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Abstract—Sense-antisense gene pair (SAGP) is a pair of two 

oppositely transcribed genes sharing a common region on a 
chromosome. In the mammalian genomes, SAGPs can be organized 
in more complex sense-antisense gene architectures (CSAGA) in 
which at least one gene could share loci with two or more antisense 
partners. Many dozens of CSAGAs can be found in the human 
genome. However, CSAGAs have not been systematically identified 
and characterized in context of their role in human diseases including 
cancers. In this work we characterize the structural-functional 
properties of a cluster of 5 genes –TMEM97, IFT20, TNFAIP1, 
POLDIP2 and TMEM199, termed TNFAIP1 / POLDIP2 module. 
This cluster is organized as CSAGA in cytoband 17q11.2.  
Affymetrix U133A&B expression data of two large cohorts (410 
patients, in total) of breast cancer patients and patient survival data 
were used. For the both studied cohorts, we demonstrate (i) strong 
and reproducible transcriptional co-regulatory patterns of genes of 
TNFAIP1/POLDIP2 module in breast cancer cell subtypes and (ii) 
significant associations of TNFAIP1/POLDIP2 CSAGA with 
amplification of the CSAGA region in breast cancer, (ii) cancer 
aggressiveness (e.g. genetic grades) and (iv) disease free patient’s 
survival. Moreover, gene pairs of this module demonstrate strong 
synergetic effect in the prognosis of time of breast cancer relapse. We 
suggest that TNFAIP1/POLDIP2 cluster can be considered as a novel 
type of structural-functional gene modules in the human genome.  
 

Keywords—Sense-antisense gene pair, complex genome 
architecture, TMEM97, IFT20, TNFAIP1, POLDIP2, TMEM199, 
17q11.2, breast cancer, transcription regulation, survival analysis, 
prognosis. 

I. INTRODUCTION 
cis-sense antisense gene pair (SAGP) is a pair of genes 
mapped to opposite strands on the same locus and 
therefore transcribed in opposite directions. 

Corresponding pairs of cis-antisense transcripts are mRNAs 
that are at least partially complementary to each other. Cis-
antisense mRNAs that are naturally transcribed from SAGP 
are known as naturally occurred sense-antisense (SA) RNAs. 
Such SA transcripts (SAT) have been observed in prokaryotes, 
fungi, plants, and animals [1]-[4]. The overlapping of protein 
coding genes is quite a common feature of SAGP in 
prokaryotic genomes [5], [6]. However, up to 32% of yeast 
genes [1] and up to 25% of mammalian genes [3] have been 
estimated to reside in SATs.  

Natural SAT have already been found to function at several 
levels of molecular eukaryotic gene regulation including 
alternative initiation, splicing, termination [7], translational 
regulation [8], RNA stability, trafficking, apoptosis [9],[2] 
genomic imprinting [10], antisense mediated silencing [11] 
and development including X-inactivation [12], eye 
development [13]. 

Case studies have showed that changes in SAGPs 
transcription could be implicated in pathological processes 
such as some neurology and cancer diseases [11], [14]. It was 
shown experimentally, that in leukemia cells, SA gene pair 
BAL1 and BBA is bi-directionally transcribed, concordantly 
expressed due to INF-gamma induction and can directly 
interact at the protein level [15]. In our work [16], we have 
reported 12 high-confidence SAT pairs which are 
concordantly regulated in human breast cancer tissues. Among 
these gene pairs two pairs (RAF1-MKRN2 and CKAP1-
POL2I) are co-regulated constitutively in breast tumors of 
different genetic grades (G1,G1-like, G3-like, and G3), while 
the expression of CR590216-EAP30 SA gene pair is gradually 
changed with aggressiveness of cancer in  genetic groups 
G1,G1-like, G3-like, and G3, respectively.  

In the mammalian genomes, SAGPs can be organized in 
more complex sense-antisense gene architectures (CSAGA) in 
which at least one gene could share loci with two or more 
antisense partners [17], [18]. It has been shown in several case 
studies that SAGPs may be involved in cancer and some other 
diseases and could be associated with complex disease 
syndromes. Many dozens CSAGA can be found in the human 
genome [3], [18], [19]. However, CSAGAs have not been 
characterized in context of their role in human diseases 
including cancers. 

