
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:2, 2008

166

Abstract—The integral form of equations of motion of composite 
beams subjected to varying time loads are discretized using a 
developed finite element model. The model consists of a straight five 
node twenty-two degrees of freedom beam element. The stability 
analysis of the beams is studied by solving the matrix form 
characteristic equations of the system. The principle of virtual work 
and the first order shear deformation theory are employed to analyze 
the beams with large deformation and small strains. The regions of 
dynamic instability of the beam are determined by solving the 
obtained Mathieu form of differential equations. The effects of non-
conservative loads, shear stiffness, and damping parameters on 
stability and response of the beams are examined. Several numerical 
calculations are presented to compare the results with data reported 
by other researchers. 

Keywords—Finite element beam model, Composite Beams, 
stability analysis 

I. INTRODUCTION

OMPOSITE beams are increasingly being used in the 
design of high-performance load-carrying structures 

when high strength and stiffness to weight ratios are desired. 
The stability analysis of laminated composite structures is 
important to be investigated when such structures are 
subjected to varying time loads. Most of the studies in this 
field are associated to laminated composite plates analysis. In 
this study, the stability analysis of composite beams is 
investigated, which has not been studied as comprehensively 
as laminated composite plates. 

The dynamic instability of structures occurs because of 
parametric resonance. The analytical dynamic instability 
analysis of the beams subjected to varying time loads has been 
studied extensively by Bolotin [1].  For prismatic composite 
laminated beam, consisting of individual rectangular 
component beams, which are rigidly connected together at 
their longitudinal edges to form of arbitrary cross section and 
the stress-strain system is time-dependent, using a numerical 
method such as finite element method must be considered. 
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The finite element method and numerical simulation have 
been widely used by researchers to study the dynamic analysis 
of laminated beams. Currently the demand for developing of 
beam elements and implementation of numerical tools to 
predict the response of such structures increases. Regular 
beam models can be used for moderately thick beams. But for 
slender beams that the length to thickness ratio is extremely 
high and geometrically nonlinear analysis is required, 
convergence may become very poor using such models. Also 
when the beam is shear deformable with small strains and 
large deformation, developing a model that can take in 
account the various coupling effects, such as stretching-
bending coupling is important in dynamic analysis. 

 Earlier Kapania and Raciti [2] developed a twenty degrees 
of freedom beam element to analyze thick laminated beams. 
Yuan and Miller [3] developed a finite element model using a 
constant and quadratic shear strain in each lamina. Their 
model gives good results on the static analysis of short beams 
but has a high number of degrees of freedom, which is 
disadvantage. Manjunatha and Kant [4] developed a four 
nodes beam element with four, five, and six degrees of 
freedom per node for the analysis of laminated beams 
subjected to just static loading. Their model is based on the 
higher-order shear deformation theory. Bassiouni et al. [5] 
presented a two dimensional one lamina five node beam 
model with ten degrees of freedom to obtain the natural 
frequencies and mode shapes of the beams. Loja et al. [6] 
proposed a model based on a straight beam finite element with 
four nodes and fourteen degrees of freedom per node, 
considering bi-axial bending, stretching and twisting effects. 
Ramtekkar et al. [7] presented a six-node plane-stress mixed 
finite element model by using Hamilton’s minimum energy 
principle, which can’t include nonconservative loading. 

Subramanian [8] developed a two-nodes beam element with 
eight degrees of freedom per node to investigate the vibration 
problems but coupling effects has not been considered in his 
model. In this study, a new beam model with optimum degrees 
of freedom is developed to descritize the equations of motion, 
which can acquire accurate results with faster convergence 
and less computation time. The model is a straight beam 
element with five nodes and twenty- two degrees of freedom 
with considering transverse bending, stretching and twisting 
coupling effects. The descritized equations of motion are 
solved using the symbolic computational algorithm to identify 
the boundary of instability in the load frequency dependence 
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plane. Several numerical results are presented to verify the 
performance of the developed model and formulation. Finally, 
the effects of nonconservative loads and damping on the 
boundaries of instability and dynamic response of the 
laminated composite beam are investigated.  

II. FORMULATION

Consider a laminated prismatic composite four layer beam 
with uniform thickness and coordinate systems as shown in 
Fig. 1 are subjected to an axial harmonic varying time load. 

