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Advanced Gronwall-Bellman-Type Integral
Inequalities and Their Applications

Zixin Liu, Shu Lü, Shouming Zhong, and Mao Ye

Abstract—In this paper, some new nonlinear generalized
Gronwall-Bellman-Type integral inequalities with mixed time delays
are established. These inequalities can be used as handy tools
to research stability problems of delayed differential and integral
dynamic systems. As applications, based on these new established
inequalities, some p-stable results of a integro-differential equation
are also given. Two numerical examples are presented to illustrate
the validity of the main results.

Keywords—Gronwall-Bellman-Type integral inequalities, integro-
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I. INTRODUCTION

As an important basic tool, inequality technique is exten-
sively applied in diversity areas including global existence,
uniqueness, stability, boundary value problem, and other prop-
erties. In the past decades, various inequalities and their
generalized forms have been established, such as Halanay-type
inequality [1], [2], impulsive integral inequality [3], impulsive
differential inequalities [4], [5], and so on. As pointed out in
[6], since Gronwall-Bellman inequality provides an explicit
bound to the unknown function, it has been a powerful tool in
the study of quantitative properties and stability of solutions
of differential and integral equations. In [7]-[9], by using
Gronwall-Bellman inequality, projective or feedback neural
networks for solving program problems were investigated
and some stability criteria were obtained. Based on Riccati-
equations and Gronwall-Bellman inequality, bounded input
bounded output (BIBO) problems of delayed system were
studied in [10]. In [6], Cheung and Zhao established some new
nonlinear Gronwall-Bellman-Type inequalities. These new es-
tablished inequalities can be used to solve boundary value
problems. Recently, the research on Gronwall-Bellman-Type
inequality attracts considerable attention, and all kinds of new
generalized forms are derived in terms of various practical
applications (see [6], [11]- [15]).

However, these previous established Gronwall-Bellman-
Type inequalities can not be applied to the stability problems
of integro-differential equations with mixed time delays. For
solving this problem, it is necessary to established some new
generalized Gronwall-Bellman-Type inequalities.
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Motivated by the above discussions, the objective of this
paper is to establish some new advanced Gronwall-Bellman-
Type inequalities. Applying mathematical analysis method,
some new Gronwall-Bellman-Type inequalities with mixed
delays are established. The new inequalities generalize some
previous results. In addition, some stability results of a class of
integro-differential equations are also given by using these new
established inequalities. Finally, two numerical examples are
also provided to illustrate the validity of the proposed results.

Notations. The notations are used in our paper except where
otherwise specified. | · | denotes the Euclidean norm; ‖ · ‖
denotes a vector or a matrix norm; The notation ‖ · ‖p is used
to denote a vector norm defined by ‖·‖p =

∑n
i=1 |xi|p; ‖·‖p

Δ �
sup−∞<t≤0 |·|p, R, Rn are real and n-dimension real number
sets respectively.

II. ADVANCED GRONWALL-BELLMAN-TYPE INTEGRAL
INEQUALITIES

Theorem 2.1: If there exist positive scalars a, b, h, τ ,
γ1, γ2, γ3, nonnegative continuous functions m(t), k(t) and
nonnegative continuous differentiable function u(t) on interval
[t0 − τ, +∞) such that the following conditions hold:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

m(t) ≤ u(t)h + γ1

Z t

t0

u(t − s)m(s)ds

+ γ2

Z t

t0

u(t − s)m(s − τ(s))ds

+ γ3

Z t

t0

u(t − s)

Z s

−∞
k(s − ξ)m(ξ)dξds,

u′(t) ≤ −au(t), u(0) = b,

a > bγ1 + bγ2 + kbγ3, k �
Z ∞

0

eεsk(s)ds

where t0 ≥ 0, 0 ≤ τ(t) ≤ τ , then as t ≥ t0, we have

m(t) ≤ bhe−ε(t−t0), (1)

where ε is the unique positive solution of the following
equation

ε = a − bγ1 − bγ2e
ετ − kbγ3.