A gene density on the human chromosome 17 is relatively 
higher than on the most other human chromosomes. There are 
many oncogenes on human Chr17. Nevertheless, localization 
of these genes is not uniform.  For example, based on Cancer 
GeneticsWeb (www.cancer-genetics.org), the oncogenes 
TAF2N, NF1, THRA and ERBB2 are located in 17q11.1-q12. 
ERBB2 (Her-2/neu), a well-known oncogene, is located on 
17q12. Many other genes located close to ERBB2 on 17q12 
could be over-expressed / amplified and are known or 
suspected to play a role in carcinogenesis, and, specifically, in 
breast carcinogenesis. Previous studies demonstrated that the 
negative effect on the prognosis of breast cancer attributed to 
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ERBB2 amplification could, in fact, be due to co-amplification 
of the region adjacent to ERBB2 [20]. The ERBB2 and its 
neighbor genes could be amplified and over-expressed in 25% 
of invasive breast carcinomas [21], [22]. In general, ERBB2 
amplification and over-expression confers an unfavorable 
prognosis, although its significance is less than that of the 
traditional prognostic factors – stage and grade. Also, it seems 
that the prognosis and response to therapy varies considerably 
within the spectrum of ERBB2-amplified breast carcinomas, 
indicating that they are biologically heterogeneous [22].  

CSAGAs and their association with human cancers in the 
regions outside of the ERBB2 amplicon core region in 17q12 
[23] have not been studied. 

In this work we suggested that a high diversity of breast 
cancer cell subtypes could be probably associated with the 
active chromatin regions located on 17q, different from the 
ERBB2 amplicon region. We also assume that novel CSAGAs 
could be found on 17q and these complex regions could play 
significant role in transcription control resulting in cancer 
phenotypes and patient’s survival. 
  

II. MATERIALS AND METHODS 
Patients tumor specimens, cell lines and microarray data. 

Clinical characteristics of breast cancer patients and tumor 
samples of two independent cohorts (Uppsala and Stockholm) 
were published in [24]. Stockholm cohort comprised of Ks = 
159 patients with breast cancer, operated in Karolinska 
Hospital from 1st of January 1994 to 31st of December 1996, 
identified in the Stockholm-Gotland breast Cancer registry 
[24]. Uppsala cohort involved Ku = 251 patients representing 
approximately 60% of all breast cancers resections in Uppsala 
County, Sweden, from 1 January 1987 to 31 December 1989. 
Information on patients' disease-free survival (DFS) 
times/events and the expression patterns of approximately 
30,000 gene transcripts (representing N = 44,928 probe sets on 
Affymetrix U133A and U133B arrays) in primary breast 
tumors were obtained from National Center for Biotechnology 
Information (NCBI) Gene Expression Omnibus (GEO) 
(Stockholm data set label is GSE4922; Uppsala dataset label is 
GSE1456). The microarray intensities were MAS5.0 
calibrated and the probe set signal intensities were log-
transformed and scaled by adjusting the mean signal to a 
target value of log500.  

 
Correlation analysis 

We were going to identify whether a significant cluster is 
formed among certain genes organized in a CSAA on 
chromosome position 17q11.2. Our first step to show the 
existence of such a cluster was to estimate Kendall 
correlations among these genes in the two large cohorts and 
subsequently test whether their respective matrix is significant 
at level α = 1%. Formally, the correlation matrix we derive is: 

 
where r1p denotes the Kendall correlation coefficient between 
affy probes 1 and p, estimated from the microarray expression 

data, and p is the total number of probes in the prospective 
cluster. 

To test the significance of R matrix, we used a bootstrap 
version of Barlett’s statistical test [25]. Bootstrap Bartlett test 
evaluates the significance of the hypothesis H0: Rpxp = Ipxp, 
where Rpxp is the p x p correlation matrix and Ipxp is the 
corresponding p x p identity matrix. Under null hypothesis, 
there is no significant correlation among these probes, whereas 
rejection of H0 at α = 1% is an indication of a cluster. For the p 
genes of the correlation matrix one needs to compute the 
statistic: 

||log)]52(
6
1)1[( RpNT +−−−= ,

 

where N is the sample size (number of patients in each 
cohort), p is the number of variables (probes) and |R| is the 
determinant of the sample correlation matrix. This quantity is 
distributed approximately as χ2 with ½ p(p-1) degrees of 
freedom. To test the significance of the statistic, draw B = 
5000 samples of k genes at random from the set of 44928 
genes and estimate Bartlett’s T-test, Tb, for each b = 1, 2, …, 
5000 draws. The corresponding bootstrap p-value is estimated 
as:   pboot

 = number of times {Tb ≥ T}/B. Similar bootstrap 
approaches have been discussed in [26]. 
 
