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Abstract—A complex valued neural network is a neural network
which consists of complex valued input and/or weights and/or thresh-
olds and/or activation functions. Complex-valued neural networks
have been widening the scope of applications not only in electronics
and informatics, but also in social systems. One of the most important
applications of the complex valued neural network is in signal
processing. In Neural networks, generalized mean neuron model
(GMN) is often discussed and studied. The GMN includes a new
aggregation function based on the concept of generalized mean of all
the inputs to the neuron. This paper aims to present exhaustive results
of using Generalized Mean Neuron model in a complex-valued neural
network model that uses the back-propagation algorithm (called
’Complex-BP’) for learning. Our experiments results demonstrate the
effectiveness of a Generalized Mean Neuron Model in a complex
plane for signal processing over a real valued neural network. We
have studied and stated various observations like effect of learning
rates, ranges of the initial weights randomly selected, error functions
used and number of iterations for the convergence of error required on
a Generalized Mean neural network model. Some inherent properties
of this complex back propagation algorithm are also studied and
discussed.

Keywords—Complex valued neural network, Generalized Mean
neuron model, Signal processing.

I. INTRODUCTION

AN Artificial Neural Network (ANN) is an information
processing paradigm that is inspired by the way biolog-

ical nervous systems, such as the brain, process information.
The key element of this paradigm is the novel structure
of the information processing system. It is composed of a
large number of highly interconnected processing elements
(neurons) working in unison to solve specific problems. [2]

Signal Processing is one of the many fields of work that
has been significantly influenced by neural network. We have
sought to take a step further the works of T.Nitta in the field of
complex back propagation and of P. K. Kalra, J. John and R.
N. Yadav in Generalized Mean Neural Model. The aim of our
paper is to demonstrate the effectiveness of a complex valued
Generalized Mean Neural Model in signal processing.
Our experiments demonstrated an increased efficiency in train-
ing phase. A complex valued neural network improves the
models efficiency 1.5 times and a complex valued generalized
mean neuron model improves the efficiency 1.67 times over a
real valued neuron network.
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Fig. 1. Constellation diagram [9]

II. PRELIMINARIES

A. Constellation Diagram in Signal processing

Quadrature Amplitude Modulation (QAM) uses many dif-
ferent phases known as states: 16, 32, 64, and 256. Each state
is defined by a specific amplitude and phase. This means the
generation and detection of symbols is more complex than
a simple phase or amplitude device. Each time the number
of states per symbol is increased the total data and band-
width increases. Constellation diagrams are used to graphically
represent the quality and distortion of a digital signal. In
practice, there is always a combination of modulation errors
that may be difficult to separate and identify, as such, it is
recommended to evaluate the measured constellation diagrams
using mathematical and statistically methods.

In the constellation diagram, an interferer shows in the form
of a rotating pointer superimposed on each signal status. The
example applies the condition that there is no other error
present at the same time. The constellation diagram shows
the path of the pointer as a circle around each ideal signal
status.

Carrier suppression or leakage is a special type of inter-
ference in which its frequency equals the carrier frequency
in the RF channel. Carrier leakage can be superimposed on
the QAM signal in the I/Q modulator. In the constellation
diagram, carrier leakage shows up as a shifting of the signal
states corresponding to the DC components of the In-phase and
Quadrature components. Additive Gaussian noise can disturb
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Fig. 2. Input/Output graph of a unit

the digitally modulated signal during analog transmission,
for instance in the analog channel. Additive superimposed
noise normally has a constant power density and a Gaussian
amplitude distribution throughout the bandwidth of a channel.
If no other error is present at the same time, the points
representing the ideal signal status are expanded to form
circular ”clouds” [11].

