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Abstract—It is suggested to evaluate environmental performance 

of energy sector using Data Envelopment Analysis with non-
discretionary factors (DEA-ND) with relative indicators as inputs and 
outputs. The latter allows for comparison of the objects essentially 
different in size. Inclusion of non-discretionary factors serves 
separation of the indicators that are beyond the control of the objects. 
A virtual perfect object comprised of maximal outputs and minimal 
inputs was added to the group of actual ones. In this setting, explicit 
solution of the DEA-ND problem was obtained. Energy sector of the 
United States was analyzed using suggested approach for the period 
of 1980 – 2006 with expected values of economic indicators for 2030 
used for forming the perfect object. It was obtained that 
environmental performance has been increasing steadily for the 
period from 7.7% through 50.0% but still remains well below the 
prospected level. 
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I. INTRODUCTION 
NVIRONMENTAL issues are among major concerns of 
contemporary society. Emissions of greenhouse gases are 

amid the main problems by both International Energy Agency 
(IEA) and Energy Information Administration (EIA), [1, 2]. 
Carbon dioxide (CO2) is the most abundant human-caused 
greenhouse gas in the atmosphere. IEA expects the growth in 
greenhouse gases emissions by 35% in 2030 regarding the 
2005 level. Energy demand is expected to grow by 1.6% 
yearly through 2030, with energy-related emissions 
component comprising 61% of 2030-total. Atmospheric 
concentrations of CO2 have been rising at a rate of about 0.6 
percent annually in recent years, and that growth rate is likely 
to increase. The expected increase is 45% regarding 2006, that 
is faster than total. In 2030, 76% of energy-related CO2 
emissions are expected from cities compared with 71% in 
2006. About 75% of energy-related increase in emissions is 
expected from China, India and Middle East, while in OECD-
countries, the emissions are expected to reach peak in 2020 
and then decline.  In Europe and Japan, expected emissions 
levels by 2030 are even lower than today. Publication [2] 
mentions that world energy-related CO2 emissions are 
increasing at a rate of 2.1% per year, while its concentrations,  
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by only about 0.6% percent per year. Among major reasons 
for the difference, is absorption by the Earth’s oceans and 
soils. About 42% percent of CO2 emitted has been absorbed 
by the planet rather than accumulated in the atmosphere. 
Among the measures aimed at decrease in CO2 emissions the 
following may be mentioned [2]: reductions in energy demand 
growth, increases in nuclear electricity generation, increased 
use of hydropower and nonhydropower  renewables for 
electricity generation, increased use of renewable fuels for 
transportation, and carbon capture and storage,  [3].  

Carbon dioxide emissions depend essentially on existing 
laws and policies. World energy sector will be the focus of 
2009 Copenhagen conference aimed at setting international 
framework for greenhouse gas emissions. The choice of 
strategy should combine environmental requirements, 
technology and costs. In particular, it should be taken in 
consideration that energy sector has a relatively low rate of 
capital replacement, so that any essential changes in this sector 
will require sufficient time. Thus, [1] mentions that even if 
from now on all power plants were carbon-free, the emissions 
from the power sector would decrease by just 25% by 2020. 
There are five major emitters of energy-related CO2: China, 
the European Union, India, Russia, and the United States 
(order is alphabetical). Taken together, they are responsible 
for about 67% of total. Suggested mechanisms of emissions 
control should combine cap – and – trade approach, sectoral 
agreements, and national measures. Publication [1] mentions 
also big investments needed for environment protection, 
especially in power plants and energy-efficient equipment. 
Different scenarios estimates range from 0.24% through 
0.55% of world GDP that is from $4.1 through $9.4 trillion 
2007-dollars. 

