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Abstract—Stability of functionally graded beams with 

piezoelectric layers subjected to axial compressive load that is 
simply supported at both ends is studied in this paper. The 
displacement field of beam is assumed based on first order shear 
deformation beam theory. Applying the Hamilton's principle, the 
governing equation is established. The influences of applied 
voltage, dimensionless geometrical parameter, functionally graded 
index and piezoelectric thickness on the critical buckling load of 
beam are presented. To investigate the accuracy of the present 
analysis, a compression study is carried out with a known data. 
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I. INTRODUCTION 
TRUCTURAL stability is considered to be one of the 
most important engineering issues in the design and 
application of slender structures. Buckling and 

postbuckling are the two main types of structural instability, 
they often govern the failure of structures under static or 
dynamic compressive loading conditions, thus, have been 
investigated by several researchers in the past decades. 
Dynamic buckling and postbuckling phenomena are directly 
dependent on the dynamic loading velocity characteristics 
and the duration of the impacting load, as well as on the 
material’s inherent properties and the structure’s geometry 
[1–3]. The buckling behavior of composite beams and plates 
with piezoelectric patches bonded to their surfaces or with 
piezoelectric layers embedded has been the subject of a 
number of investigations [4–6]. 

Piezoelectric materials have been used in the past few 
years in a variety of applications ranging from active control 
to noise suppression. Their lightweight, relatively low cost, 
small size and good frequency response make them an 
attractive alternative to conventional point actuators 
commonly used. In all these applications, piezoelectric 
actuators are used to enhance the performance of a structural 
system by inducing a favorable structural deformation. 
Detailed models on the iteration between piezoelectric 
sensors or actuators with the structure to which they are 
bonded or embedded have been developed [7–9]. The use of 
finite element method in the analysis of piezoelectric 
coupled structures has been studied [10–13].  
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Crawley and de Luis [14] developed the analytical model 
for the static and dynamic response of a beam structure with 
segmented piezoelectric actuators either bonded or 
embedded in a laminated composite.  
LaPeter and Cudney [15] proposed an analytic model for the 
segmented piezoelectric actuators bonded on a beam or a 
plate, and found the equivalent forcing functions of the 
actuators. The piezoelectric bimorph column structures were 
used as sensing elements. 

Dobrucki and Pruchnicki [16] presented an analysis 
theory of an axisymmetric piezoelectric bimorph. They also 
described a sensing theory for using the axisymmetric 
piezoelectric bimorph. Chandrashekhara and Bhatia [17] 
developed a finite element model for the active buckling 
control of laminated composite plates with surface bonded or 
embedded piezoelectric sensors that are either continuous or 
segmented. The dynamic buckling behavior of the laminated 
plate subjected to a linearly increasing compression load is 
investigated in their work. Chase and Bhashyam [18] 
derived optimal design equations to actively stabilize 
laminated plates loaded in excess of the critical buckling 
load using a large number of sensors and actuators. Such 
work finds application in aircraft wing skins.  

To the author's knowledge, there is no analytical solution 
available in the open literatures for stability of functionally 
graded Engesser-Timoshenko beams with piezoelectric 
layers. In the present work, the stability of a functionally 
graded Engesser-Timoshenko beam with piezoelectric 
actuators subjected to axial compressive loads is studied. 
Appling the Hamilton's principle, the equilibrium equations 
of beam are derived and solved. The effects of the applied 
voltage, dimensionless geometrical parameter and 
functionally graded index on the critical buckling load of 
beam are presented. To investigate the accuracy of the 
present analysis, a compression study is carried out with a 
known data. 

 
II. FORMULATION 

The formulation that is presented here is based on the 
assumptions of Engesser-Timoshenko beam theory. Based 
on this theory, the displacement field can be written as [20]: 
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In view of the displacement field given in Eqs. (1), the 

strain displacement relations are given by [20]:  
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Consider a functionally graded beam with piezoelectric 

actuators and rectangular cross-section as shown in   Fig. 1. 
The thickness, length, and width of the beam are denoted, 
respectively, by , , Lh and .b  Also, Th  and Bh  are the 
thickness of top and bottom of piezoelectric actuators, 
respectively. The yx −  plane coincides with the midplane of 
the beam and the −z axis located along the thickness 
direction.  

 
 

Fig. 1 Schematic of the problem studied. 
 
  

The Young's modulus E  is assumed to vary as a power 
form of the thickness coordinate variable )2/2/(  hzhz ≤≤−  
as follow [19]: 
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where k  is the power law index and the subscripts m  and c  
refer to the metal and ceramic constituents, respectively. The 
constitutive relations for functionally graded Engesser-
Timoshenko beam with piezoelectric layers are given by 
[21]: 
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where 
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where )(Q, , 11 zxzxx σσ  and )(Q55 z are the normal ,shear 

stresses and plane stress-reduced stiffnesses and  1531 ,ee  
are piezoelectric elastic stiffnesses respectively. Also, u and 
w  are the displacement components in the −x  and 
−z directions, respectively. 