Fig. 1 The laminated composite beam with local coordinate system 

The constitutive equations for the beam are  
S E           (1) 

where the resultant matrix S, the strains matrix , and the 
laminate stiffness matrix E are defined as; 
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The xN , yN , and xyN are the membrane and shearing 

forces per unit length, xM , yM , and xyM  are the bending 

and twisting moments per unit length, and xQ , yQ  are the 

shear forces through thickness per unit length.  
The coefficients of the laminate stiffness matrix E are 

described as; 
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whereas ijQ  are plane stiffness for , 1,2,6i j  and ijQ
are the shear stiffness for , 4,5i j , and 

5  is the shear correction factor.6sk

To cover the effects of bending stretching, stretching-
twisting and bending-twisting couplings on governing 
equations, membrane strains , , , ,xx yy xy xz yz  and the 

bending strains , ,xx yy xy  are defined in terms of the mid 

surface displacements and rotations; 
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The generalized displacement vector for each point of the 
beam is expressed as follow: 

T
1 2 3 1 2 3, , , , , ,u u uU             (4) 

III. EQUATIONS OF MOTION 
The governing equations of motion corresponding to the 

constitutive Eq.(1) are derived using the dynamic version of 
principle of virtual work;  

0

0
T

I EW W K dt       (5) 

The EW , IW , K  are the virtual work done by external 
forces,  the virtual work done by internal forces, and the 
virtual kinetic energy respectively and defined as follow; 

2
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T
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T T l

Kdt dxdtU MU      (8) 

where if are surface forces per unit area acting on the beam 

and iU are virtual displacements. The double dot over the 
variables denote the derivative with respect to time and M
represents the mass matrix. It is perceptible that all terms of 
the integral form of the equations of motion Eq.(5) are 
displacement dependents and can be discretized through a 
well established beam finite element model. 

IV. FINITE ELEMENT MODEL
A five-node twenty-two degrees of freedom beam element 

based on the first order shear deformation theory is developed 
to discretize the integral form of equations of motion. The 
effects of bending-stretching, shear-stretching, bending-
twisting couplings, transverse shear deformation, and 
continuity have been considered to define optimum degrees of 
freedom for each node to acquire fast and accurate results. 

Fig. 2 The developed beam model 

The nodal displacement eU can be expressed as the 
generalized global displacement U  and shape functions N as 
defined with the following equation;  

eU NU          (9) 
The shape functions matrix N comply with Lagrangian 

cubic and quadratic interpolation polynomials. All the nodal 
displacements and rotations are measured at the mid-surface 
and expressed as; 

1,2 3,4,5
e e eU U U        (10) 

for end nodes 1 and 2:

1,2 11 12 13 11 12 13 21 22 23 21 22 23, , , , , , , , , , ,e u u u u u uU

and for nodes 3,4, and 5:

3,4,5 32 33 31 42 43 41 52 53 52 53, , , , , , , , ,e u u u u u uU
Nodal displacements are a combination of the axial 

displacements 11 21,u u , the lateral displacements 

12 22 32 42 52, , , ,u u u u u , the transverse 

displacements 13 23 33 43 53, , , ,u u u u u , and the rotations 

11 12 21 22 13 23 31 41 52 53, , , , , , , , , .

The discretization of equation (5) over the domain leads to 
the element tangent stiffness matrix, mass matrix, and force 
vectors. Substituting equations (6)-(10) into equation (4), the 
element dynamic equations of motion in matrix form are 
obtained as follows; 

e e
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e e e e eM U K K K U F        (11) 

where the element mass matrix eM , and the elastic stiffness 
matrix e

EK , the geometric stiffness matrix e
GK , and the loading 

stiffness matrix e
LK  are given as; 

e T

V

dVM N N        (12) 

/ 2
e T
E

0 / 2

el b

b

dydxK B D B      (13) 

/ 2 T
e
G

0 / 2

el b

e
b

dydxK S
U

     (14) 

e
L

e

e

FK
U

           (15)                  

 The total external nodal loads applied on the surface of the 

beam is defined as, 
2

0 2

e
bl

i
b

f dydxe TF N . In this case, the 

nodal loads eF are applied on the last element, therefore the 
nodal and the global loads are same eF F .