Proof. Set

y(t) = u(t)h+γ1

Z t

t0

u(t−s)m(s)ds+γ2

Z t

t0

u(t−s)m(s−τ(s))ds

+γ3

Z t

t0

u(t − s)

Z s

−∞
k(s − ξ)m(ξ)dξds.
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In views of 0 ≤ m(t) ≤ y(t), we have

y′(t) = u′(t)h + γ1

Z t

t0

u′(t − s)m(s)ds

+γ2

Z t

t0

u′(t − s)m(s − τ(s))ds

+γ3

Z t

t0

u′(t − s)

Z s

−∞
k(s − ξ)m(ξ)dξ

+γ1u(0)m(t) + γ2u(0)m(t − τ(t))

+γ3u(0)

Z t

−∞
k(t − s)m(s)ds

≤ −ahu(t) − aγ1

Z t

t0

u(t − s)m(s)ds

−aγ2

Z t

t0

u(t − s)m(s − τ(s))ds

−aγ3

Z t

t0

u(t − s)

Z s

−∞
k(s − ξ)m(ξ)dξ + bγ1m(t)

+bγ2m(t − τ(t)) + bγ3

Z t

−∞
k(t − s)m(s)ds

= bγ1m(t) + bγ2m(t − τ(t))

+bγ3

Z t

−∞
k(t − s)m(s)ds − ay(t)

≤ (bγ1 − a)y(t) + bγ2y(t − τ(t))

+bγ3

Z t

−∞
k(t − s)y(s)ds. (2)

Set ỹ(t) = {sup−∞<θ≤0 bheε(t0+θ)}e−εt = bhe−ε(t−t0),
we first prove that y(t) ≤ bhe−ε(t−t0). For arbitrary positive
scalar l > 1, we claim that y(t) ≤ lbhe−ε(t−t0). If it is not
true, since y(t) ≤ ỹ(t) = bhe−ε(t−t0) < lbhe−ε(t−t0) = lỹ(t)
for all t ≤ t0, there must exist t∗ > t0 such that

y(t) < lỹ(t),∀t < t∗; y(t∗) = lỹ(t∗).

Namely
y′(t∗) − lỹ′(t∗) ≥ 0. (3)

On the other hand, from inequality (2) and the conditions of
Theorem 2.1, we have

y′(t∗) ≤ −(a − bγ1)y(t∗) + bγ2y(t∗ − τ(t∗))

+bγ3

Z t∗

−∞
k(t∗ − s)y(s)ds

= −l(a − bγ1)ey(t∗) + bγ2y(t∗ − τ(t∗))

+bγ3

Z t∗

−∞
k(t∗ − s)y(s)ds

< −l(a − bγ1)ey(t∗) + bγ2ley(t∗ − τ(t∗))

+bγ3l

Z t∗

−∞
k(t∗ − s)ey(s)ds

= −l(a − bγ1)bhe−ε(t∗−t0) + b2γ2lhe−ε(t∗−τ(t∗)−t0)

+b2γ3l

Z t∗

−∞
k(t∗ − s)he−ε(s−t0)ds

= −l(a − bγ1)bhe−ε(t∗−t0) + b2γ2lhe−ε(t∗−τ−t0)

+b2γ3lhe−ε(t∗−t0)

Z +∞

0

eεsk(s)ds

= [−(a − bγ1) + kbγ3 + bγ2e
ετ ]lbhe−ε(t∗−t0)

= −εlbhe−ε(t∗−t0) = ley′(t∗). (4)

This contradicts to inequality (3), thus, y(t) ≤ lbhe−ε(t−t0).
Let l → 1, we can obtain that y(t) ≤ bhe−ε(t−t0). Noting that
m(t) ≤ y(t), we have m(t) ≤ bhe−ε(t−t0), which complete
the proof.

Theorem 2.2: If there exist positive scalars a, b, h, τ , γ1,
γ2, γ3, nonnegative continuous functions m(t), k(t) and non-
negative continuous differentiable functions u(t) on interval
[t0 − τ, +∞) such that the following conditions hold:8>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

m(t) ≤ u(t)h + γ1

Z t

t0

u(t − s)m(s)ds

+ γ2

Z t

t0

u(t − s)m(s − τ(s))ds

+ γ3

Z t

t0

u(t − s)

Z s

−∞
k(s − ξ)m(ξ)dξds

u′(t) ≤ −au(t), u(0) = b,

a > bγ1 + bγ2 + bγ3,

Z ∞

0

k(s)ds = 1

where t0 ≥ 0, 0 ≤ τ(t) ≤ τ , then as t ≥ t0, we have

m(t) ≤ { sup
−∞<θ≤0

bhea(t0+θ)} = bheat0 , and lim
t→+∞

m(t) = 0.

