
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1128

Evolved Strokes in Non Photo–Realistic Rendering
Ashkan Izadi,Vic Ciesielski

School of Computer Science and Information Technology
RMIT University, Melbourne, 3000, VIC, Australia

{ashkan.izadi,vic.ciesielski}@rmit.edu.au

Abstract—We describe a work with an evolutionary computing
algorithm for non photo–realistic rendering of a target image. The
renderings are produced by genetic programming. We have used two
different types of strokes: “empty triangle” and “filled triangle” in
color level. We compare both empty and filled triangular strokes to
find which one generates more aesthetic pleasing images. We found
the filled triangular strokes have better fitness and generate more
aesthetic images than empty triangular strokes.

Keywords—Artificial intelligence, Evolutionary programming, Ge-
netic programming, Non photo–realistic rendering.

I. INTRODUCTION

THE combination of Darwin’s theory and computer graph-
ics provide some new ideas of creating artistic images.

By using evolutionary techniques, researchers and artists have
created aesthetically pleasing images and videos. Producing
art works can be done in different ways. One way is photo
realistic rendering and many computer graphics researchers [3]
have concentrated on this. Other researchers concentrated on
non photo–realistic rendering or NPR. The researchers on
NPR gave more attention to some aspects of rendering such
as painting [6], pen-ink hatching [11], pencil sketches and
drawings [3].
A large range of methodologies have been used for non photo-
realistic rendering. We use genetic programming (GP). GP is
tree based and has been successfully used for many problems,
for example optimization, computer visions, symbolic regres-
sion.

We apply genetic operations (mutation, crossover, elitism).
We use the “roulette wheel” selection for our algorithm.
Many evolutionary approaches to NPR have used genetic
algorithms [13], [15] but only a few works have been done
with genetic programming. From the artistic aspect, the focus
of the evolutionary algorithms is not just optimization but
also is aesthetically pleasing renderings. By using genetic
programming, we can produce artistic images. Barile and et.
al. [1] used simple grey line strokes to draw on the canvas.
Overall, our aim is to explore drawing different types of
triangular strokes by using genetic programming to generate
artistic animations.

The artistic perspective of NPR is to engage a viewer rather
than just finding the quickest path to the target. To make
more artistic animations, we give the opportunity to artist
users to control renderings. For instance, a user can define
the maximum length line of a triangle.

We select the best image of each generation as a frame of a
movie and combine all of these frames to make an animation.

The animation starts with a random collection of triangles and
the target image is gradually revealed. The experiments and
results detailed in this paper will answer the following research
questions:

1) What is a suitable configuration of genetic programming
for non photo–realistic rendering?

2) How different types of triangular strokes can affect the
aesthetic qualities of the rendered images?

II. RELATED WORK

Researchers and artists have modified and extended the
computer graphics and evolutionary techniques to get aesthetic
design [13], [16]. In the early 1990s, Haeberli designed a new
method for rendering images. The Haeberli system gave the
opportunity to to have interaction with the drawing process [5].

A new algorithm presented by Litwinowicz [9] used rectan-
gular brush strokes to paint on the canvas. This algorithm was
more successful than Haeberli system because this system did
not lose details [3]. This system was more concerned with the
complexities of brush placement than the easier ones. In late
1990s, Hetzmann employed a technique which used curved
brush strokes [7]. Gooch and et al. employed a new “color
segmentation” algorithms for stroke placement [4].

A. Evolutionary Approaches

There are several types of evolutionary algorithms, such
as genetic algorithms (GA) [18], genetic programming (GP)
[8]and differential evolution (DE) [14]. All forms of evaluation
computing (EC) use Darwinian principle.

Genetic programming is a form of evolutionary computing
which represents genetic material in the form of computer
programs. The programs are typically represented as parse
trees. Other forms of GP are “linear” GP, which produces
assembly language representations, and “Cartesian” GP, which
produces graph representations.

Two methods are usually applied the chromosomes,
crossover and mutation. Crossover is a combination of two
chromosomes which have been selected by selection process.
Filter chromosomes have a higher probability of being se-
lected.

Chakraborty [2] describes an approach for rendering target
images by using a genetic algorithm representation. The sys-
tem uses a very simple set of flat rectangular brush strokes.
Colomosse [10] describes an investigation into the generation
of painterly renderings in which a genetic algorithm represen-
tation is used for representing brush strokes and associated
parameter values.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1129

 TriangleDraw

Angle 2 Position
Red

Attribute
Blue

Attribute

Green
Attribute

Angle 1
Changeable

Length 2

Changeable
Length 1

Fig. 1. The draw–triangle function with eight terminals.

Semet et al. [12] generate painterly and pencil sketch
renderings using an ant colony model.

