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The Sizes of Large Hierarchical Long-Range
Percolation Clusters

Yilun Shang

Abstract—We study a long-range percolation model in the hierar-
chical lattice ΩN of order N where probability of connection between
two nodes separated by distance k is of the form min{αβ−k, 1},
α ≥ 0 and β > 0. The parameter α is the percolation parameter,
while β describes the long-range nature of the model. The ΩN is
an example of so called ultrametric space, which has remarkable
qualitative difference between Euclidean-type lattices. In this paper,
we characterize the sizes of large clusters for this model along the
line of some prior work. The proof involves a stationary embedding
of ΩN into Z. The phase diagram of this long-range percolation is
well understood.

Keywords—percolation, component, hierarchical lattice, phase
transition.

I. INTRODUCTION

PERCOLATION theory in the Euclidean lattice Z
d started

with the work of Broadbent and Hammersley in 1957.
The infinity of the space of vertices and its geometry are
principal features of this model; see e.g. [11] and references
therein. Some questions of percolation in other non-Euclidean
infinite systems is formulated in [4]. The study of long-
range percolation on Z

d traces back to [15] and leads to a
range of interesting results in probability theory and statistical
physics [1], [5], [6], [8], [18], [21]. On the other hand,
hierarchical structures have been used in applications in the
physics, genetics and social sciences thanks to the multi-scale
organization of many natural objects [3], [13], [19], [20].

Recently, long-range percolation is studied on the hierar-
chical lattice ΩN of order N (to be defined below), where
classical methods for the usual lattice break down. The asymp-
totic long-range percolation on ΩN is addressed in [10] for
N → ∞. The work [9], [12], [16] and [17] analyze the
phase transition of long-range percolation on ΩN for finite
N using different connection probabilities and methodologies.
The contact process on ΩN for fixed N has been investigated
in [2]. In this paper, we investigate the sizes of large connected
components (or clusters) in the resulting percolation graph on
ΩN for fixed N . The form of the connection probabilities used
here follow from a prior work [16].

For an integer N ≥ 2, we define the set

ΩN :=
{

x = (x1, x2, · · · ) : xi ∈ {0, 1, · · · , N − 1},

i = 1, 2, · · · ,
∞∑
i=1

xi <∞
}
, (1)

Y. Shang is with the Department of Mathematics and Institute of Complex
Systems, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:
shylmath@hotmail.com, shyl@sjtu.edu.cn

Manuscript received May 10, 2009; revised July 21, 2010.

and define a metric d on it:

d(x,y) =
{

0, x = y,
max{i : xi �= yi}, x �= y.

(2)

The pair (ΩN , d) is referred to as the hierarchical lattice of
order N , which may be thought of as the set of leaves at
the bottom of an infinite regular tree without a root, where
the distance between two vertices is the number of levels
(generations) from the bottom to their most recent common
ancestor. Figure 1 shows the lattice Ω2 along with its metric
generating tree.

Such a distance d satisfies the strong triangle inequality

d(x,y) ≤ max{d(x, z), d(z,y)}, (3)

for any triple x,y, z ∈ ΩN . Hence, (ΩN , d) is an ultrametric
(or non-Archimedean) space [14]. From its ultrametricity, it is
clear that for every x ∈ ΩN there are (N − 1)Nk−1 vertices
at distance k from it.

Now consider a long-range percolation on ΩN . For each
k ≥ 1, the probability of connection between x and y such
that d(x,y) = k is given by

pk = min
{
α

βk
, 1
}
, (4)

where 0 ≤ α < ∞ and 0 < β < ∞, all connections being
independent. Two vertices x,y ∈ ΩN are in the same cluster
if there exists a finite sequence x = x0,x1, · · · ,xn = y

of vertices such that each pair (xi−1,xi), i = 1, · · · , n, of
vertices presents an edge.

The rest of the paper is organized as follows. In Section 2,
we provide the main results and Section 3 is devoted to the
proofs.

II. MAIN RESULTS

Let N be the non-negative integers including 0, and denote
by � := min{k ∈ N : α ≤ βk+1}. Let |S| be the size of
a set S. The connected component containing the node x ∈
ΩN is denoted by C(x). Since, for every node x, |C(x)| has
the same distribution, it suffices to consider only |C(0)|. The
percolation probability is defined as

θ(α, β) := P (|C(0)| = ∞), (5)

and the critical percolation value is defined as

αc(β) := inf{α ≥ 0 : θ(α, β) > 0}. (6)

The following theorem characterizes the phase transition for
this model.
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Fig. 1. An illustration of hierarchical lattice Ω2 of order 2. The distances between three vertices 0 = (0, 0, 0, · · · ), x = (1, 0, 0, · · · ) and y = (0, 1, 0, · · · )
are d(0,x) = 1 and d(0,y) = d(x,y) = 2.

Theorem 1. ([16])
(i) If β ≤ N , then αc(β) = 0;

(ii) If N < β < N2, then 0 < αc(β) <∞;
(iii) If β ≥ N2, then αc(β) = ∞.