Comparison of correlation matrices 
We would like to show that the genes in R matrix are more 
strongly correlated than any other neighboring genes. In this 
way we show that they form a significant, tight cluster that 
cannot be re-produced in the neighborhood. For our analysis 
we use Box’ M test [27], which evaluates the significance of 
the hypothesis H0: Rpxp = R*qxq, where Rpxp is as before and 
R*qxq is a neighboring qxq correlation matrix, where q ≠ p or q 
= p. To compute the test, we calculate: 

  , 
where |Sp| is the determinant of the variance-covariance matrix 
of our prospective gene cluster (corresponding to Rpxp 
correlation matrix), |Sq| is the determinant of the variance-
covariance matrix of the neighbor group of genes 
(corresponding to R*qxq  correlation matrix) and |Spool| is the 
pooled sample variance/covariance matrix estimated as: 

 

Box [27] gave χ2 and F approximations for the distribution of 
M (exact test does not exist).  
Survival Analysis Based on Genes and Gene Pairs Expression 
Patterns. 

This analysis involves testing whether the prospective gene 
cluster contains survival significant genes and survival 
synergistic gene pairs. To this extent, we briefly describe the 
survival analysis approach we apply to our data. Detailed 
discussion can be found in [28].  

We assume a microarray experiment with i = 1, 2, ..., p 
genes, whose log-transformed intensities are measured for k = 
1, 2, ..., K patients. Associated with each patient are a 
continuous clinical outcome data (Disease Free Survival time 
tk; defined as the time interval from surgery until the first 
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recurrence (local, regional, distant) or last date of follow up), 
and a nominal (yes/no) clinical event ek (occurrence of tumor 
metastasis at time tk). Each patient is assigned to the low- or 
high- risk group according to:  
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where ci denotes the cutoff of the ith gene’s intensity level. 
Motakis and coauthors [28] showed how to estimate this 
cutoff from the data using the 1 dimensional data-driven 
grouping algorithm (1D DDg). The clinical outcomes/events 
are subsequently fitted to the patients’ groups by the Cox 
proportional hazard regression model [29]: 
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where hi
k is the hazard function and αi(tk) = log hi

0(tk) 
represents the unspecified log-baseline hazard function; β is 
the 1 × p regression parameters vector; and tk is the patients 
survival time. To assess the ability of each gene to 
discriminate the patients into two distinct genetic classes, the 
Wald P value of the βi coefficient of model [29] is estimated 
by using the univariate Cox partial likelihood function, 
estimated for each gene i as: 
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where R(tk) = {j: tj ≥ tk} is the risk set at time tk and ek is the 
clinical event at time tk. The actual fitting of Cox model is 
conducted by the survival package in R (http://cran.r-
project.org/web/packages/survival/index.html). The genes 
with the smallest βi Wald p-values are assumed to have better 
group discrimination ability and thus called highly survival 
significant genes. These genes are selected for further 
confirmatory analysis or for inclusion in a prospective gene 
signature set.  

Similar approach is applied to identify synergistic survival 
significant gene pairs using the 2 dimensional data-driven 
grouping method of Motakis et al., 2007[28]. Briefly, for a 
given gene pair i,  j with individual cutoffs (identified from the 
1 dimensional data-driven grouping) ic and jc , i ≠ j, we may 
classify the K patients by seven possible two-group designs. 
Figure 1 indicates the regions where patients’ gene intensities  

 
Fig. 1. Grouping of a synergetic gene pair (genes 1 and 2 with 
respective cutoffs c1 and c2) and all possible two-group designs 
(Designs 1-7).  

[yi,k, yj,k] are plotted; mind that  “A”, “B”, “C” and ”D” are 
defined by the conditions yi,k<

ic  and yj,k<
jc ; yi,k≥

ic  and 
yj,k<

jc ;  yi,k<
ic  and yj,k≥

jc ; yi,k≥
ic  and yj,k≥

jc . 
For i = 1 and j = 2, group the patients by each of the seven 

designs of Figure 1 (using individual gene cutoffs), fit Cox 
model for each design and estimate the seven Wald P values 
for βi. Provided that the respective groups sample sizes are 
sufficiently large and the assumptions of model (25) are 
satisfied, the best grouping scheme among the five 
“synergetic” (1 – 5) and the two “independent” (6 – 7) designs 
is the one with the smallest βi P value. Iterate 1 for all i and j 
combinations of the k genes (i = 1, …, p - 1, j = i + 1, …, p). 

Correlation and survival analysis have been conducted in R 
(http://cran.r-project.org/) using software developed by our 
group. All our programs are available upon request. 

III. RESULTS 
Identification of co-expressed TNFAIP1-POLDIP2 SA 

gene pair 
Using high-confidence Affymetrix Chip U133 A&B 

probesets presented in APMA database [30] (http://apma.bii.a-
star.edu.sg/) we selected 156 SA transcripts pairs located on 
chromosome 17 with reliable RefSeq support (NM ID) for 
each member of a pair. We focused on chromosome 17 based 
on 2 known facts: 1) many regions of chromosome 17 are 
actively involved in recurrent amplifications during breast 
cancer development (including ERBB2 amplicon), [31], and 
2) gene density on the human chromosome 17 is relatively 
higher than on the other human chromosomes, except 
chromosome 19 [32].   