By assembling of all elements, the global finite element 
dynamic equation of motion is obtained as; 

t E G L tMU K K K U F       (16) 

If the compression varying time periodic load applied on 
the beam is introduced in the form of 0 costF F F t , the 
loading stiffness matrix can be separated to static and dynamic 
stiffness matrices; 

0 t
L L L cos tK K K         (17) 

Therefore, dynamic equation of motion becomes; 
0 t

t E G L L tcos tMU K K K K U F    (18) 

and free vibration analysis of the beam about the equilibrium 
state when 0F yields to: 

0 t
t E G L L tcos 0tMU K K K K U       (19) 
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V. STABILITY ANALYSIS
Equation (19) is a set of coupled Mathieu equations which 

govern the motion of the beam with periodic solutions. The 
periodic motion is usually the boundary case of vibrations 
with unboundedly increasing amplitudes. Therefore, a 
dynamic instability analysis is essentially about the 
determination of the boundaries of the dynamic instability 
regions. The trivial solution of the equation (19) with period 
of 2T where 2T  in Fourier series form are expressed as the 

following:  

t
1,3,5,...

( sin cos )
2 2m m

m

m t m tU A B       (20) 

mA and mB are vectors independent of time (t).
Substituting Eq. (20) into Eq. (19) and equating the 
sum of the coefficients of identical sin

2
m t and

cos
2

m t  to zero leads a set of the first order 

determinant to zero: 
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Equations (21) are characteristic equations of the system, 

which determines boundaries of dynamic instability regions. It 
is important to note that these equations have symmetric 
coefficients and are useful for systems without damping in 
account. 

VI. STABILITY ANALYSIS WITH DAMPING IN
ACCOUNT

Damping of composite laminated beams plays a vital role in 
the dynamic behaviour analysis of structures by controlling 
the resonant vibrations and thus reducing of the bounded 
instability regions. This damping depends on lamina material 
properties as well as layer orientations, and stacking sequence. 
A damping analysis procedure of laminated composites has 
been developed initially by Adams and Bacon [9]. In this 
procedure the energy dissipation can be described as separable 
energy dissipations associated to the individual stress 
components. This analysis was refined in a later paper of Ni 
and Adams [10]. In their study, the damping of orthotropic 
beams is considered as a function of material orientation such 
as cross-ply laminates, angle-ply laminates, and more general 
types of symmetric laminates. Herein, damping of composite 
materials based on dissipation energy associated by strain 
energy is considered. The equilibrium state equation of motion 
for the beam with damping in account is defined as; 

0 t
t t E G L L tcos 0tMU CU K K K K U  (22) 

Solving Eq. (22) with same approach as described 
previously, leads to the eigenvalue equations in matrix 
form as: 

t 2
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Expansion of the above determinant in second order 
form, yields the equations of the boundary of principal 
instability regions of the system. 

VII. NUMERICAL RESULTS

To study the performance of the present model and 
eigenvalue formulation, isotropic and orthotropic 
straight cantilever and simply supported beams were 
examined in different cases. 

Case-1: Isotropic clamped-free beam 

In this case, the natural frequencies of a cantilever isotropic 
straight beam using the developed model were determined and 
the results compared to exact solution of an Euler-Bernouli 
beam. The material and geometric properties 
are 0.1935 m l , 20.7 GPa E , 43.47 cm  I ,

20.000645 mbh , 0.3 , 31968 kg/m . Table-1 
compares the results obtained from five finite elements of 
present model with exact solution and the results calculated 
using ten finite elements two nodes regular beam presented by 
Logan [11] and shows the good performance of the present 
model for isotropic beams. 