B. Back Propagation Algorithm In A Real Plane

Back propagation algorithm has been used extensively in
neuron models. This algorithm is a development from the sim-
ple Delta rule in which extra hidden layers (layers additional
to the input and output layers, not connected externally) are
added. The network topology is constrained to be feed forward
or loop-free - generally connections are allowed from the input
layer to the first (and possibly only) hidden layer; from the first
hidden layer to the second and from the last hidden layer to
the output layer. In a typical back propagation network, the
hidden layer learns to recode (or to provide a representation
for) the inputs. More than one hidden layer can be used. The
architecture is more powerful than single-layer networks: it
can be shown that any mapping can be learned, given two
hidden layers (of units). The units are a little more complex
than those in the original perceptron.
Their input/output graph is shown in Figure 2. As a function:

Y = 1/(1 + e(−k(
∑

Win∗Xin))) . . . . . . (1)

The graph shows the output for k = 0.5, 1, and 10, as the
activation varies from -10 to 10.The weight change rule is
a development of the perceptron learning rule. Weights are
changed by an amount proportional to the error at that unit
times the output of the unit feeding into the weight. Running
the network consists of the forward pass and backward pass. In
the forward pass the outputs are calculated and the error at the
output units calculated. In the backward pass the output unit
error is used to alter weights on the output units. The error at
the hidden nodes is calculated (by back-propagating the error
at the output units through the weights), and the weights on the
hidden nodes are altered using these values. For each data pair
to be learned a forward pass and backwards pass is performed.

This is repeated over and over again until the error is at a low
enough level. [7]

C. Generalized Mean Neuron Model

This new neuron model uses a new aggregation function.
The origin of this new aggregation function is the generalized
mean-operator of fuzzy sets, given by Piegat. [1] In GMN
model the aggregation function is generalized mean of all
the inputs of neuron. The mathematical representation of this
model is given as

net = (
∑

(win(xn)r/N)1/r . . . . . . (2)
Where net represent the total input activity. This operator
is known as Generalized Mean Operator and r is known as
generalization parameter. For different values of r it represents
some useful mathematical operators

r →∞ net = max(xn)

r = 1 net = (
∑

((xn)/N) or the arithmetic mean

r → 0 net = (Π((xn)/N) or geometric mean

r = −1 net = (
∑

((xn)/N)−1 or harmonic mean

r →∞ net = min(xn) . . . . . . (3)

Generalized mean neuron model adapts various orders, i.e.,
for r=1 it represents first order neuron and for r=0 it represents
Nth order neuron. For our model we used the first order for
our generalized mean neuron model with complex inputs and
outputs [8].

III. COMPLEX VALUED NEURAL NETWORK

A complex valued neural network is a neural network (of
arbitrary topology) which consists of complex valued input
and/or weights and/or thresholds and/or activation functions.
The need for such neural networks is widespread For instance,
in electrical engineering, signals are complex valued. The pro-
cessing of such signals requires the design and implementation
of new complex valued neural network architectures. This
subject has been gaining increasing interest and significance
in recent years. One of the most important characteristics of
the Complex-valued neural networks is the proper treatment of
complex-amplitude information, e.g., the treatment of wave-
related / rotation-related phenomena such as electromagnetism,
light waves, quantum waves, oscillatory phenomena even
including traffic signal control, and color images processing
based on adaptive signal rotation.

A. The Complex BP Algorithm

This algorithm is a complex valued version of a
probabilistic-descent method. It has been proved that the
learning algorithm for the complex APCM converges. This
algorithm states the following. If n is a parameter representing
discrete time then we can modify the complex valued param-
eter w as
wn+1 = wn + Δwn,
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where wn denotes a complex valued parameter at time n. We
can also re-write the equation as follows:
�[wn+1] = �[wn] + �[Δwn],

�[wn+1] = �[wn] + �[Δwn] . . . . . . (4),

where �[z], �[z] denotes the real and imaginary part of a
complex number z, respectively. By definition we say that
aparameter w is optimal if and only if the average error R(w) is
local or global minimum. [3], [4] Then the following theorem
holds.

Let A be a positive definite matrix. Then by the using the
update rules :

�[Δwn] = −εAΔ�r(z(wn, xn), yn),

�[Δwn] = −εAΔ�r(z(wn, xn), yn), n = 0, 1 . . .

The (complex-valued) parameter w approaches the optimum
as near as desired by choosing a sufficiently small learning
constant ε > 0 (Δ� is a gradient operator with respect to the
real part of w, and Δ� with respect to the imaginary part).[5]

B. Generalization of Real Back Propagation Algorithm

The theory of Complex APCM has been applied to a multi-
layer (complex valued) neural network. For complex valued
back propagation model we used the following derived results.