Next, utilizing expression data from Uppsala and 
Stockholm cohorts we calculated Kendal correlations for each 
pair and selected high-confidence top level correlated pairs of 
probesets representing SA gene pairs. Among positive high-
correlated SA pairs, two genes TNFAIP1 and POLDIP2 are 
selected and studied in this work. POLDIP2 (NM_015584) 
gene encodes a protein which interacts with the DNA 
polymerase delta p50 subunit and with proliferating cell 
nuclear antigen (PCNA) [42]. Some transcripts of this gene 
overlap in a tail-to-tail orientation with the gene for tumor 
necrosis factor (TNF) alpha-induced protein 1, TNFAIP1 
(NM_021137). The genes of this pair form a convergent (tail-
to-tail) gene orientation topology, sharing 376-nt region of 
their 3’UTRs and are located on human chromosome cytoband 
17q11.2. It has been reported that this gene can be induced by 
TNF-alpha [52]. Moreover, TNFAIP1 protein can directly 
interact with PCNA protein. In the rat, TNFAIP1gene could 
stimulate polymerase delta activity in vitro in PCNA-
dependent way [47]. Thus, transcription of POLDIP2 and 
TNFAIP1 genes can be under common control and products of 
these genes can be involved in the same pathways.  
 
Identification of TNFAIP1/POLDIP2 SFGM 

We identified a convergent TNFAIP1/POLDIP2 SAGP 
located on 17q11.2. On one hand, this SAGP demonstrated 
reproducible and significant co-expression pattern in 2 
independent cohorts (Uppsala and Stockholm Cohorts (see 
Methods)) of breast cancer patients; on the other hand, when 
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these genes were analyzed as a pair, they turned out to be 
survival significant in both cohorts (see materials and methods 
section).  
Affymetrix U133A&B probes 214283_at (gene TMEM97), 
229182_at as well as 233531_at and 234060_at (gene 
SLC46A1) were excluded from our analysis due to their 

unclear support by the well annotated and reliable RefSeq 
gene model. Genes (and, correspondingly, Affymetrix probes) 
in the matrix were placed in the same order as they are located 
on 17q11.2 in the genome.  

  

 
Fig. 2 TNFAIP1/POLDIP2 is complex cis-sense antisense gene architecture. A - TNFAIP1/POLDIP cis-sense antisense gene pair (thick 

arrows) with 9 neighboring genes included into the analysis (thin arrows).  B - TNFAIP1/POLDIP2 complex cis-sense antisense gene 
architecture (rectangle) including tracks for DNA association with triplemethylated histone H3K4me3 and H3K27me3. Triplemethylated 
histone H3K4me3 and H3K27me3 are reproducibly occurred in different types of cell lines (HL60 (Chip-seq analysis [37]) and hES3 (Chip-
PET analysis [38]) ); H3K4me3 is associated with active/open chromatin regions, H3K27me3 is associated with repressed/closed  chromatin 
regions, however, H3K27me3 does not found  in TNFAIP1/POLDIP2. 
 

TABLE I   P-VALUES OBTAINED BY PAIR-WISE COMPARISONS OF MATRICES FOR 5 GENES IN SFGM GROUP (SFGMM - SFGM MATRIX) AND 6 “NEIGHBORING” 
GENES (NM – “NEIGHBORS” MATRIX). 1 - P-VALUES WERE CALCULATED USING BOOTSTRAP BARTLETT’S TEST; 2 - P-VALUES WERE CALCULATED USING BOX’S M 
TEST (SEE DESCRIPTION OF PROCEDURES IN MATERIALS AND METHODS SECTION); IGM – INTERGENIC MATRIX; U – UPPSALA COHORT, S – STOCKHOLM COHORT 

(SEE METHODS) 

 
Analysis of correlation matrices of these 11 genes identified 

a phenomenon when 5 genes structurally organized as 
CSAGA and tightly linked in the genome (TMEM97/IFT20/ 
TNFAIP1 /POLDIP2 /TMEM199, Figure 2, B) showed a 
strong coregulatory pattern in breast cancer patients (Figure 3, 
A, B) in Uppsala as well as in Stockholm breast cancer 
cohorts. Moreover, expression level for each of the 5 genes in 
different grades in both cohorts was much stronger comparing 
to their neighbors in the chosen genomic window (Figure 3, C 

and D). At the same time, moderate significant differences in 
genes expression level were observed for TMEM97 and 
POLDIP2 genes in different grades in both breast cancer 
cohorts (not shown). 