TABLE I THE NATURAL FREQUENCIES OF THE CANTILEVER BEAM

Natural
frequencies

(rad/sec)

Exact
solution

Logan, 2003, 
using FE (10 

elements) 

Present, using 
FE (5 

elements) 

1 228 227.5 228 

2 1434 1410 1426 

Case-2: Orthotropic clamped-free and pinned-pinned 
asymmetric laminated composite beam 

Table-2 shows very good agreement between the free 
vibration natural frequencies results of the present laminated 
beam model and the results obtained by Maiti and Sinha [12] 

for two different slender ratios 60l
h

 and 5l
h

 with 

clamped free and simply supported boundary conditions. The 
material properties are defined as follows: 
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TABLE II THE NONDIMENSIONAL NATURAL FREQUENCIES FOR THE CLAMPED-FREE (C-F) AND SIMPLY SUPPORTED (S-S) LAMINATED COMPOSITE BEAMS

3

129.20708   GPa ,      9.42512      GPa ,

=5.15658        GPa ,      =4.30530       GPa ,

=2.54139        GPa ,

0.3 ,                   0.218837,

1550.0666  Kg/m ,  0.0127

xx yy

xy xz

yz

xy xz yz

E E
G G
G

b m, 0.1905 ml

Maiti & Sinha Present model, using FE (5 elements) 

C-F S-S C-F S-S lamina lay up 
configuration

60
t

l
h 5

t

l
h 60

t

l
h 5

t

l
h 60

t

l
h 5

t

l
h 60

t

l
h 5

t

l
h

8.854 3.132 26.378 17.350 8.863 3.140 26.389 17.210

12.404 3.493 34.786 21.599 12.503 3.550 34.752 20.342

12.271 3.227 34.403 20.092 12.312 3.225 34.289 19.788

12.227 3.154 34.271 19.384 12.305 3.158 34.279 19.224

Case-3: Orthotropic clamped-clamped asymmetric 
laminated composite beams 

In this case, the three first nondimensional natural 
frequencies of a clamped-clamped unsymmetrical laminated 
beam with 0 / 45 / 45 / 0 layup configuration will be 
investigated. The results obtained from FE discrettized model 
using five elements are calculated and compared with those 
results presented by Loja et al. [6], using higher order shear 
deformation theory (HSDT). The mechanical and geometric 
properties of the beam are same as case-2. The results are 
shown in Table 3. 

TABLE III THE FIRST THREE NATURAL FREQUENCIES OF ANGLE PLY 
LAMINATED COMPOSITE BEAM

Model First 
mode

Second
mode

Third
mode

Loja et al. 2001, 
HSDT 39.89 48.99 103.8 

10 Present, FE (5 
elements) 42.56 55.37 112.47 

Loja et al. 2001, 
HSDT 72.54 119.27 183.77 

30 Present, FE (5 
elements) 74.33 127.66 195.72 

Case- 4: Stability analysis of cross ply laminated 
beam

The good performance of the developed beam model 
leads to accurate analysis and determination of the 
dynamic instability regions of laminated beams. 
Consider a cross ply 0 / 90 / 90 / 0o o o o  laminated beam 
with equal thickness for each lamina. The stiffness and 

mass matrices of free vibration of the beam are
calculated using the presented formulations and 
symbolic computations algorithm.  The approximate 
expression for the boundaries of the principal regions 
of instabilities is obtained by equating to zero the 
determinant of the first matrix element of Eq.(22). This 
approximation is based upon the fact that the periodic 
solution of the equation of motion has a trigonometric 
form. 

The first principal dynamic regions of instability of the 
shear deformable and undeformable cross ply laminated 

beams with ratio 10l
h

 are plotted and shown in Fig. 3. The 

material and geometry properties of the beam are same as 
previous case-2. 

As it can be seen, for the beam without shear deformation 
the regions of dynamic instability trends to narrowing. The 
lower bound position of the shear deformable beam changes 
faster than upper bound. Another obvious fact is the instability 
region of the beam subjected to the nonconservative load 
doesn’t intersect the axis of loading. Also, the regions of 
instability for nonconservative loading are enlarged in 
compare to conservative loading system. With damping in 
account, the elements  of the damping matrix C  of the cross 
ply laminated composite beam with same material properties 
are calculated as described by Ni and Adams [10]. The results 
are depicted in Fig. 4 for different damping factors. 

The stable region is enlarged when the damping ratio of the 
structure is increased and it has more effect on stabilizing the 
system. On the other hand, the greater the damping, the 
greater the amplitude of longitudinal forces is required to 
cause dynamic instability of the beam. 