Proof. We will complete the proof in two steps. In step
1, we will prove that m(t) ≤ yt0 � bheat0 =
sup−∞<θ≤0 bhea(t0+θ). In step 2, we will prove that
limt→+∞ m(t) = 0.

Step 1: we first prove that for any positive constant d > 1,
the following inequality holds

y(t) < d · yt0 , t ≥ t0, (5)

where y(t) is the same as defined in Theorem 2.1. Since for
any t ∈ (−∞, t0), y(t) ≤ sup−∞<θ≤0 bhea(t0+θ) = yt0 . If
yt0 = 0, then we get 0 ≤ y(t) ≤ 0, namely y(t) ≡ 0. Thus,
we always assume that yt0 > 0. When t ≤ t0, we have y(t) ≤
yt0 < d · yt0 . If inequality (5) is not true, there must exist
t1 > t0 such that

y(t1) = d · yt0 , y(t) < d · yt0 , ∀t < t1,

which implies that y′(t1) ≥ 0. From inequality (2), we have

y′(t1) ≤ −(a − bγ1)y(t1) + bγ2y(t1 − τ(t1))

+bγ3

Z t1

−∞
k(t1 − s)y(s)ds

< −(a − bγ1)d · yt0 + bγ2d · yt0

+bγ3

Z t1

−∞
d · k(t1 − s)yt0ds

= [−(a − bγ1) + bγ2 + bγ3

Z t1

−∞
k(t1 − s)ds]d · yt0

= [−(a − bγ1) + bγ2 + bγ3

Z +∞

0

k(s)ds]d · yt0

= [−(a − bγ1) + bγ2 + bγ3]d · yt0 < 0. (6)

This contradicts to y′(t1) ≥ 0, namely (5) holds. According
to the arbitrary property of positive constant d, we have y(t) ≤
bheat0 . In views of m(t) ≤ y(t), we get

m(t) ≤ bheat0 , ∀t ≥ t0. (7)

Step 2: In what follows, we will prove limt→+∞ m(t) = 0.
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From inequality (5), we know that y(t) is a bounded con-
tinuous function, thus when t → +∞, the upper limit(noted
by p) of y(t) exists, namely

limt→+∞y(t) = p, p ≥ 0. (8)

The remaining proof is to prove p = 0.
If it is not true, there must exist arbitrary positive constant

ε > 0, and constant T1 > t0 such that

y(t − τ(t)) < p + ε, y(t) < p + ε, ∀t > T1.

On the other hand, since
∫∞
0

k(s)ds = 1, there must exist
T2 > t0 such that∫ +∞

t

k(s)ds < ε, ∀t ≥ T2.

Set T = max{T1, T2}, when t ≥ 2T , we have

y′(t) ≤ −(a − bγ1)y(t) + bγ2y(t − τ(t))

+bγ3

Z t

−∞
k(t − s)y(s)ds

= −(a − bγ1)y(t) + bγ2y(t − τ(t))

+bγ3

Z t−T

−∞
k(t − s)y(s)ds + bγ3

Z t

t−T

k(t − s)y(s)ds

< −(a − bγ1)y(t) + bγ2y(t − τ(t))

+bγ3yt0

Z t−T

−∞
k(t − s)ds + (p + ε)bγ3

Z t

t−T

k(t − s)ds

= −(a − bγ1)y(t) + bγ2y(t − τ(t))

+bγ3yt0

Z +∞

T

k(s)ds + (p + ε)bγ3

Z T

0

k(s)ds

<−(a − bγ1)y(t) + bγ2(p + ε) + bγ3εyt0 + (p + ε)bγ3.(9)

By direct calculation, we get

y(t) ≤ y(t0) exp{−(a − bγ1)(t − t0)}
+

1
(a − bγ1)

[(p + ε)bγ2 + εbγ3yt0 + pbγ3 + εbγ3].

From (8), we get

p ≤ 1
(a − bγ1)

[bγ2ε + bεγ3yt0 + pbγ3 + pbγ2 + εbγ3].