A structural backbone of this TNFAIP1/POLDIP2 CSAGA 
is composed of 3 CpG rich regions representing putative gene 
promoters (2 of which are bidirectional), as well as of 2 
intergenic convergent SA overlaps (TMEM97 vs IFT20, 
TNFAIP1vs POLDIP2) with RefSeq support (Figure 2, B) and 
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1 divergent SA overlap with UCSC support (IFT20 vs 
TNFAIP1) (not shown).  

Based on the observation of its structural and expressional 
integrity, we termed TNFAIP1/POLDIP2 CSAGA as a 
TNFAIP1/POLDIP2 structural-functional gene module 
(SFGM). For the remaining 6 genes in the chosen window we 
proposed the term “neighboring” genes for further description 
convenience.  

Next, using statistical procedures based on Bartlett’ [25] 
and Box’ M tests[27], we addressed the following questions: 
1) whether the correlation matrices for the 5 genes of  
TNFAIP1/POLDIP2 SFGM (SFGM matrix -SFGMM) as well 
as correlation matrices for the 6 “neighboring” genes 
(“neighbors” matrix – NM) are statistically significant 
comparing with randomly chosen matrices in the whole 
genome (Figure 3, A and B); 2) whether SFGMMs are 
statistically significant from NMs; 3) whether intergenic 
matrices (IGMs) are not statistically different from NMs. The 
results are presented in Table 1. In Uppsala cohort, correlation 
matrices were highly significant in total group as well as in 4 
different grades. In Stockholm cohort, matrices for total group, 
G1 and G3 subgroups were highly significant. G3-like 
subgroup was close to the border line (p<0.01) and only G1-
like was not significant (Table 1). Due to the fact that for all 
NMs in both cohorts p-values in Barlett’s test were at least 

several times higher than the borderline, we excluded them as 
candidates for the members of TNFAIP1/POLDIP2 SFGM.  
We also applied Box’ M test for comparing two correlation 
matrices at α= 1%. The test revealed highly significant 
differences in almost all matrices pairs SFGMs vs NMs 
(except Stockholm G3-like) and absence of differences in all 
matrices pairs IGMs vs NMs. Taken together, the statistical 
analysis clearly supports the existence of the 5 gene’s 
structural and functional gene module. On the other hand, it 
strongly excludes the 6 studied “neighboring” genes as 
members of this SFGM. Noteworthy, we also utilized Box’s 
M test to compare if there are any differences among SFGM 
matrices for each grade inside of both of the cohorts. 
Surprisingly, we observed that SFGM showed significant 
strengthening of coregulatory profile (from left to right) in the 
following group pairs: G1 vs G3-like (Uppsala, p<8.08E-03, 
Stockholm, p<9.21E-07), G1-like vs G3 (Stockholm, 
p<3.46E-004), G1 vs G3 (Stockholm, p<2.62E-04), G1-like vs 
G3-like (Stockholm, p<3.64E-08). 
 
Survival analysis of SFGM genes and their closest neighbors 
in breast cancer patients  
Survival analysis algorithm and the software were developed 
in our group previously [28]. 

 
 

 
Fig. 3. Members of the TNFAIP1/POLDIP2 are co-expressed in breast cancer and organized in the structural –functional gene module 
(SFGM). Visualization of correlation matrices of expression of CSAGA genes demonstrates the presence of strong co-regulatory pattern: 
TNFAIP1/POLDIP2 co-regulatory area is defined by enrichment of significant correlation coefficients (Z-values, p<0.01). Members of 
TNFAIP1/POLDIP2 form the SFGM (SFGM matrix -SFGMM).  Neighbor’s matrix shows correlations among 6 “neighboring” genes 
(Neighbor’s matrix – NM). Intergroup matrix provides intergroup correlations between genes of SFGM and NM. A, C – Uppsala cohort; B, D 
– Stockholm cohort; A and B – correlation matrices, C and D -   genes expression data (Mean+/-SD) in breast cancer patients with different 
genetic grades (G1, G1-like, G3-like, G3, [24]).  
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Fig. 4. Survival analysis for the TNFAIP1/POLDIP2 gene pair in breast cancer patients: I -Uppsala cohort, II – Stockholm cohort.  A - 
Correlation of the gene expression for TNFAIP1 and POLDIP2 genes and optimal partition of expression domains; B – survival curves for 
individual genes (when analyzed separately): dashed - TNFAIP1, dotted - POLDIP2; C – survival curves for the gene pair TNFAIP1/POLDIP2 
(when analyzed together); D - distribution of patients in different grades (white column - total group, grey column – good prognosis group, 
black column – bad prognosis group). For B and C – survival curve(s) 1 correspond to good prognosis group, survival curve(s), 2 correspond to 
bad prognosis group. 
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TABLE II INDIVIDUAL GENES SELECTED AMONG TNFAIP1/POLDIP2 SFGM 
AND 6 “NEIGHBORING” GENES WHICH PROVED TO BE SURVIVAL SIGNIFICANT 
IN BOTH UPPSALA AND STOCKHOLM COHORTS (P-VALUE ≤ 0.05). UPPSALA P-
VALUE CORRECTION P*U=4.2E-03; STOCKHOLM P-VALUE CORRECTION 
P*U=5.1E-03. 

