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Abstract—In this paper, a framework for the simplification and
standardization of metaheuristic related parameter-tuning by applying
a four phase methodology, utilizing Design of Experiments and
Artificial Neural Networks, is presented. Metaheuristics are multi-
purpose problem solvers that are utilized on computational opti-
mization problems for which no efficient problem specific algorithm
exist. Their successful application to concrete problems requires the
finding of a good initial parameter setting, which is a tedious and
time consuming task. Recent research reveals the lack of approach
when it comes to this so called parameter-tuning process. In the
majority of publications, researchers do have a weak motivation for
their respective choices, if any. Because initial parameter settings
have a significant impact on the solutions quality, this course of
action could lead to suboptimal experimental results, and thereby
a fraudulent basis for the drawing of conclusions.

Keywords—Parameter-Tuning, Metaheuristics, Design of Experi-
ments, Artificial Neural Networks.

I. INTRODUCTION

Metaheuristics, such as Evolutionary Algorithms (EA), Par-
ticle Swarm Optimization (PSO), or Ant Colony Optimization
(ACO), are multi-purpose optimization methods that can be
applied to a large set of computational optimization problems.
They become selected when the finding of an optimal solution
is very expensive in time or space complexity, and where no
efficient problem specific algorithm pre-exists.

Each metaheuristic has a predefined set of parameters that
has to be initialized before an execution. The metaheuris-
tics adaptation requires the calibration of these parameters
with respect to the problem at hand. This activity is called
parameter-tuning. An appropriate initial parameter setting has
a significant impact on the solving progress, as such as
the exploitation or exploration rate of the search space, and
therefore the solutions quality. The importance of parameter-
tuning is discussed in [1], in the context of EA. Furthermore,
there exists no general optimal initial parameter setting for
metaheuristics. This means that for any metaheuristic, an
optimal initial parameter setting can vary considerably from
problem to problem, and even between problem instances.

Figlali et al. reveal in [2] the lack of approach when it
comes to parameter-tuning, using ACO. In the majority of
investigated publications, researchers have a weak motivation
for their choice of parameters, if any.

In this paper, a new general framework for an automated
parameter-tuning for metaheuristics, is presented. In contrast to
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other automated tuning methods such as in [3] or [4] for PSO,
or the ones mentioned in [5] for ACO, is the here proposed
method applicable for any metaheuristic.

The methodology aggregates four phases, 1. Problem De-
scription, 2. Training, 3. Parameter Retrieval and 4. Execution.
It combines the advantages of an automated Design of Ex-
periments (DoE) for efficient parameter-tuning and Artificial
Neural Networks (ANN) for the recognition of good initial
parameter settings for new problem instances.

The paper is structured as the following: This section
proceeds with short introductions into parameter-control and
tuning, Design of Experiments, and Artificial Neural Net-
works. Section two, The Framework, presents the proposed
framework, and its phases, in further detail. In section three,
Discussion and Concluding Remarks, the approaches applica-
bility and relevance are discussed, and section four, Future
Work, concludes the paper by giving record of ongoing and
potential prospective research.

A. Parameter-control and tuning

In [1], Eiben et al. lift the importance of parameter-control
and tuning in the context of EA. Even though narrowed to
EA, the discussion applies to parameter-control and tuning to
metaheuristics in general. Where parameter-tuning addresses
the finding of good static parameters before the execution of
a metaheuristic to a problem, does parameter-control address
the dynamic change of parameters throughout the execution.
A combination of both approaches is generally required for
the finding of satisfactory solutions.

B. Design of Experiments

Design of Experiments (DoE) is a stochastic framework
for the conduct of representative experiments [6]. It attempts
to minimize the amount of required experiments for an
analysis, while maintaining high quality results. Experiments
are considered to have input variables (factors) and output
variables (responds). DoE suggests a well organized approach,
combining experiments with extreme values and representa-
tive experiments, so called "center points" (see Figure 1).
A common objective with DoE is to optimize the factors
by comparing and evaluating the responses quality. DoE has
successfully been applied as a tool for the manual parameter-
tuning of particular computational optimization problems (e.g.,
[7] and [8]).
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center and extreme point experiments within the cube.

C. Artificial Neural Networks

An Artificial Neural Network (ANN) is a statistical regres-
sion tool that can be utilized for the modeling of complex
systems, or the finding of patterns in data. ANN’s have the
capability to 1) learn from experience, 2) generalize, and 3)
serve as a universal functional approximator [9]. They are in-
spired by biological nervous systems, utilizing the concepts of
different neuron types that are linked via synaptic connections,
resulting in a so called neural network. A special character
of neural networks is, that their knowledge is distributed
throughout the neurons connections. The output behavior of an
ANN depends on its neuron model, inner architecture, initial
weighting and the cost function. ANN’s are especially useful
in areas where the systems functional behavior to be simulated
is hard till impossible to figure out ("black boxes"). The ANN
model is computational equivalent to the Universal Turing
Machine model.