Barile and et al. [1]used simple grey line strokes in which
they employed a draw function with four terminals. All
research efforts in NPR share a common characteristic. This
is to take an existing image and produced a new rendered
image which possesses some likeness to the original image
(target image). Like many other research efforts, our rendering
technique also uses a reference image.

III. REPRESENTATION

In this section, we describe the algorithms that we have im-
plemented for our work. This section begins with descriptions
of the draw-triangle and fitness functions. We then describe
different types of strokes which we have employed. Last, we
describe genetic programming approach and our methodology.

A. Draw–Triangle function

To draw a triangle on the canvas, we employ a “draw-
triangle” function that has eight terminals. These terminals are
first and second line lengths of the triangle, the angle of the
first line on the canvas, the angle between the two lines, the
position of the first line and three channel colors (red, green
and blue). Fig. 1 shows the “draw–triangle” function.

The triangle–draw function specifies a position on the
canvas. From this position the system draws the second line
of triangle. This function uses two angles. When a pixel is
being drawn the brush value combined with the corresponding
existing pixel value on the canvas according to the following
formula ( we employ φ as 0.5).

Rednew = Redstroke ∗ φ+Redcanvas ∗ (1 − φ)

Greennew = Greenstroke ∗ φ+Greencanvas ∗ (1 − φ) (1)

Bluenew = Bluestroke ∗ φ+Bluecanvas ∗ (1 − φ)

NewPixel = Rednew +Greennew +Bluenew

Triangular strokes are painted on the canvas without any
reference to the target image and we employ a pixel-by-pixel
fitness function. To compute fitness, we add pixel differences
between the three channels on the target image and the corre-
sponding channel on the rendered image. Then we normalized
the result of each channel(Δn) and get the average.

Anti ClockWise
Difference

ClockWise
Difference

Line 1Line 2

Fig. 2. The difference angle calculation of two lines.

ΔRed =
M∑
i=1

N∑
j=1

|targetRed(i, j) − canvasRed(i, j)| (2)

ΔGreen =
M∑
i=1

N∑
j=1

|targetGreen(i, j) − canvasGreen(i, j)|

ΔBlue =
M∑
i=1

N∑
j=1

|targetBlue(i, j)− canvasBlue(i, j)|

f(x) =
ΔnRed+ ΔnGreen+ ΔnBlue

3

B. Triangular Strokes

We give an opportunity to artist users to select the maximum
length size of two lines in a triangle. If these lines are specified
as zero, the system provides a default value. The system
will choose the angle for each line. We use the following
calculation to find the third line length:

Δθ = θ1 − θ2 (3)

L3 =
√
L12 + L22 − 2L1L2 cosΔθ (4)

Where θ1 is angle of line one with a canvas, θ2 is the
angle of second line with a canvas, Δθ is the angle difference
between two lines, L1 is the first line, L2 is the second line
and L3 is the third line.

We check whether the two lines and angles are capable to
create a triangle or not. Sometimes two lines have the same
angle with the canvas or their angle difference is π. This means
that we can not have a third angle. To calculate Δθ, we should
calculate it in both clockwise and anti-clockwise. Then we
choose the smaller value as Δθ Fig. 2 shows this concept.

We always assume that line three is drawn from the last
pixel of line one. To calculate θ3, we shift θ1 to the new
position (θnew ) by adding 180 degree to θ1. The following
equation shows this.

θnew = θ1 + π (5)

The angle of the third line with the canvas depends on two
factors:

• Which one of the angles ( θ1 or θ2) is greater?



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1130

TABLE I
PARAMETERS OF GENETIC PROGRAMMING AND DRAWING PROCESSES.

Functions program3,4 and draw-triangle
Terminals number 8

Crossover 50%
Mutation 25%
Elitism 25%

Selection Roulette Wheel
Termination Max. generation reached or 0.005 difference
Technique Blending

• Is Δθ greater than π degree or not?

By computing these factors, we select one of the following
equations to get θ3 (θ3 must be between 0–2π). If θ3 is out
of the range 0–2π, we have to add or subtract 2π to get the
final and correct θ3.

θ3 = θnew + φ2 (6)

θ3 = θnew − φ2 (7)

To draw the empty triangle, pixels can be written on the
canvas by the aforementioned calculations. But to draw a
filled triangle we have to fill up an empty triangle. To fill
up an empty triangle we employ “barycentric coordinates”
(Vince [17]). We create an invisible rectangle around of each
triangle to reduce the cost of searching for an inner pixel.