 
 

We isolated individually survival significant genes (Table 
2). As it is evident from Table 2, four members (unique genes) 
of TNFAIP1/POLDIP2 SFGM are significant at α=5%, 
whereas  

no neighboring genes satisfied this criterion. To minimize 
Type I error rate (false positives) we applied False Discovery 
Rate (FDR) correction to the p-values using the classic FDR 
of Benjamini and Hochberg, 1995[34], extended for positive 
dependent data [36]. Typically, positive dependent exists if the 
variance covariance matrix of the six probes we study contains 
only positive entries, which is true in our case. At significance 
level α = 5%, the Uppsala and the Stockholm p-value 
corrections were estimated to be p*

u=4.2E-03 and  p*
u=5.1E-

03, respectively. Table 2 indicates the Wald and FDR 
significant probes of our set. Notice that after FDR correction 
our set still contains highly significant genes in both cohorts.                     
From Table 2 we can observe that only genes belonging to the 
TNFAIP1/POLDIP2 SFGM are survival significant at least in 
one cohort; TMEM97 was survival significant in both cohorts, 
at the same time it was shown previously to play a role in 
primary and metastatic colorectal cancers [36]. We also 
applied survival analysis and 2D DDg to identify survival 
significant probe pairs among the probes of our prospective 
cluster. Analysis was performed in such a way that the designs 
(e.g., Figure 4, I-A, II-A) across the cohorts were the same 

(patients were similarly distributed). First, we estimated the 
Wald p-values and then used the FDR correction as before. 
The corrected p-values in Uppsala and Stockholm cohorts 
were  and . We isolated those 
gene pairs which were survival significant in both cohorts 
studied. Table 3 shows the 10 non-redundant survival 
significant gene pairs identified in our analysis.  

Among the eight different genes from significant gene pairs 
in Table 3 we observed 2 (SARM and VTN) belonging to the 
“neighboring” genes of TNFAIP1/POLDIP2 SFGM. This fact 
may be explained that on the level of clinical phenotype gene-
gene interactions of TNFAIP1/POLDIP2 SFGM genes with 
their “neighbors” could be much more complex, than on the 
transcriptional level. At the same time we could speculate that 
TNFAIP1/POLDIP2 SFGM may serve as a local “core” 
region of survival significant and clinically important genes 
which may “drive” the surrounding genes in breast cancer 
progression.   

Noteworthy, 3 out of 10 isolated gene pairs (bold italic in 
Table 3) demonstrated strong effect of synergy. Wald p-value 
calculated for a gene pair (when expressional and clinical data 
were analyzed for both genes) was at least 10 times lower 
comparing to p-values calculated for individual genes of the 
pair.     

TNFAIP1/POLDIP2 gene pair showing a strong synergy 
effect on survival (more than 20 times in both cohorts, Table 
3) in fact is a convergent SA pair in the middle of 
TNFAIP1/POLDIP2 SFGM. Graphical representation of 
survival significant genes pair TNFAIP1/POLDIP2 with more 
details is shown in Figure 4.  

Therefore, survival analysis of TNFAIP1/POLDIP2 SFGM 
and its “genes-neighbors” revealed individual survival 
significant genes as well as significant gene pairs, and this fact 
may suggest an importance of TNFAIP1/POLDIP2 SFGM for 
breast cancer prognosis. 

 
 

TABLE III SELECTED NON-REDUNDANT SURVIVAL SIGNIFICANT GENE PAIRS IDENTIFIED IN BOTH COHORTS OF BREAST CANCER PATIENTS. AFFY PROBE* : 
AFFYMETRIX U133 (A&B) PROBES IDS, GS*: GENE SYMBOL. U: UPPSALA COHORT; S: STOCKHOLM COHORT 
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    Genes of TNFAIP1/POLDIP2 SFGM could be coregulated 
by chromatin remodeling/activation.  