The uniqueness of infinite component is established in the
following result.
Theorem 2. ([17]) For 0 ≤ α <∞ and 0 < β <∞, there
is at most one infinite component almost surely.

Before presenting our main result, we give some notations.
For any vertex x ∈ ΩN , define Br(x) the ball of radius r
around x, that is, Br(x) = {y : d(x,y) ≤ r}. From this
definition we make the following observations. Firstly, for any
x ∈ ΩN , Br(x) contains Nr vertices. Secondly, Br(x) =
Br(y) if d(x,y) ≤ r. Finally, for any x, y and r, we either
have Br(x) = Br(y) or Br(x) ∩Br(y) = ∅.

For a set S of vertices, denote by S̄ = ΩN\S its comple-
ment. Let Cn(x) be the cluster of vertices that are connected
to x by a path using only vertices within Bn(x). For disjoint
sets S1, S2 ⊆ ΩN , we denote by S1 ↔ S2 the event that at
least one edge joins a vertex in S1 to a vertex in S2. S1 �↔ S2
means the event that such an edge does not exist. Let Cmn (x)
be the largest clusters in Bn(x). If there are more than one
such clusters, just take any one of them as Cmn (x). It is clear
that |Cmn (x)| = maxy∈Bn(x) |Cn(y)|. Our main result is the
following.
Theorem 3. Suppose that α and β are such that θ :=
θ(α, β) > 0, i.e., 0 < β < N2. Therefore, for every ε > 0,

lim
k→∞

P (|Cmk (0)| > (θ − ε)Nk) = 1. (7)

III. PROOF OF THEOREM 3
In this section, we provide the complete proof of Theorem

3, which is similar to that of Theorem 5 in [12]. We will need
the following lemmas.
Lemma 1. For any constant K > 0,

1{{|C(0)|=∞}∩{|Cn(0)|<K(β/N)n}} → 0, (8)

almost surely as n→ ∞.

Proof. By multiplication principle, we only need to show that
the conditional probability

P

(
|C(0)| = ∞

∣∣∣∣∣∣∣∣
{
n ∈ N : |Cn(0)| ≤ K

(
β

N

)n}∣∣∣∣ = ∞
)

= 0. (9)

First, we assume that β > N . Let n1 be the smallest n
for which Cn(0) ≤ K(β/N)n. If Cni

(0) �↔ Bni
(0), then

ni+1 = ni. If Cni(0) ↔ Bni(0), then ni+1 is the smallest
n > ni such that Cni(0) �↔ Bn(0) and |Cn(0)| ≤ K(β/N)n.

Note that |Cni
(0)| ≤ K(β/N)ni , and then we have

P (Cni(0) ↔ Bni(0))

≤ P

(
Cni(0) ↔ Bni(0)

∣∣∣∣|Cni(0)| =
⌊
K

(
β

N

)ni
⌋)

= 1

−
∞∏

j=ni+1

(1 − min{αβ−j , 1})K(β/N)ni (N−1)Nj−1
(10)

If ni + 1 ≤ �, then we have a trivial bound, i.e., the above
probability less than 1. If ni + 1 > �, then

P (Cni(0) ↔ Bni(0))

≤ 1 −
∞∏

j=ni+1

(1 − αβ−j)K(β/N)
ni (N−1)Nj−1

< 1

− exp
{
− 1
βjα−1 − 1

(
K

(
β

N

)ni

(N − 1)N j−1
)}

< 1 − exp
{
−αK N − 1

β −N

}
, (11)

involving the inequality exp
(
− 1
x−1

)
< 1− 1

x as in [16]. The
right-hand side of (11) is strictly less than 1 and is independent
of ni. Recall that {Cni

(0) ↔ Bni
(0)}i≥1 are independent
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events. If there are infinitely many different ni, then there
must be some ni for which {Cni

(0) �↔ Bni
(0)} holds. If

there are only finitely many different ni, then by definition
the same thing holds. The above comments clearly yield (9)
for any β > N . By monotonicity, we know that (9) holds for
any 0 < β < N2. �

Lemma 2. For any constant K > 0. The fraction of the
vertices in Bn(0) which are in a cluster of size at least
K(β/N)n, converges to θ almost surely as n→ ∞.