C. Genetic Programming Configuration

We employ three functions, program3, program4 and draw–
triangle, in our GP approach. Program3 and 4 have the same
action, they do affect drawing directly because they accept
just draw-triangle functions or themselves as arguments. Their
purpose is to extend the trees and enable more brushstrokes
to be drawn on the canvas. We employ the program3 and
program4 because we want an ordered list sequence of triangle
strokes. The draw-triangle function just accepts terminals and
draws strokes on the canvas directly. The terminals of the
draw-triangle function which we described in the previous
section (III.A) are real numbers in the range 0.0 to 1.0. Fig. 3
shows the relation between the Program 3 and program4 and
the draw-triangle nodes.

We use random mutation and crossover. If the mutation node
happens to be at the bottom of a tree, it causes changes only on
the terminal of a draw-triangle function. So, it will probably
have minimal effect on the canvas. But if this operation
happens near the root of the tree, it could be a significant
alteration of the canvas. For crossover we have the same
situation. The parameters which we employ in our genetic
programming configuration are shown in Table I.

IV. RESULTS AND EXPERIMENTS

In this section, we describe the various experiments that
we have done in order to investigate the kinds of renderings
that can be achieved with the two types of brushstrokes.
Artist users have a facility to define some parameters
of the program such as line length or different type of
triangles. From a computer science perspective, in genetic

TABLE II
CONFIGURATION OF OUR GENETIC PROGRAMMING.

Functions program3,4 and draw-triangle
Terminals number 8

Generation 100,000
Max Tree size 8
Min Tree size 3

Population 4
Crossover 2
Mutation 1
Elitism 1

Selection Roulette Wheel
Termination Max. generation reached or 0.005 difference
Technique Blending

programming we desire to find an optimal result quickly,
that is fast convergence, and employ the fewest resources.
However, from the artistic aspect, we desire aesthetically
pleasing renderings rather than just fast convergence and
reach to target image.

We have experimented with different images and many
runs for each image. We used the GP parameters shown in
Table II. We tested different tree sizes for each image. The
tree depth must be enough large to generate enough strokes
to give a recognizable target. We found that if the maximum
tree size is bigger than eight, we reach the target very early.
This is not desirable from the artistic1 perspective. If we
provide a minimum tree size bigger than four, we paint on
the canvas with a lot of strokes in very first generations. This
is not also desirable from the artistic aspect. Thus we try to
produce the animation which starts with just a few triangles
and then gradually increase number of triangles until the
target is reached. We found that the best configuration for
maximum tree size is eight or seven and for minimum tree
size is three.

We investigated populations of four and a hundred. Usually
in GP a larger population has better convergence and fitness
rather than a smaller population because there are more
individuals in the large population and this provides more
chance to find a better individuals in the search space. Our
results are not content with this explanation.

The experiments show that a population four has better
fitness and output than a population of a hundred. The reason
for this needs more investigation, but it might be because
the improvement of fitness is very small and population size
cannot affect our fitness function that much. Another reason
could be the blending technique: triangles cross and if there
have bad fitness, it can be improved. When we compare both
populations with each other we conclude that the population of
four is also less costly than population a hundred and has better
convergence. So we have selected the population four for
our configuration. To produce artistic animations, number of
generations should be around one hundred thousand otherwise
we will not close to the target. We use table II as the main
configuration for our rendering images.

We provide two different images in this paper out of

1Dr. M. Berry and K. Trist, from school of creative media, RMIT



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1131

Program 4

Program3 Program3 program3
Draw-Triangle

Draw-Triangle Draw-Triangle Draw-Triangle Draw-Triangle Draw-Triangle Draw-Triangle Draw-Triangle Draw-Triangle Draw-Triangle

Fig. 3. Genetic programming tree with three different functions. The draw–triangle function gets just terminals.

Fig. 4. The evaluation of fill triangle and empty triangle.

several runs with different images. Fig. 5 and Fig. 6 show
the result of our triangular strokes. We have compared the
empty triangle and the fill triangle with each other by numeric
measurement (their fitness) to find which one can produce
the better convergence. We show one of these comparisons in
Fig. 4.

V. CONCLUSION

In this work we have implemented two new type of strokes
that are the empty and filled triangle. Relating to research
question #1, we produce the rendering by employing genetic
programming. We have shown that our genetic program-
ming configuration which combines three different node types
(program3, program4 and draw–triangle) produces trees that
generate linear sequences of triangular strokes. The fitness
function is the sum of pixel differences between the rendered
individual and the target image. We found that the maximum
tree size for our goals has to be less than eight and also the
minimum tree size is less than four. We conclude that a small
population size outperforms a large population size, however,
this needs more investigation to understand why it happens.
Relating to research question #2, we implemented different
types of triangular strokes . Fig. 4 shows that filled triangle
can achieve 60% better fitness than empty triangle.

Artists2 believe that the filled triangle is more engaging
than the empty triangle. They explain that the rendering of
empty triangle is similar to the lines after the first thousand
generations. Thus there is not very big difference between a
simple line and the empty triangle rendering. Overall, the filled
triangle achieves the goals of an engaging rendering with good
convergence to the target.