Figure 2, B demonstrates several facts which could indicate 
histones modification as possible mechanism of observed 
transcriptional coregulatory pattern of TNFAIP1/POLDIP2 
SFGM. Additional customer tracks in UCSC browser for 
trimethylated histones H3K4me3 and H3K27me3 DNA 
association in promyelocytic leukemia cells (HL60) [37], 
(http://www.bcgsc.ca/data/histone-modification) confirmed 
the fact of transcriptional activation of the genes involved in 
the TNFAIP1/POLDIP2 SFGM. All three CpG–rich putative 
promoters in the TNFAIP1/POLDIP2 SFGM showed clear 
binding with H3K4me3 (a marker of transcriptional active 
chromatin) as well as lack of binding with H3K27me3 (a 
marker for inactive chromatin). Nevertheless, putative 
promoters for the “neighboring” genes SEBOX, VTN, and 
SARM did not show any binding signal for H3K4me3. Similar 
situation is observed for GIS Chip-PET track (embryonic stem 
cells hES3) of UCSC Browser [38] (Figure 2, B). Strong DNA 
binding signal of H3K4me3 is observed in all three putative 
promoter regions of TNFAIP1/POLDIP2 SFGM and only 
faint binding of H3K27me3 is visible for TMEM97 and 
TMEM199/POLDIP2 putative promoters. Alternatively, 
putative promoter for SEBOX gene does not show any signal 
for both H3K4me3 and H3K27me3; regulatory region for 
VTN and SARM1 reveals moderate signal for H3K4me3 and 
H3K27me3 of the same intensity. Although the mentioned 
tracks show DNA binding data not for breast cancer cell lines, 
we would not exclude the possibility of similar mechanism of 
coregulatory pattern of TNFAIP1/POLDIP2 SFGM also in 
breast cancer cell lines and patients.    

IV. DISCUSSION 
A method of statistical identification of co-regulated genes 
organized in complex genome architectures  

In the present study, we have developed a new 
computational method of statistical identification of co-
regulated genes organized in complex genome architectures 
including more than one SA gene pair.  Our approach is based 
on: (i) concordant analysis and selection of expressed SA 
genes, (ii) identification of the boundaries of a genomic region 
encompassing genes with similar co-expression pattern, (iii) 
validation of the stability of the expression pattern using 
independent patient cohorts, (iv) evaluation of clinical 
significance of expressed genes which belong to identified 
genome region and (v) identification of synergy of the genes 
in context of disease aggressiveness and disease relapse. 
  
TNFAIP1/POLDIP2 is an essential structural-functional 
module in the human genome 

In present work we performed the analysis of the 
TNFAIP1/POLDIP2 CSAGA on 17q11.2 in two breast cancer 
cohorts as an example of implementation of our approach. 
TNFAIP1/POLDIP2 CSAGA is composed of 5 genes: 
TMEM97, IFT20, TNFAIP1, POLDIP2 and TMEM199.  The 
gene pairs (TMEM97 - IFT20), (TNFAIP1- POLDIP2) and 
(IFT20-TNFAIP1) produce SA transcripts; gene  pairs (IFT20- 
TNFAIP1) and (POLDIP2 - TMEM199) share corresponding 
bi-directional promoter regions. This complex genomic region 

exhibits a well-organized transcription apparatus : 3 CpG 
islands;  several TF binding sites in canonical promoter 
regions – GATA1, TAXCREB, CREBP1, CREB, SREBP1 
(http://genome.ucsc.edu/cgi-bin/hgTracks, Transfac 7.0); 
strong signals for POL-II binding (not shown) and probable 
open chromatin regions (H3K4met3(+) and H3K27met3(-) 
regions (Figure 1, B)).  TNFAIP1/POLDIP2 CSAGA region 
could produce a large diversity of alternative splice variants of 
the genes and is highly enriched with many other regulatory 
sequences (USCS genome browser, AceView Gene Models 
with Alternative Splicing). Analysis of correlation matrices 
revealed a phenomenon when genes structurally organized in 
the genome in CSAGA demonstrate reproducible coregulatory 
pattern in breast cancer cells (Figure 3). We termed 
TNFAIP1/POLDIP2 CSAGA as the TNFAIP1/POLDIP2 
structural-functional gene module (SFGM).  

 
Concordant positive regulation in TNFAIP1/POLDIP2 
CSAGA 

We did not observe any significant negative correlations 
(discordant regulation) in the TNFAIP1/POLDIP2 SFGM 
what is in agreement with several previous reports of frequent 
concordant regulation of sense-antisense pairs [33], [39]-[41]. 

Correlation matrices analysis of TNFAIP1/POLDIP2 
SFGM in four grades (G1, G1-like, G3-like and G3) of breast 
cancer patients identified the fact of strengthening of 
correlations between the genes of TNFAIP1/POLDIP2 SFGM. 
This finding indicates the importance of the module in breast 
cancer progression. On the other hand, this idea is supported 
by survival analysis of individual genes as well as of gene 
pairs of TNFAIP1/POLDIP2 SFGM and its neighbors. Only 
the genes of TNFAIP1/POLDIP2 SFGM proved to be survival 
significant in at least 1 of 2 cohorts analyzed. Among 11 genes 
analyzed, 10 survival significant gene pairs have been 
identified and all the genes of the TNFAIP1/POLDIP2 SFGM 
were involved in these pairs. Each of the 10 pairs contained at 
least 1 gene of the SFGM. Moreover, 3 top level survival 
significant gene pairs demonstrated strong synergetic effect in 
prognosis of breast cancer disease relapse when compared 
with individual genes. 