Proof. First assume that β > N . We will use the random
embedding of the hierarchical lattice in Z [17]. From the
ergodic theorem we obtain for any k > 0,

1
2Nn + 1

Nn∑
x=−Nn

1{∩∞
j=k{|Cj(x)|>K(β/N)j}}

→ P (∩∞
j=k{|Cj(x)| > K(β/N)j}), (12)

almost surely as n→ ∞.
By virtue of Lemma 1, the right-hand side of (12) increases

to θ as k → ∞. Hence, we have

A(n) :=
1

2Nn + 1

Nn∑
x=−Nn

1{|Cn(x)|>K(β/N)n} → θ, (13)

almost surely as n → ∞. By our construction in [17],
the collection vertices {−Nn,−Nn + 1,−Nn + 2, . . . , Nn}
contains the image under the embedding of the ball Bn(0)
and this image contains a fraction Nn/(2Nn + 1) of those
vertices. The events {|Cn(x)| > K(β/N)n} are independent
for vertices in different n-balls, and then

A1(n) :=
1

2Nn + 1

∑
x∈Bn(0)

1{|Cn(x)|>K(β/N)n} (14)

and A2(n) := A(n) −A1(n) are independent.
It is easy to see that A1(n) and A2(n) are bounded above by

1 and have asymptotically the same mean. By (13) we obtain
that

1
Nn

∑
x∈Bn(0)

1{|Cn(x)|>K(β/N)n} → θ, (15)

almost surely as n → ∞ for β > N . When β ≤ N , we
have θ = 1 by Theorem 1. It is direct to check that the above
derivations still hold. �

Proof of Theorem 3. From Lemma 2 we have for every K > 0
and ε > 0

P

(∣∣∣∣
{
x ∈ Bn(0) : |Cn(x)| > K

(
β

N

)n}∣∣∣∣ > (θ − ε)Nn

)
> 1 − ε, (16)

for n large enough. A ball Bn(y) is said to be good if and
only if∣∣∣∣
{
x ∈ Bn(y) : |Cn(x)| > K

(
β

N

)n}∣∣∣∣ > (θ − ε)Nn. (17)

In what follows, we condition on the event that all n-balls in
Bn+1(0) are good. The probability of this event is bounded
below by (1 − ε)N ≥ 1 −Nε.

For each good ball Bn(y), y ∈ ΩN , we make a partition
of the set

B′
n(y) :=

{
x ∈ Bn(y) : |Cn(x)| > K

(
β

N

)n}
(18)

into super vertices. For x ∈ B′
n(y) we make a partition

of Cn(x) into �|Cn(x)|/K(β/N)n�� super vertices, all of
which have size at least K(β/N)n�. Denote by Vn the
collection of super vertices that contain vertices in Bn+1(0).
For K large enough, if Bn(y) is good, then Vn contains at
least (θ − ε)Nn/2K(β/N)n� ≥ (θ − ε)Nn/(3K(β/N)n)
super vertices.

As in [12], we construct a new N -partite graph on Vn as
follows. Let Vn be the vertex set and let En be the edge sets.
Choose K(β/N)n� original vertices from every super vertex
in Vn. Choosing those vertices may be done in any way that is
independent of the presence of edges of length ≥ n+1. Denote
these sets by An. The super vertices x, y ∈ Vn are connected
by an edge if there is at least one edge in the original graph
which is present between vertices that make up the sets in
An corresponding to x and y, respectively, and if the original
vertices that make up x and y are at distance n + 1 of each
other. Otherwise, there is no edge between the super vertices.
Since β < N2, (θ − ε)Nn/(3K(β/N)n) tends to infinity as
n→ ∞. Hence, the expected degree of a vertex in Vn is larger
than

(N − 1)(θ − ε)Nn

3K(β/N)n

(
1 −

(
1 − α

βn+1

)K2(β/N)2n)

>
(N − 1)(θ − ε)Nn

3K(β/N)n

·
(

1 − exp

{
− α

βn+1
K2

(
β

N

)2n})
, (19)

which exceeds λ := (N − 1)(θ − ε)αK/(6β) for large n.
Clearly, the parameter λ can be mae large enough by choosing
K large enough.

The N -partite graph (Vn, En) is an inhomogeneous random
graphs; see [7] for backgrounds. The degree of every super ver-
tex is asymptotically Poisson distributed, with mean bounded
below by λ. The unique largest cluster of such an N -partite
graph contains a fraction η of the super vertices almost surely
as n→ ∞, where η is the largest solution of the equation

1 − η = e−λη. (20)

We can choose λ sufficiently large and η > 1− ε. Hence, for
each ε > 0 and large n, the graph (Vn, En) contains a unique
giant cluster containing a fraction (1− ε)N of the vertices in
Vn with probability at least 1 − ε.

Since we have conditioned on the event that all n-balls in
Bn+1(0) are good, the fraction of vertices in Bn+1(0) that
are part of vertices in Vn is larger than θ − 2ε. Accordingly,
conditional on the same event, the largest cluster in Bn+1(0)
is at least of size (η − ε)(θ − 2ε)Nn > (1 − 2ε)(θ − 2ε)Nn

with probability at least 1−ε. By the multiplication principle,
we have the probability that the largest cluster in Bn+1(0)
is at least of size (1 − 2ε)(θ − 2ε)Nn is bounded below by
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(1 − ε)(1 −Nε). Now, choosing ε′ < ε/max{4, N + 1}, we
finally obtain that

P (|Cmn (0)| > (θ − ε′)Nn) ≥ 1 − ε′. (21)

The proof then readily follows. �
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