In a complex Back Propagation model all the input signals,
weights, thresholds and output signals are complex numbers.
The output activity (analogous to the activity of a real BP)
for a neuron n is defined as:

Yn =
∑

WnmXm + Vn,

where Wnm is the (complex-valued) weight connecting
neuron n and m, Xm is the (complex-valued) input signal
from neuron m, and Vn is the (complex-valued) threshold
value of neuron n. To obtain the (complex-valued) output
signal, the activity Yn is converted into its real and imaginary
part

Yn = x + iy = z

where i denotes
√−1. Although various output functions can

be considered, we used the output definition defined by
fC(z) = fR(x) + ifR(y)

where fR(x) is a sigmoid function. Also fC(z) is not holo-
morphic.

Consider the following variables, wml is the weight between
the input layer m and the hidden node l, vnm is the weight
between the hidden layer n and the output neuron m, Θ is the
threshold of the m hidden neuron, γ is the threshold of the m
output neuron. Let Il , Hm , On denote the output values of
the input neuron l, the hidden neuron m and the output neuron
n, respectively. Let Um and Sn denote the internal potentials
of the hidden neuron m and the output neuron n, respectively.

That is Um =
∑

wml Il + Θm , Sn =
∑

vnm Hm + γn ,
Hm = fC(Um) and On = fC(Sn).

Let δn = Tn − On denote the error between the actual
pattern On and the target Tn of output neuron n. The square
error for the pattern p is Ep = (1/2)

∑
(Tn − On)2 where

N is the number of output neurons. The learning rule for
the complex-BP model described above is as follows. For
a sufficiently small learning constant (learning rate) ε > 0
and a unit matrix A, using Theorem stated above, it has been
shown that the weights and the threshold should be modified
according to the following equations:

δvnm = Ĥmδγn

γn = ε(�[δn](1−�[On])�[On]+i�[δn](1−�[On])�[On])

ωmt = Îtδθm . . . . . . (5)

θm = ε[(1−�[Hm])�[Hm]
∑

(�[dn](1−�[On])�[On])

�[On]�[vnm] + �[dn](1−�[On])�[On])�[On]�[vnm])

−i(1−�[Hm])�[Hm]
∑

(�[dn](1−�[On])�[On])�[On]

�[vnm]−�[dn](1−�[On])�[On])�[On]�[vnm])]

where Â denotes the complex conjugate of A.[6]

IV. EXPERIMENTS

A. C-XOR Benchmark Problem

Multi-layer networks use a variety of learning techniques.
We used one of the popular techniques of back-propagation.
We compared the output values with the correct answer to
compute the value of predefined error-function. The error was
then fed back through the network. Using this information,
the algorithm adjusted the weights of each connection and
thus reduced the value of the error by some small amount
in successive iterations. After repeating this process for a
sufficiently large number of training cycles the network con-
verged to a stable state where the error of the calculations is
insignificant. In this way the network has learns a certain target
function. To adjust weights properly we applied a general
method for non-linear optimization that is called gradient
descent. For this, the derivative of the error function with
respect to the network weights is calculated and the weights
are then changed such that the error decreases (thus going
downhill on the surface of the error function). This is also the
reason why back-propagation can only be applied on networks
with differentiable activation functions.

To check the efficiency of Generalized mean neuron model
in a complex plane, we first observed the effects of the model
on the C-XOR benchmark mode. To enhance our experiments
results we varied the learning rates, the initial weights taken,
and the iterations of the neural network. We also studied
the effect of various error functions on the complex valued
generalized mean neuron model.
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Fig. 3. Error convergence for Complex Quadratic error function

1) Model Description: Our first basic model had two
complex valued inputs which corresponded to the inputs of
the CXOR benchmark problem. The model had one hidden
layers. The layer had four nodes in the first hidden layer.
All the nodes had generalized mean function. All the outputs
were finally sent to the output layer which also had another
generalized mean function.

2) Input: We used f(x) = (1/ (1+exp (-x))) as our activation
function. The value of the learning rate was varied from 0.001
to 0.999. The initial weights were chosen randomly by rand(
) function. This was also varied to get the optimal results. We
experimented with various error functions on our model so see
which error function converged the error in minimum number
of iterations. All the observations were extensively researched
and documented.