The main factors of CO2 emissions in the U.S. are economic 
growth, energy consumption, and intensity of emissions, [1, 
2]. As of 2006, the United States is responsible for 20.3% of 
the world CO2 emissions. Economic growth of the U.S.is 
expected at an average rate of 2.5% per year in the period. 
Expected growth in energy consumption and emissions is 
moderate due to recently-enacted policies and high energy 
prices. Total primary energy consumption will increase at an 
average rate of 0.5% per year. In 2030, coal, oil, and natural 
gas continue meet the largest share of total primary energy 
consumption, although their share declines from 85 percent in 
2007 to 79 percent in 2030. Rapid growth in renewables 
consumption is expected to be driven mainly by 
implementation of Federal Standard for transportation fuels 
and State Standard for electricity generation. Energy use per 
dollar of GDP is expected to decline by more than 30% from 
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2007 to 2030; energy use per person will also decline at an 
annual rate of 0.5 percent. Petroleum-based liquids 
consumption is projected to be flat while consumption of 
biofuels, to grow. In the period of 2007 – 2030, growth in 
electricity use continues to slow with nonhydropower 
renewable power meeting 33% of total generation growth. 
Natural gas and renewables will provide most of the 
generating capacity added. Energy related CO2 emissions will 
grow at the rate of 0.3 percent per year, and per capita 
emissions fall by 0.6 percent per year. Electricity generation 
will remain the dominant source of CO2 emissions growth. 
With slower electricity growth and an increased use of 
renewables for electricity generations, electricity-related CO2 
emissions will grow by just 0.5 percent per year. CO2 
emissions from transportation activity will also slow compared 
to the recent past in particular, due to increase in use of 
alternative light vehicles. U.S. oil use will remain near its 
present level through 2030 as modest growth in overall liquids 
demand is met by biofuels. Energy-related CO2 emissions will 
grow at 0.3 percent per year provided no new policies to 
control emissions. 

Given these premises, we analyze in this paper below 
dynamics of environmental performance of the Energy sector 
of the United States for the period of 1980 – 2006 and 
compare it with situation expected by 2030. We use DEA 
model with non-discretionary factors (DEA-ND), and consider 
DEA efficiency index as a measure of environmental 
performance. Our main objective is to trace the environmental 
efficiency of the Energy sector in time with regards to its 
prospected value in 2030. To achieve this goal, a special 
modification of the DEA-ND is developed: a model with a 
Perfect Object (DEA-ND PO). The latter is an object that has 
minimal inputs and maximal outputs. Introduction of PO 
allows for obtaining DEA optimal solution in explicit form 
thus avoiding Linear Programming procedures. Data of 2030 
are used to construct the PO. 

II. METHODOLOGY 
Methodology of the research in this paper is Data 

Envelopment Analysis (DEA) developed in [5, 6], its 
comprehensive description is given in [7]. DEA estimates 
relative efficiencies of objects in a group, referred to as 
Decision - Making Units (DMUs) that use inputs 

),...,1,( sjX j ==X  to produce outputs 

),...,1,( riYi ==Y . DEA allows all indicators to be 
combined into a single efficiency score scaled between 0 and 
1. Efficient objects receive a score equal to 1, inefficient 
objects, less than 1. To measure efficiency, DEA uses the 
efficiency ratio suggested in Farrell [8]: 
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where u=(u1,...,ur) and v=(v1,...,vs) are non-negative weights 
assigned to outputs and inputs, respectively.  

The main advantage of DEA is its ability to assign values to u 
and v objectively by solving a series of linear programming 
(LP) problems. To calculate an efficiency score, DEA allows 
each DMU to assign its own weight coefficients to each input 
and output favorably. However, the ability of a given DMU to 
achieve maximal possible efficiency score is restricted by the 
requirement that with the weight coefficients assigned to itself, 
no one DMU in the group receives an efficiency score greater 
than one. This means that a poorly performing DMU cannot 
achieve a high efficiency score for itself by playing with the 
weight coefficients, since an object that performs really well 
would have received the efficiency score greater than one. By 
doing so, the basic efficiency ratio (1) generates a series of 
optimization problems:  

For each DMUi, i =1,...,n, find non-negative vectors 
ui=(ui1,...uir) and vi=(vi1,...vis) such that: 
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subject to 
1≤jE with all ui=(ui1,...,uir), vi=(vi1,...,vis), i,j=1,…,n.   (3) 

It may be noted that solution to the problem (2) - (3) is defined 
up to proportional change in u and v. It was suggested in [5] to 
impose restrictions on u or v making them bounded:   
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The modified problem is equivalent to set of linear 
programming (LP) problems:  

For each DMUi, i =1,...,n, find non-negative vector 
λi=(λi1,λi2,…,λin) and scalar iω  such that 
 mini →ω  
subject to 
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where jkX and jpY  stand for the k-th input and p-th output of 
a DMUj, respectively. A system of inequalities (5) is referred 
to as input – minimization (IM) DEA model with constant 
returns to scale (CRS), see [7] for details. 