0 / 90 / 0 / 90    

0 / 30 / 30 / 0    

0 / 45 / 45 / 0    

0 / 60 / 60 / 0    

/ tl h



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:2, No:2, 2008

171

(a) (b)

Fig. 3 Dynamic principal instability regions of a cantilever cross-ply laminated beams without shear stiffness (crosshatched region) and with 
shear stiffness (dash lines) subjected to (a) conservative loads (b) nonconservative loads 

Fig. 4 Dynamic principal instability regions of a cantilever cross-ply laminated beam with different damping factors

Determination of amplitude 

In this section, the vibration of parametrically excited 
laminated beam for the principal resonance of the system, 
which causes the principal instability will be studied and the 
amplitude of the beam will be investigated. The parametric 
resonance of the system occurs in the near of frequency 

2 n . The framework of the principal resonance, the 

parametric excitation can excite only one mode at a time, it 
results that for each mode, infinity of instability regions could 
occur. Within these instability regions, the particular mode is 
excited in lateral motion with exponentially growing amplitude. 
For 2 n , the resulted instability region is the largest and the 
most significant one. It is referred to as the principal parametric 
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resonance. To determine the influence of loading frequency 
on the amplitude resonance, the first and most important 
instability region will be considered. The amplitude of 
principal resonance is defined as:  

1
2 2 2A B

        (24) 

Substituting Eq.24 in the equation 22 and solving the 
characteristic determinant 25,  the amplitude of the vibrating a 
cross ply laminated composite simply supported shear 
deformable beam with same material and geometry properties as 
defined in case-2  are obtained and depicted in Fig.5. 

t 2
0 2L

E G L

t 2
2 0 L

E G L

1 1
2 4 2 0

1 1
2 2 4

K MK K K C

K MC K K K

            (25) 

Fig. 5 The steady state resonance frequency-amplitude curve for a cross ply laminated composite beam

The resonance curves are bent toward the increasing 
exciting frequencies. The damping factor has important 
role in diminishing of the amplitude of the vibrating 
beam, in contrast the increasing of the nonlinear 
elasticity of the system does not always reduce the 
resonance amplitudes.

Response of the system 

The last section of this paper proceeds to dynamic 
response of the laminated beams subjected to varying 
time loading. The response of the structure will be 
investigated in stable and unstable regions and the 
result will be determined and plotted. The periodic 
solution of the Mathieu type equations of motion of the 
beam will be established using the Floquet’s theory. 

With two parameters R and Z as defined as follows: 

1 0 1 t
E G L L,      R M K K K Z M K  (26) 

Equation 22 can be expressed as: 

t tcos 0tU R Z U     (27) 

The Floquet solutions of the above Mathieu type 
equation can be expressed in Fourier series as: 

t
i t in t

n
n

e b eU        (28)  

Substitute Eq. (28) into Eq. (27) and regrouping, 
the following solution is obtained. 

2
1 1

1 1 0
2 2

i n t
n n n

n
b b n b eZ R Z

       (29) 

This is a homogeneous set of equations, and to get 
a nontrivial solution the determinant is set to zero. This 
then specifies the characteristic value for a given set 
of material and geometry properties of the beam, 
R and Z . With  so determined then nb in terms of 0b
can be determined. Finally 0b can be determined from 
the initial conditions at 0t . The first three term 
approximation is used for investigating the motion of 
the beam subjected to varying time load with loading 
frequency . Approximate solution of the system with 
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just the three terms, which leads to the set of equations 
30.

2

1
2

0

1
2

1( ) 0
2

1 1 0
2 2

10 ( )
2

b
b
b

R Z

Z R Z

Z R

   

 (30) 

For real value of   and imposing the initial 
condition that 00tU U gives: 

0 0

0 0 2 2

1 1
2 2/ 1

b b
b

Z Z
U

R R
 (31) 

and final solution becomes: 

0 0

0 2 2

1 1
2 2i t i ti t

t

b b
b e e e

Z Z
U

R R

   (32) 

Now the presented formulation is examined to find 
the response of the nonconservative cross ply laminated 
beam in the regions of dynamic instability and stability. 
The material and geometry properties are same as 
defined in Table-1. Three points from Fig.5 are chosen 
to investigate the response of the middle of a simply 
supported beam: 

1- Stable state:  the response of the system for the 
first point in stable region with nondimensional 
parameters 1.75,     0.82

t

n cr

P
P

is calculated and 

plotted in Fig. 6a. Also the periodic loading is depicted 
to compare the frequency of the system to loading 
frequency.  As it can be seen the response of the beam 
is pure periodic and follow the loading frequency 
history. 