In views of the arbitrary property of ε, we have p ≤ pbγ3+pbγ2
(a−bγ1)

,
namely (a − bγ1) ≤ bγ2 + bγ3, which contradicts to a >
bγ1 + bγ2 + bγ3, thus limt→+∞ y(t) = 0 holds, namely,
limt→+∞ m(t) = 0. The proof is completed.

Similar to the proof of Theorem 2.1, Theorem 2.2, we can
easily obtain the following Corollaries.

Corollary 2.1: If there exist positive scalars a, b, h, τ , γ1,
γ2, γ3, nonnegative continuous functions m(t), k(t) and non-
negative continuous differentiable functions u(t) on interval
[t0 − τ, +∞) such that the following conditions hold:8>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

m(t) ≤ u(t)h + γ1

Z t

t0

u(t − s)m(s)ds

+ γ2

Z t

t0

u(t − s)m(s − τ(s))ds

+ γ3

Z t

t0

u(t − s)

Z s

−∞
k(s − ξ)m(ξ)dξds,

u′(t) ≤ −au(t), u(0) = b,

a > bγ1 + bγ2 + bγ3, 1 =

Z ∞

0

eεsk(s)ds

where t0 ≥ 0, 0 ≤ τ(t) ≤ τ , then as t ≥ t0, we have

m(t) ≤ bhe−ε(t−t0),

where ε is the unique positive solution of the following
equation

ε = a − bγ1 − bγ2e
ετ − bγ3.

Corollary 2.2: If there exist positive scalars a, b, h, τ ,
γ1, γ2, γ3, ε, nonnegative continuous functions m(t), k(t)
and nonnegative continuous differentiable functions u(t) on
interval [t0 − τ, +∞) such that the following conditions hold:8>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

m(t) ≤ u(t)h + γ1

Z t

t0

u(t − s)m(s)ds

+ γ2

Z t

t0

u(t − s)m(s − τ(s))ds

+ γ3

Z t

t0

u(t − s)

Z s

−∞
k(s − ξ)m(ξ)dξds

u′(t) ≤ −au(t), u(0) = b,

a > bγ1 + bγ2 + bkγ3,

Z ∞

0

k(s)ds = k

where t0 ≥ 0, 0 ≤ τ(t) ≤ τ , then as t ≥ t0, we have

m(t) ≤ { sup
−∞<θ≤0

bhea(t0+θ)} = bheat0 , and lim
t→+∞m(t) = 0.

III. APPLICATIONS

The inequalities obtained in Section 2 can be widely applied
to research the stability of delayed integral and differential dy-
namic systems. To illustrate the validity, consider the following
integro-differential dynamic system:8>>>>>>><
>>>>>>>:

x′
i(t) = −cixi(t) +

nX
j=1

aijfj(xj(t)) +

nX
j=1

bijgj(xj(t − τ(t)))

+

nX
j=1

dij

Z t

−∞
kij(t − s)fj(xj(s))ds,

xi(t) = ϕ(t), t ≤ 0
(10)

where x(t) ∈ Rn is state vector; ci > 0, aij , bij and
dij represent the connection weight and the delayed con-
nection weight respectively; fi, gi are continuous functions
satisfying |fi(x) − fi(y)| ≤ li|x − y|, |gi(x) − gi(y)| ≤
l′i|x−y|,∀x, y ∈ R, where li, l

′
i(i = 1, 2, · · · , n) are Lipschitz

constant; f(x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T ,
g(x(t)) = (g1(x1(t)), g2(x2(t)), . . . , gn(xn(t)))T . 0 <
τ(t) ≤ τ is transmission delay. Kernel functions kij(t)(i, j =
1, 2, . . . , n), are real-valued nonnegative continuous func-
tions defined on [0,∞). ϕ(t) is initial condition satisfying
ϕ(t) ∈ C((−∞, 0],Rn) and sup−∞<t≤0 |ϕ(t)|p < ∞,
where C((−∞, 0],Rn) denote the family of all continu-
ous Rn−valued functions φ(t) on (−∞, 0] with the norm
‖ϕ(t)‖p

Δ = sup−∞<t≤0 |ϕ(t)|p. For the further discussion,
the following standard hypothesis, definition and lemmas are
needed.
(H1) Assume that f(0) ≡ 0, g(0) ≡ 0.
(H2)

∫∞
0

kij(t)dt = 1, i, j = 1, 2, · · · , n.
(H3) There exists an ε > 0 such that

∫∞
0

eεtkij(t)dt � kij <

∞. k(t) � sup1≤i,j≤n{kij(t)}, k′ � max1≤i,j≤n(kij).
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Definition 3.1: The trivial solution of system (10) is said
to be p-exponentially stable if there exists a pair of positive
constants λ and α such that

‖x(t)‖p ≤ α‖ϕ‖p
Δe−λt, t ≥ 0.