The LP-problems stated by formulas (5) have the following 
interpretation: for each DMUi, DEA-algorithm seeks a virtual 
object that produces at least the same outputs as DMUi using 
at most iω - share of its inputs. This virtual DMU is 
constructed of λi - multiples of all DMUs in the group, 
including the DMUi itself. This LP-problem has at least one 
feasible solution: 

iω = 1, λii = 1, λij= 0 for ji ≠ ,       (6) 
which means that the virtual DMU is the same as the DMUi 
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itself. For some DMUs this is the only solution, meaning that 
their performance cannot be improved by simulating peer 
DMUs. For other DMUs in the group, better solutions exist 
with a smaller value of iω <1. Such DMUs can perform better 
by acquiring the expertise of their peers. The minimal values 
of iω obtained as solution of the LP-problem (5) and 
efficiency scores Ei corresponding to problem (2) - (4) are 
equal: 

ii minEmax ω= ≤ 1.           (7) 
The IM CRS DEA model (5) is a natural extension of an 
intuitively clear formula (1) and possesses some properties 
that are important for the objectives of this paper. First, 
efficiency scores remain the same if the input-minimization 
model is changed for the output - maximization one (OM 
CRS). Thus, choice of a basic model becomes unambiguous. 
Second, efficiency scores preserve their values if one or 
several inputs or outputs are changed proportionally. This is 
important if inputs/outputs have units of measurement or are 
normalized. It should be noted that DEA models are named 
input minimization (IM) or output maximization (OM), 
respectively, by their envelope form (5). This form is dual to 
the ratio form of the DEA models (2) – (4): IM ratio model 
corresponds to OM envelope model and vice versa, [7]. This 
observation is of importance when a model is designed, 
because choice of the model depends on manageability of 
inputs and outputs. If, for example, only inputs are 
manageable, then one should choose the OM ratio model to 
arrive at IM envelope one.  

Applications of DEA to analysis of environmental 
performance are considered in [9 – 16], a review of recent 
results is given in [17]. In this paper, we analyze 
environmental performance using a DEA model not 
considered in these literature sources: a DEA with non-
discretionary factors (DEA-ND). This model assumes that 
some inputs or outputs cannot be change at the discretion of 
DMU itself, the case typical for environmental performance. 
While technology and organization are at the discretion of a 
DMU, environmental policy and exogenous factors are not. 
DEA ND was developed in [18-23]. Its applications are 
considered in [24-27]. DEA-ND input minimization model 
with constant returns to scale used in this paper is this. 

For each DMUi, i=1,…,n, find  
mini →ω  

subject to 
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The difference is in separating the first group of inequalities 
into discretionary and non-discretionary inputs with the latter 
ones remaining unchanged in seeking optimal solution.  

 In the following section, we develop the DEA-ND model 
further by appending it with a Perfect Object. This 
modification allows us to obtain an explicit solution to the 
DEA-ND problem. 

III. DEA - ND WITH PERFECT OBJECT EXPLICIT SOLUTION 
Application of a Perfect Object (PO) to environmental 

performance DEA problems was suggested in [16]. PO is a 
virtual DMU assigned minimal inputs and maximal outputs. 
Fig. 1 presents geometric interpretation. Addition of the PO 
provides DEA with ability to go beyond relative efficiency. If 
all inputs of the PO are strictly less and its outputs are strictly 
greater than those of actual DMU’s then PO is the only 
efficient DMU and an optimal solution will contain only the 
PO as a peer object. If equalities are allowed for some or all of 
inputs/outputs then this also is true but requires considerations 
beyond the scope of this paper. (The proof may be obtained 
from the author upon request.) Denoting the PO as DMU0, we 
arrive at the following modification of the optimization 
problem (8): 

For each DMUi, i=1,…,n, find mini →ω  
subject to 
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This is an input minimization DEA-ND model with 
constant returns to scale with perfect object referred to below 
as DEA-ND IM CRS PO. Solution to problem (9) can be 
obtained in explicit form, as given by the following theorem. 
  