II. THE FRAMEWORK

Within this paper, a framework that tackles the parameter-
tuning issue by semi-automation, utilizing a combination of
DoE and ANN, is proposed. Succeeding, the four process
phases, 1. Problem Description, 2. Training, 3. Parameter
Retrieval and 4. Execution, are explained in further detail.
The explanation is supported by Figure 2, which illustrates the
whole parameter-tuning process, component-wise. To provide
a better understanding, a scenario is pursued in the text,
where appropriate. In this scenario, it is assumed that the
user tries to solve the Traveling Salesman Problem (TSP)
by applying the standard PSO 20071 metaheuristic. TSP is
one of the classic NP-complete combinatorial optimization
problems in the literature. Given a list of cities, specified by
their coordinates, the task is to find a shortest tour, visiting
each listed city exactly once.

1http://www.particleswarm.info/
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Training, 3. Parameter Retrieval and 4. Execution, illustrated component-wise.

A. Phase 1: Problem Design

First, the problem at hand has to be specified. This includes
it’s computer readable representation, the definition of a fitness
evaluation function for assessment of the results quality, and
the choice of a metaheuristic to approach it. In the case of
TSP, a representation usually is an array of two dimensional
coordinates (latitude × longitude), representing the cities for
a tour. The fitness evaluation function could simply measure
the total length of a complete tour. Depending on the choice
of metaheuristic, more or less effort has to be put into it’s
adaptation to the problem. EAs, for instance, require the
definition of reproduction operations, such as mutation or
crossover, for an incremental fitness improvement. For PSO,
this is sometimes referred to as swap sequencing (see e.g.,
[10]).

B. Phase 2: Training

Within the training phase, a problem model is generated
from a two stage process. The first stage, Experimental De-
sign, concerns the optimization of initial parameter values
by applying an automated DoE to a finite training set of
problem instances. In stage two, Learning, an ANN becomes
trained with the data from stage one, so to later on give
recommendations for initial parameters for any given problem
instance.

Fig. 1. An illustration of a 3-factors full factorial DoE, highlighting the

Fig. 2. The four phases of the methodology: 1. Problem Design, 2.
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param factor data type min max
A1 population size integer 2 100
A2 inertia weight (velocity impact) decimal 0.8 1.2
A3 c1 (cognitive parameter) decimal 1 3
A4 c2 (social parameter) decimal 1 3

AN EXAMPLE OF HOW THE STANDARD PSO FACTORS COULD BE DEFINED
FOR

Without loss of generality, let P be the set that
compiles all instances of the problem at hand, P.
A1, . . . , Am,m ∈ N are said to be the initial, metaheuristic
specific, parameters with their respective domains. Let then
IP = {(a1, . . . , am)|aj ∈ Aj , j ∈ m} be the set of all
possible initial parameter value combinations for P.

1) Experimental Design: DoE’s factors for the factorial de-
sign are the metaheuristic parameters A1, . . . , Am, described
by their data type and respective extreme values, min and
max. For standard PSO they may look as in Table I. This
table is used as a starting point for experimental design,
independent of P. However, finding good extreme values for
the parameters is a non trivial task in itself. An investigation of
former achievements with the metaheuristic at hand can reveal
commonly applied settings that can work as an indicator for
where minimal and maximal bounds could be settled.

Each problem instance is assessed independently for the
finding of near-optimal initial parameter values. For this reason
an iterative factorial design with repetitive experiments is
proposed. The user is here able to specify the amount of
iterations. One iteration means the conduct of a full scale fac-
torial design with extreme value and center point simulations.
The results from a former iteration are used for a screening
into most promising areas of the search space. In the case of
Figure 3, while trying to maximize the fitness, another DoE
experimental series would be suggested with bounds in the
upper corner, indicated by the cube. That way, the accuracy of
the findings improves iteratively, with the caveat of a longer
experimental execution time. In case of a limitation to one
screening for each iteration, the increase of execution time is
linear (assuming that the experiments require about the same
runtime). For each problem instance p ∈ P the most promising
exploited parameter setting ip ∈ IP is suggested, after the last
iteration, as its best known initial parameter vector.

color means high fitness; green color low fitness.

The training result is a set Tres = {(p, ip)|p ∈ P, ip ∈ IP }.
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instance property values, the ANN replies with recommended initial parameter
values for the instances execution.