 
Protein interaction sub-network 

Our analysis of the literature about members of the module 
confirmed our suggestion regarding functional integrity of 
TNFAIP1/POLDIP2 SFGM and its importance in cancers.  

Liu et al. (2003) [42] reported about physical interaction of 
POLDIP2 protein with p50 subunit of DNA polymerase delta 
and proliferating cell nuclear antigen (PCNA). PCNA has 
been called the “ringmaster of the genome”, because it has 
been shown to actively participate in a number of the 
molecular pathways responsible for the life and death of the 
mammalian cell [43]. It also has proven to be a useful marker 
to evaluate cell proliferation and prognosis when combined 
with other breast cancer markers, such as estrogen receptor, 
progesterone receptor and ERBB2 [44]-[46]. Another work 
suggested that rat TNFAIP1 is homologous to polymerase 
delta-interacting protein (PDIP1) as well as with PCNA. Both 
rat PDIP1 and rat TNFAIP1 could stimulate polymerase delta 
activity in vitro in PCNA-dependent way [47]. TMEM97 
cytoplasmic expression was shown to be positively related to 
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expression of PCNA and considered to be as a prognostic 
factor in metastasis of colorectal cancer [36]. Therefore, at 
least 3 members of TNFAIP1/POLDIP2 module could be 
functionally associated in the same PCNA complex. 

Two interesting recent publications support the idea about 
involving TNFAIP1/POLDIP2 module in cell cycle and cells 
proliferation. POLDIP2 was shown to be associated with 
spindle organization and aberrant chromosome segregation 
[48]. Tissue specific floxed deletion of IFT20 in the mouse 
kidney causes mis-orientation of the mitotic spindle in 
collecting duct cells, prevents cilia formation and promotes 
rapid postnatal cystic expansion of the kidney [49]. 

Interesting pleiotropic effects of POLDIP2 also include 
interaction with cell-cell adhesion receptor CEACAM1 [50] 
and involvement in transcription and metabolism of 
mitochondrial DNA [51]. 

It is important to note that TNFAIP1/POLDIP2 module is 
located outside of the well-known ERBB2 amplicon on 17q12, 
overrepresentation of which in the genome often associated 
with occurrence of ERBB2-positive breast cancer subtype. In 
the future studies it is intriguing to analyze the relationships of 
TNFAIP1/POLDIP2 module and ERBB2 amplicon region.  

Taken together, our analysis suggests that 
TNFAIP1/POLDIP2 SFGM is composed of the genes which 
are not only closely organized in a complex genomic 
architecture and co-regulated on the epigenetic and 
transcription levels, but which are also could be involved in 
essential biochemical pathways as well as protein-protein 
interactions forming molecular complexes important for many 
cell needs, including cell division, proliferation, apoptosis, 
intracellular transport and cell binding. Such non-random 
combinations of structural and functional properties of the 
gene architectures suggest evolution and physiological 
essentiality and clinical significance of the 
TNFAIP1/POLDIP2. Transcription co-activation of genes in 
this CSAGA is strongly associated with high aggressiveness 
and poor prognosis of breast cancer. 

V. CONCLUSION 
We can conclude that the methods of computational 

identification of novel structural-functional gene modules and 
data-driven grouping of clinically heterogeneous (cancer) 
patients based on expression patterns of genes of such 
modules could provide broad perspectives of development of 
computational systems biology strategies for understanding 
genetics and pathobiology of complex genetic diseases.  

Transcription co-activation of genes in TNFAIP1/POLDIP2 is 
strongly associated with this CSAGA amplification, high 
aggressiveness and poor prognosis of breast cancer. Due to 
concordant regulation pattern of genes in structural-functional 
gene modules, one could either target the antisense 
transcript(s) along, resulting in reduction of expression of 
sense mRNA transcription from sense gene and even adjacent 
genes of the SA pair. Due to such possibility, pharmacological 
strategies aimed at either stimulation or suppression of 
expression profile for a specific group of genes which are 
influenced by natural SA regulation could be also developed. 
A discovery of biologically meaningful and clinically 
significant CSAGAs instead of conventional finding of  “gene 

signatures”  might be more promising in context of (i) 
understanding of the mechanistic role of CSAGAs in complex 
diseases including cancer, (ii)  efficiency of microarray 
analysis into clinical practice, (iii) identification of new  drug 
targets and (iv) development of new drug strategies.  
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