3) Results and Discussion: Various important results were
deduced from the above experiments. They have been sum-
marized as below:
To compare the effectiveness of our model we first experi-
mented with a real valued neural model. The results obtained
have been documented below:

TABLE I
REAL VALUED NEURAL MODEL

Iterations Error
1 0.56
250 0.32
1000 0.032
2000 0.0021
10000 0.0001

The presences of a Generalized mean neuron function
improves the efficiency of a neural model significantly in terms
of number of iterations.

TABLE II
WITH A GENERALIZED MEAN NEURON FUNCTION

Iterations Error
1 0.32
250 0.23
1000 0.001

TABLE III
COMPLEX QUADRATIC ERROR FUNCTION

Iterations Error
1 0.117
250 0.06
1500 0.001

Fig. 4. Error convergence for Complex fourth error function

We varied the learning rates from 0.001 and 0.999 and
observed the effect of the learning rates on the error conver-
gence. For Complex Quadratic, Complex fourth, Complex Hu-
ber, complex Logcosh, Complex Welch, Complex Minkowski,
Complex Fair error function the best error convergence rate
was observed when the learning rate was 0.05 - 0.055 . For
mean-median error function the best convergence rate was
observed when the learning rate was 0.045 - 0.05. The best
results were observed when the value of the learning rate was
kept low.

B. Signal Processing

Phase Jitter or phase noise in the QAM signal is caused by
transponders in the transmission path or by the I/Q modulator.
It may also be produced in carrier recovery. In contrast to the
phase error described above, phase jitter is a statistical quantity
that affects the In-phase and Quadrature path equally. In the

Fig. 5. Error convergence for Complex mean-median error function
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TABLE IV
COMPLEX FOURTH ERROR FUNCTION

Iterations Error
1 0.35
250 0.15
1200 0.001

Fig. 6. Constellation Diagram with noise

constellation diagram, phase jitter shows up by the signal states
being shifted about their coordinate origin.

1) Model Description: The input had 3 input nodes. The
first hidden layer had four generalized mean neural function
units as depicted earlier. The output from these functions was
then processed further using another generalized mean neural
function. The output from this node was observed and studied
as with intrinsic details.

2) Result and Discussion: We worked on 4QAM and
16QAM data. Our aim was to reduce noise drastically in
minimum number of iterations. The presence of a generalized
mean neural function system greatly enhanced the error con-
vergence rate. The model achieved an error of .000001 within
12,000 iterations. This also depended on the value of learning
rate, weights, the error function taken, the number of inputs
taken and the value of generalization parameter. We tested our
model on a number of error functions also. The error function
that gave us the best result was the complex quadratic error
function.

TABLE V
ERROR CONVERGENCE WITH COMPLEX QUADRATIC

Iterations Error
1 0.32
250 0.2
1000 0.05
2000 0.0009
12000 0.000001

V. CONCLUSION AND FUTURE WORK

We have shown the effectiveness of a complex valued ver-
sion of back propagation model with generalized mean neuron
model in signal processing Furturemore, we have investigated
the fundamental characteristics of the complex- Back Propa-
gation algorithm and found this algorithm better than general

Fig. 7. Error convergence with Complex Quadratic

or real valued BP algorithm. The average convergence speed
is much superior to that of a Real Back Propagation. The
updating rule of the Complex-Back Propagation is such that
the probability for a standstill in learning is reduced. Also
the presence of an GMN unit in a complex neural model is
well suited for signal processing and studying constellation
diagrams.

Indeed several interesting applications of the complex val-
ued neural network architectures can be extended in the
following areas: Optoelectronics, Imaging, Optical computing,
Remote sensing, Quantum Neural devices and systems, Intelli-
gent transport systems, Spatiotemporal analysis of Physiolog-
ical Neural Systems, Artificial Neural Information Process-
ing, Communication system design (Mobile channel equalizer
design), Direction of Arrival Estimation (Signal Processing),
Traffic Control, Robotics, Neuron Dynamics, Chaos in the
complex domain.
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