Lemma 3.1: (Holder inequality)[16]) Assume that there
exist two continuous functions f(x), g(x) and a set Ω, p and
q satisfying 1/q + 1/p = 1, for any p > 0, q > 0, if p > 1,
then the following inequality holds∫

Ω

|f(x)g(x)|dx ≤ (
∫

Ω

|f(x)|pdx)1/p(
∫

Ω

|g(x)|qdx)1/q.

Lemma 3.2: [17] Assume that there exist constants ak ≥
0, k = 1, 2, . . . , n, p and q satisfying 1/q + 1/p = 1,for any
p ≥ 0, q ≥ 0,if p > 1,then the following inequality holds

(
n∑

k=1

ak)p ≤ np−1
n∑

k=1

ap
k.

Applying the inequalities obtained in Section 2, we can obtain
the following stability results.

Theorem 3.1: Under the assumptions (H1), (H3), the triv-
ial solution of system (10) is p-exponentially stable(p ≥ 2),
if

γ1 + γ2 + k′γ3 < c, (11)

where

γ1 = [c−
p
q

n∑
j=1

[
n∑

i=1

|aji|q|li|q]
p
q ]4p−1, c = min{c1, c2, · · · , cn},

γ2 = [c−
p
q

n∑
j=1

[
n∑

i=1

|bji|q|l′i|q]
p
q ]4p−1,

γ3 = 4p−1(
c

k′ )
− p

q

n∑
j=1

(
n∑

i=1

|dji|q|li|q)
p
q ,

k′ = max
1≤i,j≤n

{kij}, q =
p

p − 1
.

.

(12)
Proof. For system (10), by using the method of variation of

parameters, we have

|xi(t)| ≤ e−cit|xi(0)| +
Z t

0

e−ci(t−s)|
nX

j=1

aijfj(xj(s))|ds

+

Z t

0

e−ci(t−s)|
nX

j=1

bijgj(xj(s − τj(s)))|ds

+

Z t

0

e−ci(t−s)|
nX

j=1

dij

Z s

−∞
kij(s − v)fj(xj(v − τj(s)))dv|ds

≤ e−ct|xi(0)| +
Z t

0

e−c(t−s)|
nX

j=1

aijfj(xj(s))|ds

+|
Z t

0

e−c(t−s)|
nX

j=1

bijgj(xj(s − τj(s)))|ds

+

Z t

0

e−c(t−s)|
nX

j=1

dij

Z s

−∞
kij(s − v)fj(xj(v − τj(s)))dv|ds

� I1i + I2i + I3i + I4i. (13)

In views of Lemma 3.2, the following inequality holds

n∑
i=1

|xi(t)|p ≤ 4p−1
n∑

i=1

(Ip
1i + Ip

2i + Ip
3i + Ip

4i).

By Lemma 3.1, we can obtain

nX
i=1

Ip
2i =

nX
i=1

[

Z t

0

e−c(t−s)|
nX

j=1

aijfj(xj(s))|ds]p

=

nX
i=1

[

Z t

0

e−c(t−s)(

nX
j=1

|aij ||fj(xj(s))|)ds]p

=

nX
i=1

[

Z t

0

e
−c(t−s)

q e
−c(t−s)

p (

nX
j=1

|aij ||fj(xj(s))|)ds]p

≤
nX

i=1

{[
Z t

0

e−c(t−s)ds]
p
q

Z t

0

e−c(t−s)[

nX
j=1

|aij ||fj(xj(s))|]pds}

≤ c
− p

q

nX
i=1

{
Z t

0

e−c(t−s)[

nX
j=1

|aij |q|lj |q]
p
q [

nX
j=1

|xj(s)|p]ds}

= c
− p

q

nX
i=1

{[
nX

j=1

|aij |q|lj |q]
p
q

Z t

0

e−c(t−s)
nX

j=1

|xj(s)|pds}

= c
− p

q

nX
j=1

{[
nX

i=1

|aji|q|li|q]
p
q

Z t

0

e−c(t−s)
nX

i=1

|xi(s)|pds}

= c
− p

q

nX
j=1

[

nX
i=1

|aji|q|li|q]
p
q

Z t

0

e−c(t−s)
nX

i=1

|xi(s)|pds. (14)