Theorem. Solution to the DEA-ND IM CRS PO model is  
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where lower index i stands for an ordinal number of DMUi in 
a group. 
 

Proof. 
From the first subsetset of inequalities in (9) it follows that:  
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By the definition of the PO,  
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Fig. 1 DEA frontiers [16] 

 
A Perfect Object (DMU0) is located at point F: X01 = min Xk1, 
Y01 = max Yk1, k= 1,…,N. Frontiers: OB—constant returns to 
scale; ABCD—variable returns to scale; OF—constant returns 
to scale with the Perfect Object; AFD—variable returns to 
scale with the Perfect Object 
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so that (13) and (14) do not contradict each other. Moreover, 
as we seek min ωi, we should take minimal value of λ0 in (12) 
equal to 
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Substitution of (16) into (12) proves the theorem. ∴  
Similar theorems may be proved for different modifications 

of DEA-ND PO models. The theorems allow for avoiding 
using Linear Programming procedures when solving DEA-ND 
PO problems. Spreadsheet formulas are sufficient. It may be 
noticed that suggested solution does not contain non-
discretionary inputs and thus, does not depend on them. This 
observation requires further considerations and discussions. 

IV. MODELING OF THE U.S. ENERGY SECTOR 
To calculate and analyze dynamics of environmental 

performance of the United States Energy sector, we used 
statistical information provided by the Energy Information 
Administration (EIA) and the Bureau of Economic Analysis 
(BEA) available at http://www.eia.doe.gov and 
http://www.bea.gov, respectively. The following data were 
collected: Population (P), GDP (G), Energy Consumption (N) 
and CO2 Emissions (S). The objective was to put emissions 
against energy consumption, GDP and population. To do this, 
we used an approach suggested in [28] and formed all possible 

ratios of the quantitative indicators. It may be shown, that only 
three of the ratios are functionally independent. For instance, 
ratios S/P and P/S are inverses of each other, while ratios r1 = 
(P/S), r2 = (N/S) and r3 = (N/P) are related as r1r2 = r3. We 
intended to avoid using the functionally related ratios in DEA 
model. Keeping in mind traditionally used indicators of 
environmental performance: Emissions per Capita (S/P) and 
Emissions per Dollar of GDP (S/G) we included them into the 
DEA-ND PO model and appended them with the GDP per 
Capita indicator (G/P). Two former ratios served as inputs, the 
latter, as output. Emissions per Capita indicator was 
considered as a non-discretionary input because population 
growth is beyond the control of Energy sector. Considering 
DEA efficiency index as an indicator of environmental 
performance, we arrived at the following DEA model:  

2211

1
POCRSIMND XvXv

YuE
+

= 1 ,         (17) 

where X1 = S/P stands for Emissions per Capita (non-
discretionary input), X2 = S/G, for Emissions per Dollar of 
GDP, and Y1 =  G/P, for GDP per Capita. Ratios X1, X2 and Y1 
are functionally independent in the sense that there is no 
smooth function F such that F(X1(P,G,N,S), X2(P,G,N,S), 
Y1(P,G,N,S))=0. The last can be proved by calculating 
functional determinants, as shown in [29]. All relative 
indicators were calculated as ratios of corresponding 
quantitative indicators, GDP was taken in chained 2007 
dollars. For better scaling of the information, all of the ratios 
were normed to their 2030-values. 
 