 2- Asymptotically stable or dynamically critical:
the response of the system for the second point is on 
the curve of instability region with nondimensional 
parameters 0.75,     0.82

t

n cr

P
P

is calculated and 

plotted in Fig.6b.  As it can be seen the response of the 
beam is aperiodic and does not follow the loading 
frequency history. 

3- Unstable state: the response of the system for the 
third point in instable region with nondimensional 

parameters 1,     0.82
t

n cr

P
P

is calculated and 

plotted in Fig. 6c. The values of the characteristic are
complex in this region and leading to unstable solution. 
As it can be seen the displacement shows an increasing 
due to the compressive periodic load, which is %80 of 
the lowest critical load. Another fact that it is obvious 
from the response curve, the beam frequency is higher 
than the loading frequency. It is clear that load 
parameters carrying the structure in unstable state is 
unreliable and hazardous and causes the structure 
failure. For this reason structure designer try to 
eliminate the instability of the structure with load 
control and adding damping in the structure. Response 
of the forced system in unstable region depends on the 
excitation  parameters and signature varies due to these   
parameters values. For example the amplitudes of the 
beam corresponded to substantial excitation loading 
parameters 1

cr

P
P

increase in a typical nonlinear 

manner accompanied by beats as shown in Fig. 6d. 

With damping in account, the equation of motion of 
the beam Eq.(27) becomes; 

t t tcos 0tU CU R Z U    (33) 

The first three terms of approximate solution leads 
to the set of  equations  

2

1
2

0

1
2

1( ) ( ) 0
2

1 1 0
2 2

10 ( ) ( )
2

b
b
b

R C Z

Z R C Z

Z R C

(34)

The response of the beam for small amount of 
damping and large excitation changes as shown in 
Fig.7a and for large and very large amount of damping 
amplitude of the vibration will be back to zero quicker 
as shown in Fig.7b and 7c. This fact can be determined 
that using appropriate damping in structures subjected 
to periodic loading can reduce the violation and 
unpredictable motion of the system in instability state. 

VIII. CONCLUSION

In this paper, dynamic stability analysis of laminated 
composite beams under varying time loading was studied. The 
equations of motion were established based on the dynamic 
version of virtual work principle formulation. A five node 
twenty degrees of freedom beam model was developed to 
descritize the governing equations. This model considers axial 
bending, stretching, bending-stretching and twisting couplings 
for general lay-ups and for the most used cross ply lamina. 
The matrix form of the equations of motion was solved using 
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the symbolic computation to determine the principal instability regions of the beam  

(a) (b)

(c) (d)

Fig. 8 Responses of a cross ply simply supported laminated composite beam subjected to a periodic loading 

 Fig. 7 (a) Response of a cross ply simply supported laminated composite beam subjected to a large periodic loading in 
unstable region with small damping ratio 
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Fig. 7 (b) Response of a cross ply simply supported laminated composite beam subjected to a large periodic loading in 
unstable region with large damping ratio 

Fig. 7 (b) Response of a cross ply simply supported laminated composite beam subjected to a large periodic loading in 
unstable region with very large damping ratio 

subjected to conservative and nonconservative loading with 
and without damping in account. The results show the 
important roles of the damping in decreasing the dynamic 
instability regions and eliminating perturbed behavior of the 
system. The insertion of transverse shear deformation results in 
higher amplitudes of the response curves. The stationary 
amplitude response curves have a right-hand overhang, which is 
generally due to geometrical non-linearities.  Considering shear 
deformation results in a considerable decrease in size of the 
stability regions and in a shift of instability zones towards 

lower excitation frequencies. The numerical results are 
compared with those of the other studies and the finite 
elements available in the literature. The comparison shows 
that the developed finite element model predicts the natural 
frequencies of the beams better than the other models and the 
results are obtained with less computation time and faster 
convergence.
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