Similarly, for Ip
3i, I

p
4i, we have

nX
i=1

I
p
3i ≤ c

− p
q

nX
j=1

[
nX

i=1

|bji|q|l′i|q ]
p
q

Z t

0
e
−c(t−s)

nX
i=1

|xi(s − τi(s))|pds. (15)

nX
i=1

Ip
4i =

nX
i=1

[

Z t

0

e−c(t−s)

×|
nX

j=1

dij

Z s

−∞
kij(s − v)fj(xj(v))dv|ds]p

≤
nX

i=1

[

Z t

0

e−c(t−s)

×(

nX
j=1

|dij |
Z s

−∞
kij(s − v)|fj(xj(v))|dv)ds]p

≤
nX

i=1

{[
Z t

0

e−c(t−s)ds]
p
q [

Z t

0

e−c(t−s)

×(

nX
j=1

|dij |
Z s

−∞
kij(s − v)|fj(xj(v))|dv)pds]}

=

nX
i=1

{[ 1 − e−ct

c
]

p
q [

Z t

0

e−c(t−s)

×(

nX
j=1

|dij |
Z s

−∞
kij(s − v)|fj(xj(v)|dv)pds]}

≤ c
− p

q

nX
i=1

{
Z t

0

e−c(t−s)

×(

nX
j=1

|dij |
Z s

−∞
kij(s − v)|fj(xj(v))|dv)pds}
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≤ c
− p

q

nX
i=1

{
Z t

0

e−c(t−s)

×(

nX
j=1

|dij ||lj |
Z s

−∞
kij(s − v)|xj(v)|dv)pds}

≤ c
− p

q

nX
i=1

{
Z t

0

e−c(t−s)

×(

nX
j=1

|dij |q|lj |q)
p
q

nX
j=1

(

Z s

−∞
kij(s − v)|xj(v)|dv)pds}

= c
− p

q

nX
i=1

{(
nX

j=1

|dij |q|lj |q)
p
q {

Z t

0

e−c(t−s)

×
nX

j=1

(

Z s

−∞
kij(s − v)|xj(v)|dv)pds}}

= c
− p

q

nX
i=1

{(
nX

j=1

|dij |q|lj |q)
p
q {

Z t

0

e−c(t−s)

×
nX

j=1

(

Z s

−∞
k

1
q

ij(s − v)k
1
p

ij (s − v)|xj(v)|dv)pds}}

≤ c
− p

q

nX
i=1

{(
nX

j=1

|dij |q|lj |q)
p
q {

Z t

0

e−c(t−s)

×
nX

j=1

k
′ p

q

Z s

−∞
k(s − v)|xj(v)|pdvds}}

= (
c

k′ )
− p

q [

nX
j=1

(

nX
i=1

|dji|q|li|q)
p
q ]

×[

Z t

0

e−c(t−s)

Z s

−∞
k(s − v)

nX
i=1

|xi(v)|pdvds]. (16)

Set u(t) = e−ct, one can easily obtains that u′(t) ≤ −cu(t),
u(0) = 1. From inequalities (12)-(15), and Theorem 2.1, there
exists an ε > 0 such that

∑n
i=1 |xi(t)|p ≤ ∑n

i=1 |ϕi|pe−εt

(t0 = 0), namely

‖x(t)‖p ≤ ‖ϕ‖p
Δe−εt, t ≥ 0.

The proof is completed.
Theorem 3.2: Under the assumptions (H1), (H2), the triv-

ial solution of system (10) is p-asymptotically stable(p ≥ 2),
if

γ1 + γ2 + γ′
3 < c, (17)

where γ′
3 = 4p−1c−

p
q
∑n

j=1(
∑n

i=1 |dji|q|li|q)
p
q , q = p

p−1 .
Proof. In views of (H2), similar to the proof of Theorem 3.1,
inequality (15) becomes the following form

n∑
i=1

Ip
4i ≤ (c)−

p
q [

n∑
j=1

(
n∑

i=1

|dji|q|li|q)
p
q ] (18)

×[
∫ t

0

e−c(t−s)

∫ s

−∞
k(s − v)

n∑
i=1

|xi(v)|pdvds]. (19)

From inequalities (12)-(14), (17) and Theorem 2.2, we can
get that the trivial solution of system (10) is p-asymptotically
stable.