TABLE I 
DEA - ND IM CRS PO MODEL OF THE U.S. ENERGY SECTOR 

ENVIRONMENTAL EFFICIENCY WITH NORMALIZED INPUTS/OUTPUTS 

Year X1 ND X2 Y1 X01/X1 X02/X2 Y1/Y01 
Effic 
iencya 

1980 1.2305 2.9108 0.2232 0.8127 0.3436 0.2232 0.0767 
1981 1.1874 2.7666 0.2491 0.8422 0.3615 0.2491 0.0900 
1982 1.1143 2.6731 0.2590 0.8975 0.3741 0.2590 0.0969 
1983 1.0950 2.5362 0.2753 0.9133 0.3943 0.2753 0.1086 
1984 1.1467 2.4995 0.3063 0.8721 0.4001 0.3063 0.1225 
1985 1.1333 2.3935 0.3257 0.8824 0.4178 0.3257 0.1361 
1986 1.1256 2.3186 0.3390 0.8884 0.4313 0.3390 0.1462 
1987 1.1550 2.3221 0.3590 0.8658 0.4306 0.3590 0.1546 
1988 1.1974 2.3329 0.3866 0.8352 0.4287 0.3866 0.1657 
1989 1.2037 2.2866 0.4070 0.8307 0.4373 0.4070 0.1780 
1990 1.1764 2.2182 0.4239 0.8500 0.4508 0.4239 0.1911 
1991 1.1500 2.2012 0.4318 0.8696 0.4543 0.4318 0.1962 
1992 1.1571 2.1723 0.4489 0.8643 0.4603 0.4489 0.2067 
1993 1.1668 2.1614 0.4631 0.8571 0.4627 0.4631 0.2143 
1994 1.1700 2.1090 0.4866 0.8547 0.4742 0.4866 0.2307 
1995 1.1688 2.0798 0.5066 0.8556 0.4808 0.5066 0.2436 
1996 1.1960 2.0762 0.5303 0.8361 0.4817 0.5303 0.2554 
1997 1.1990 2.0157 0.5635 0.8340 0.4961 0.5635 0.2796 
1998 1.1910 1.9446 0.5869 0.8396 0.5142 0.5869 0.3018 
1999 1.1906 1.8825 0.6150 0.8399 0.5312 0.6150 0.3267 
2000 1.2146 1.8730 0.6444 0.8233 0.5339 0.6444 0.3440 
2001 1.1831 1.8279 0.6580 0.8453 0.5471 0.6580 0.3600 
2002 1.1847 1.8183 0.6737 0.8441 0.5500 0.6737 0.3705 
2003 1.1847 1.7902 0.6991 0.8441 0.5586 0.6991 0.3905 
2004 1.1921 1.7543 0.7384 0.8389 0.5700 0.7384 0.4209 
2005 1.1861 1.7114 0.7783 0.8431 0.5843 0.7783 0.4548 
2006 1.1574 1.6397 0.8191 0.8640 0.6099 0.8191 0.4995 
2030b 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

 a Calculated by formula (10): E=(Y1/Y01)(X02/X2) 
b Perfect Object    
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Fig. 2 U.S. Energy Sector Environmental Performance 

 
A DEA-ND IM CRS PO model was used. Data and results 

are shown in Table I, a graph of the environmental 
performance indicator is shown in Fig. 2. As follows from the 
obtained results, environmental performance of the U.S. 
Energy sector has been on the rise in the period of 1980 – 
2006 from 7.7% through 50.0%. This is a positive observation 
confirming that the United States follows the spirit of the 
Kyoto Protocol though not signing it formally. At the same 
time, it may be mentioned that only 50% of the 2030 projected 
level has been achieved. Technological and organizational 
measures should be undertaken and stricter environmental 
policies enforced to close this gap. 

V. CONCLUSION 
A DEA model with non-discretionary factors is suggested 

as a means of evaluation of environmental performance of 
energy sector. A model with relative and normalized 
inputs/outputs is proposed. Inclusion of the virtual perfect 
object, a DMU with minimal inputs and maximal outputs, 
allowed proving a formula for analytical solution to the 
problem. Energy sector of the United States was analyzed 
using suggested approach for the period of 1980 – 2006. The 
perfect object has been formed using expected data of 2030. 

Obtained results revealed increasing environmental efficiency 
of the U.S. energy sector over the period from 7.7% in 1980 to 
50.0% in 2006. The remaining 50% represent an efficiency 
gap that should be closed by 2030.  
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