In future work, we tend to investigate other methods of
stroke drawings to create more interesting renderings. More-
over, we will investigate alternate evolutionary forms such as
“Cartesian genetic programming”.

ACKNOWLEDGMENT

We thank our evolutionary art group Dr. D. D’Souza, Dr.
J. Riley, Dr. M. Berry and K. Trist for suggestions relating to
this paper.

REFERENCES

[1] P. Barile, V. Ciesielski, and K. Trist. Non-photorealistic rendering
using genetic programming. In SEAL ’08: Proceedings of the 7th
International Conference on Simulated Evolution and Learning, pages
299–308, Berlin, Heidelberg, 2008. Springer-Verlag.

[2] U. Chakraborty and H. Kang. Stroke-based rendering by evolutionary
algorithm. pages 52 – 57, Dec. 2004.

[3] J. P. Collomosse. Evolutionary search for the artistic rendering of
photographs. In J. Romero and P. Machado, editors, The Art of Artificial
Evolution, Natural Computing Series.

[4] B. Gooch, G. Coombe, and P. Shirley. Artistic vision: painterly rendering
using computer vision techniques. In NPAR ’02: Proceedings of
the 2nd international symposium on Non-photorealistic animation and
rendering, pages 83–ff, New York, NY, USA, 2002. ACM.

[5] P. Haeberli. Paint by numbers: abstract image representations. In SIG-
GRAPH ’90: Proceedings of the 17th annual conference on Computer
graphics and interactive techniques, pages 207–214, New York, NY,
USA, 1990. ACM.

[6] A. Hertzmann. Painterly rendering with curved brush strokes of multiple
sizes. In SIGGRAPH ’98: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, pages 453–460, New
York, NY, USA, 1998. ACM.

[7] A. Hertzmann. Painterly rendering with curved brush strokes of multiple
sizes. In SIGGRAPH ’98: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, pages 453–460, New
York, NY, USA, 1998. ACM.

[8] J. R. Koza. Fundamental Algorithms, volume 1 of On the Programming
of Computers by Means of Natural. MIT press, Cambridge, Mass., four
edition, December 1992.

2Dr. M. Berry and evolutionary art group of RMIT



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1132

Target Eval 0 Eval 1505 Eval 15015 Eval 99826

Target Eval 0 Eval 1508 Eval 15010 Eval 99754

Fig. 5. Sequence from a run of the evolutionary algorithm by using triangle strokes.

Target Eval 0 Eval 1508 Eval 15033 Eval 99404

Target Eval 0 Eval 1504 Eval 15001 Eval 99912

Fig. 6. Sequence from a run of the evolutionary algorithm by using triangle strokes.



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:4, No:7, 2010

1133

[9] P. Litwinowicz. Processing images and video for an impressionist effect.
page 407414. ACM SIGGRAPH, 1997.

[10] P. H. P. Collomosse. Genetic paint: A search for salient paintings. In
Applications on Evolutionary Computing, pages 437–447, New York,
NY, USA, 2005. Springer Berlin / Heidelberg.

[11] M. P. Salisbury, M. T. Wong, J. F. Hughes, and D. H. Salesin. Orientable
textures for image-based pen-and-ink illustration. In SIGGRAPH ’97:
Proceedings of the 24th annual conference on Computer graphics and
interactive techniques, pages 401–406, New York, NY, USA, 1997.
ACM Press/Addison-Wesley Publishing Co.

[12] U.-M. D. F. Semet, Y. O Reilly. An interactive artificial ant approach to
non-photorealistic rendering. In Genetic and Evolutionary Computation
GECCO 2004, pages 188–200. SpringerLink, 2004.

[13] K. Sims. Artificial evolution for computer graphics. In SIGGRAPH
’91: Proceedings of the 18th annual conference on Computer graphics
and interactive techniques, pages 319–328, New York, NY, USA, 1991.
ACM.

[14] R. Storn and K. Price. Differential evolution a simple and efficient
heuristic for global optimization over continuous spaces. Journal of
Global Optimization, 11, December.

[15] D. Terzopoulos. Artificial life for computer graphics. Commun. ACM,
42(8):32–42, 1999.

[16] S. Todd and W. Latham. Evolutionary Art and Computers. Academic
Press, Inc., Orlando, FL, USA, 1994.

[17] J. A. Vince. Mathematics for Computer Graphics, chapter 12, pages
193–221. Undergraduate Topics in Computer Science. Springer London,
2006.

[18] D. Whitley. A genetic algorithm tutorial. In Statistics and Computing,
pages 65–85, Netherland, October 2004. Springer.