Theorem 3.3: Under the assumptions (H1) − (H3), the
trivial solution of system (10) is p-exponentially stable(p ≥ 2),
if

γ1 + γ2 + k′γ′
3 < c. (20)

Proof.
From inequalities (12)-(14), (17) and Theorem 2.1, we can

easily obtain this result.

Remark 1. In some previous literature, the time-varying
delay τ(t) is assumed to be differential and it’s derivative is
simultaneously required to be not greater than 1 or a positive
constant, and may impose a very strict constraint on model
because time delays sometimes vary dramatically with time
in real circuits. In our results, we only require 0 < τ(t) ≤ τ .

Remark 2. In [18], [19], kernel functions are assumed
to satisfy

∫∞
0

k(s)ds = 1,
∫∞
0

eεsk(s)ds < ∞, and∫∞
0

seεsk(s)ds < ∞. In our results, they are only assumed to
satisfy one or two above conditions, thus our results enlarge
the selection of kernel functions, which will be shown in three
examples provided later (Details see example 1,2).

IV. NUMERICAL EXAMPLES

In this section, two numerical examples will be presented
to show the validity of our results.

Example 1. Consider the following two-dimensional integral-
differential equation with mixed delays.8>>><

>>>:
dx(t) = [−Cx(t) + Af(x(t)) + Bg(x(t − τ(t)))

+ D

Z t

−∞
K(t − s)f(x(s))ds]dt, t > 0

x(t) = η(t), t ≤ 0.

(21)

where

C =

»
2 0
0 2

–
, A =

»
0.21 0.1
0.3 0.1

–
, B =

» −0.31 0.11
0.21 −0.31

–
,

D =

» −0.51 0.31
0.3 0.25

–
, K(t) =

»
e−2t e−2t

e−2t e−2t

–
.

f(x) = g(x) = tanh(x), τ(t) = 2+0.02| sin t|, η(t) = [−3.4, 5.6]T ,

By direct calculation, we get that l1 = l2 = l′1 = l′2 = 1.
Set ε = 0.1, we can obtain k′ = max1≤i,j≤2{kij} ≈ 1.1. Let
p = 2, we can get γ1 = 0.3082, γ2 = 0.4846, k′γ3 = 0.9249,
γ2 + γ2 + k′γ3 = 1.8102 < c = 2. In views of Theorem 3.1, the
equilibrium point (0, 0)T of the given system (19) is exponentially
stable.

Remark 3. From system (19), we can see that kernel function
kij(t) = e−2t (i,j=1,2). It obviously satisfies (H3), but does not
satisfy (H2). Time-varying delay 2−0.02| sin t| is non-differentiable,
thus previous results in the literature cited therein can not be used
to judge the stability of this system.

Example 2. In example 1, set

C =

»
1.3 0
0 1.3

–
, A =

»
0.11 0.1
0.3 0.1

–
, B =

» −0.21 0.11
0.21 −0.11

–
,

D =

» −0.21 0.11
0.2 0.25

–
, K(t) = [kij(t)]2×2,

η(t) = [−4.4, 6]T , kij(t) = π
2+2t2

(i,j=1,2). We can verify
that kij(t) satisfies (H2), but dose not satisfy (H3). By simple
calculation, we get that l1, l2, l

′
1, l

′
2 = 1. Let p = 2, we have

γ1 = 0.3757, γ2 = 0.3458, γ3 = 0.3995, γ1+γ2+γ3 = 1.2098 <
c = 1.3. In views of Theorem 3.2, the equilibrium point (0, 0)T of
the given system (19) is asymptotically stable. However, the results
obtained in the literature cited therein can not be used to judge the
stability of this system.
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V. CONCLUSION

In this paper, some new Gronwall-Bellman-Type inequalities with
mixed delays are established. Applying these new established inequal-
ities, some new sufficient conditions ensuring p-exponential stability
of a integro-differential equation are obtained. The results improve
and generalize some previous works. Numerical examples show that
our results are valid.
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