qc=97 qc=103 qc=109
CA=0.0762 CA=0.0989 CA=0.1275
T=444.7 T=438.7763 T=433

Damping factor(δ) 0.7087 0.416 0.119
frequency (rad/sec)(ωn) 100 103 0.0989

kc1
132
λ1

67.32
λ1

16.7
λ1

kc2
0.5804

0.0943+λ2
0.3746

0.1196+λ2
0.1184

0.1093+λ2
Tr1,i=Tr2,i=Ti 0.3443 0.249 0.09
Td1,i=Td2,i=Td 0.171 0.35 1.5925

Fig. 3. NN Adap-PID Control Scheme for CSTR Process

V. [NN ADAP-PID] CONTROLLER FOR CSTR
PROCESS

The dynamic feed forward Back Propagation neural
network is used. The network is trained with process
parameters namely kp1, kp2, Ti and Td for wide concentration
range CA. The structure of the feed-forward neural network
and its training parameters are reported in Table IV.
The training of the feed-forward neural network has been
achieved using the commands available in the neural network
toolbox of MATLAB. After training, the neural network model
is directly tested on non-linear process and performance is
validated. The neural network shown in Fig.3 accepts the
scheduling variable (CA) as input and computes the controller
parameters namely controller gain kc1, integral time Ti and
derivative time Td to adapt loop1 controller. Similarly the
controller parameters namely controller gain Kc2, integral
time Ti and derivative time Td to adapt loop2 controller
are also calculated at every instant based on the scheduling
variable. Since the denominator of the characteristic equation
is same for both the loops as evident from the transfer
function models given in section IV, integral time Ti and
derivative time Td are same for the loops.

TABLE IV
[NN ADAP-PID] CONTROLLER FOR CSTR PROCESS

Neural Network Training
Parameter

Specification

Number of Input neuron
in the Input layer

4-Controller gain Kc1, Kc2, Inte-
gral Time Ti and derivative time
Td

Number of Hidden neuron
in the Hidden layer

10

Initial weight selection Nguyen-Widrow criterion
Activation function HiddenLayer: Tansigmoidal
Training Algorithm Levenberg-Marquardt optimiza-

tion algorithm
Objective Function Mean square error:1.24258e-007

Number of epoch: 500

Fig. 4. Servo response of CSTR Process

VI. SIMULATION RESULTS
In all the simulation runs, the process is simulated using

the nonlinear first principles model given in equation(4) and
(5)and the true state variables (Concentration and Temper-
ature) are computed by solving the nonlinear differential
equations using differential equation solver in Matlab 7.0. The
entire simulation has been performed with the following initial
conditions: CA = 0.0989 mol/lit; Qc = 103 lit/min; q = 100
lit/min; T = 438.7763oK.

A. Servo Response

In order to assess the tracking capability of designed con-
trollers, setpoint variations in concentration as given in Fig.
4 and setpoint variations in temperature as given in Fig. 5
have been introduced. From the responses it can be inferred
that, both the controllers designed for the CSTR process are
able to maintain the variables concentration and temperature
at the desired setpoints. The variation in controller outputs
is presented in Fig.4 and Fig.5. The observations of the
simulation studies are as follows.

As the setpoint namely concentration is changed from
0.0989 mol/l to 0.1275 mol/l, 0.1275 mol/l to 0.0989 mol/l
and 0.0989 mol/l to 0.0762 mol/l, both MMAdap-PID and
NNAdap-PID tracks the setpoint variations. NNAdap-PID
settles faster when setpoint transition is from 0.0989 mol/l
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Fig. 5. Servo response of CSTR Process

to 0.1275 mol/l and 0.1275 mol/l to 0.0989 mol/l. MM Adap-
PID settles faster when setpoint transition is from 0.0989 mol/l
to 0.0762 mol/l[Refer Fig.4]. Similarly as the setpoint namely
temperature is changed from 438.77 oK to 433 oK, 433 oK to
438.77 oK and 438.77 oK to 444.7 oK, both MMAdap-PID
and NNAdap-PID tracks the setpoint variations. NNAdap-PID
settles faster when setpoint transition is from 438.77 oK to
433oK and 433 oK to 438.77 oK. MM Adap-PID settles faster
when setpoint transition is from 438.77 oK to 444.7 oK [Refer
Fig.5]. Further, it is evident that the manipulated variables
variation namely the coolant flow rate and feed flow rate are
found to be smooth in both NN Adap-PID and MMAdap-PID
controllers [Refer Fig.4 and Fig.5]. The ISE values are given
in Table V.

B. Servo Regulatory Response

The disturbance rejection capabilities of the controllers
have been analyzed in the presence of step change in the
inlet temperature. A step change in the inlet temperature of
magnitude 1oK (from 350oK to 349oK) has been introduced at
150th sampling instant and maintained up to 300th sampling
instant. At 150th sampling instant [Refer Fig.6 and Fig.7],
it can be inferred that both the controllers (MMAdap-PID,
NNAdap-PID) are able to reject the disturbance quickly and
bring the process variables (concentration and temperature)
back to their respective setpoints. This part of the simulation
demonstrates that both the controllers are able to reject the
disturbance at nominal operating point.

The ISE values are given in Table VI. From the ISE values,
the NN Adap-PID is better than MM Adap-PID controller
for servo regulatory operation. With the disturbance being
present, a step change in the setpoint has been introduced
at 225th sampling instant and it can be noted that both the
controllers are able to maintain the controlled variables at
their setpoints. At 300th sampling instant the disturbance
has been removed and both controllers are able to maintain
the controlled variables at their setpoints. This part of the
simulation demonstrates that both the controllers are able to

Fig. 6. Servo regulatory response of CSTR Process

Fig. 7. Servo regulatory response of CSTR Process

TABLE V
ISE VALUES - SERVO RESPONSE

MM Adap-PID NN Adap-PID
Sampling Intervals Loop1 Loop2 Loop1 Loop2

1:10 8.26924e−4 33.807 8.2443e−4 32.549
11:100 0.0054 202.615 0.0033 107.097
101:225 0.0057 244.141 0.0042 178.098
226:350 0.0019 132.218 0.0020 141.973

TABLE VI
ISE VALUES - SERVO REGULATORY RESPONSE

MM Adap-PID NN Adap-PID
Sampling Intervals Loop1 Loop2 Loop1 Loop2

1:10 8.26924e−4 33.807 8.2443e−4 32.549
11:100 0.0054 202.615 0.0033 107.097
101:225 0.0084 346.756 0.0066 270.514
226:350 0.0022 149.28 0.0021 139.800

reject the disturbance at shifted operating point.
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VII. CONCLUSION

In this paper the authors have proposed two simple control
schemes to control the variables concentration and temperature
of the CSTR process. The two controllers designed use the
same control law and differ only in the calculation of controller
parameters. From the extensive simulation studies, it can be
concluded that the proposed controllers have good setpoint
tracking, disturbance rejection at nominal and shifted operating
points. Further, it can be concluded that the servo regulatory
performance of NN Adap-PID is found to be better than MM
Adap-PID.
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