For TSP, problem instances could be arrays of the ten largest
cities in Germany and Sweden respectively, pger, pswe ∈ P .
After the experimental design, the resulting training set, ap-
plying standard PSO, might be:

Trestsp_pso = {[pger, [70, 1.11, 2.0, 2.23]], [pswe, [65, 0.86, 1.98, 2.9]]}
This should only be seen as an example, since the number of two

problem instances would in general not suffice for the inference of
a representative problem model. Tres is of high importance to the
upcoming learning stage.

2) Learning: The ANN is trained to recommend near-optimal
initial parameters, based on the properties of so far unknown problem
instances. To do so, the ANN is fed with Tres, for supervised
learning. See Figure 4 for the ANN’s structure. Its inputs X1, . . . , Xn

are problem properties, describing the concerned problem instance as
precisely as possible. The problem properties for TSP, for instance,
naturally include the amount of cities of a map. But they might
be extended by the general density or average distances to the
nearest neighbor or other relevant properties. Here is where the users
understanding of the problem can make a significant impact on the
models quality. The ANN’s output parameters Y1, . . . , Ym are equal
to A1, . . . , Am from the experimental design.

In response to the training, the ANN builds a regression model
that captures an understanding of the problem at hand. The trained
ANN serves from here on as the problem model.

C. Phase 3: Parameter Retrieval
The ANN can now be utilized as an oracle, to receive good initial

parameter values (y1, . . . , ym) ∈ Y1× . . .×Ym for any given p ∈ P ,
represented by a vector (x1, . . . , xn) ∈ X1 × . . .×Xn. Committed
requests are treated in real time.

D. Phase 4: Execution
The last stage is the algorithms execution with the initial parameter

setup (y1, . . . , ym) ∈ Y1 × . . .× Ym, as recommended in phase 3.

III. DISCUSSION AND CONCLUDING REMARKS

A framework for the simplification and standardization of meta-
heuristic related parameter-tuning by applying a four phase method-
ology, utilizing DoE and ANN, was presented.

The authors position is that parameter-tuning is as relevant to
metaheuristics as parameter-control is. Appropriate initial values for
parameters are of high importance for a metaheuristics performance
[1]. Optimal results are generally neither obtained if parameters are
inappropriately initialized, nor if there exists no satisfactory dynamic
parameter-control. Parameter-control addresses another issue, which
the author sees as a problem of methodology in itself. An issue that
is of high relevance, but which, however, was not addressed in the
context of this paper.

The main advantage of the proposed parameter-tuning methodol-
ogy is that it can be applied to any attempt to solve a computational
optimization problem with a metaheuristic.

Fig. 4. The ANN’s inputs are problem specific. Provided with the problem

Fig. 3. An exemplified behavioral landscape after a DoE iteration. Red

TABLE I

DOE IN THE FIRST STAGE OF THE TRAINING PHASE
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The frameworks training phase is composed of the experimental
design and learning stages. These stages are linked together by
a well defined interface, which allows for modularity, meaning
here the exchange of components. Thus, DoE and ANN are no
compulsory parts of the methodology, as long as they are substituted
by compatible means. DoE and ANN were selected due to their
respective applicability for experimental design and learning.

The methodology’s time consuming fraction is the experimental
training stage. Initial parameter values for new problem instances
can be retrieved in real time from the ANN, once the training phase
is over.

The quality of the recommended parameter values depends on
1) the quality of the DoE recommendations.
2) the quality (diversity) of the training set for the ANN.
3) the problem properties for ANN training.
4) the suitability of ANN’s network properties (initial weighting,

cost function, . . . ).

IV. FUTURE WORK

The future work will be allocated in 1) the sharp design of the DoE
and ANN compartments inner architecture for the training phase, and
2) the experimental verification of the frameworks applicability.

A. DoE and ANN Design
One question to answer is if a single factorial design type for

DoE is generally applicable. Otherwise, the user has to be added
into the loop in the DoE design stage to ensure a solid basis for
further inference. The ANN’s inner architecture, neuron design, cost
functions, regression type and initial weighting have to be experimen-
tally evaluated and decided upon. The problem of overfitting has to
be tackled. The resulting models have to be tested independently, and
furthermore, compared on standard optimization problems with well
performing state of the art algorithms and parameter-tuning methods.

B. Verification
The compartments have to be combined and integrated into the

framework in a sense that final conclusions could be drawn about
• the quality of recommended parameters from the DoE in com-

parison to known optimal or ’good’ parameter settings.
• the quality of recommended parameters from the ANN in

comparison to the recommended parameter settings, obtained
from the DoE.

• the quality of recommended parameters from the ANN in
comparison to known optimal or ’good’ parameter settings.

• the impact of the framework on the solution quality, as well as
the total execution time.

A state of the art survey about metaheuristic related parameter-tuning,
as well as experimental work regarding the formerly mentioned
questions are in working progress.
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