The potential energy can be expressed as [20]:  
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Substituting Eqs. (2)-(4) into Eq. (6) and neglecting the 
higher-order terms, we obtain 
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The width of beam is assumed to be constant, which is 

obtained by integrating along y over .v Then Eq. (7) 
becomes 
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where A and D  are the shear rigidity and  flexural rigidity 
respectively. Note that, no residual stresses due to the 
piezoelectric actuator are considered in the present study and 
the extensional displacement is neglected. Thus, the 
potential energy can be written as 
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where TV  and BV  are the applied voltages on the top and 

bottom actuators respectively. The beam is subjected to the 
axial compressive loads, P as shown in Fig. 2. 
 
 

 
Fig. 2 Simply supported beam under periodic loads. 

 
The work done by the axial compressive load can be 
expressed as [20]: 
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We apply the Hamilton's principle to derive the equilibrium 
equations of beam, that is [21]: 
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Substitution from Eqs. (10) and (11) into Eq. (12) leads to 

the following equilibrium equations of the functionally 
graded Engesser-Timoshenko beam with piezoelectric layers  
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The boundary conditions for the pin-ended Timoshenko 

column are given by: 
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Substituting Eq. (14) into (13) and by equating power-law 
index to zero and neglecting the piezoelectric effect, the 
critical Engesser-Timoshenko buckling load of a 
homogeneous beam will be derived, that is:  
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The above equation has been reported by Wang and 

Reddy [20]. 

III.  NUMERICAL RESULTS 
The mechanical buckling behaviors of simply supported 

functionally graded Engesser-Timoshenko beams with 
piezoelectric actuators are studied in this paper. It is assumed 
that both the top and bottom piezoelectric layers have the 
same thickness; BT hh =  and the same voltages are applied to 
both actuators. The material properties of the beam are listed 
in Table 1. 

 
TABLE I MATERIAL PROPERTIES 

FGM layer Piezoelectric 
layer Property 

Nickel Stainless 
steel   

  
223.95 

        
221.04       63 

Young's modulus 
(GPa)  E  

0.3             
0.3         0.3 Poisson's ratio ν  

0.3             
0.3         0.3 Length (m)  L  

  0.01             
0.01 

        
0.00005 Thickness (m)  h  

8900       8166   7600 Density  )(Kgm  -3ρ  

- -       17.6 
Piezoelectric constant  

)(Cm    , -2
1531 ee 

 
The Poisson’s ratio is chosen to be 0.3 for both materials. 

The critical buckling loads for Bernoulli-Euler beam (BEB) 
and Engesser-Timoshenko beam (ETB) evaluated 
considering of 1.0/ =hha , 1/ =hb , 1=L ,   v10=V  and 
several values of dimensionless geometrical parameter Lh /  
are shown in Fig. 3. It is seen that the critical buckling loads 
for Engesser-Timoshenko beam are generally lower than 
corresponding values of Bernoulli-Euler[22] beam. Fig. 4. 
demonstrates the buckling loads for functionally graded 
Engesser-Timoshenko beam. It is seen that the critical 
buckling loads for Engesser-Timoshenko beam increased 
with an increase of the ratio Lh /  and decreased with an 
increase of power-law index of constituent volume fraction. 
The variation of critical buckling loads for Engesser-
Timoshenko beam versus Lh /  for different applied voltage 
is shown in Fig. 5.  

 
Fig. 3. Comparison of the Critical Buckling Load of FG Beam with 

Piezoelectric Actuators Versus Lh / . 
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Fig. 4. Critical Buckling Load of FG Beam with Piezoelectric 
Actuators Versus Lh / for   v10=V . 

 

 
 

Fig. 5. Effect of Applied Voltage on the Critical Buckling Load of 
FG Beam with Piezoelectric Actuators. 

 
 

IV.  CONCLUSION 
The stability of a functionally graded Engesser-

Timoshenko beam with piezoelectric actuators subjected to 
axial compressive loads is studied. It is conclude that: 
 

1- The piezoelectric actuators induce tensile 
piezoelectric force produced by applying negative 
voltages that significantly affect the stability of the 
functionally graded Engesser-Timoshenko beam 
with piezoelectric actuators. 

2- The critical buckling loads of FG Engesser-
Timoshenko beam are generally lower than 
corresponding values for the homogeneous 
Engesser-Timoshenko beam. 

3- The critical buckling loads of FG Engesser-
Timoshenko beam under axial compressive load 
generally increases with the increase of relative 
thickness Lh / .  

4- The accuracy of Engesser-Timoshenko beam theory 
is more than Bernoulli-Euler beam theory. 
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