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Abstract—Grid networks provide the ability to perform higher
throughput computing by taking advantage of many networked
computer’s resources to solve large-scale computation problems. As
the popularity of the Grid networks has increased, there is a need to
efficiently distribute the load among the resources accessible on the
network. In this paper, we present a stochastic network system that
gives a distributed load-balancing scheme by generating almost
regular networks. This network system is self-organized and depends
only on local information for load distribution and resource
discovery. The in-degree of each node is refers to its free resources,
and job assignment and resource discovery processes required for
load balancing is accomplished by using fitted random sampling.
Simulation results show that the generated network system provides
an effective, scalable, and reliable load-balancing scheme for the
distributed resources accessible on Grid networks.
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Balancing, Random Sampling.

I. INTRODUCTION

MPROVEMENTS in computer and networking
technologies over the past decades produced dramatic

increases in communication and computer capabilities.
Numerous methods have been developed to maximize the use
of networked computers for large-scale computing, and
several protocols have been developed to efficiently utilize the
distributed computing resources. Moreover, the spread of the
Internet as well as the availability of powerful computers and
high-speed network technologies are rapidly changing the
computing landscape and society. All these technology
opportunities have led to the possibility of using wide-area
distributed computers for solving large-scale problems.

Large-scale computing can provide the ability to perform
higher throughput computing by taking advantage of many
networked computers to model a virtual computer architecture
that is able to distribute process execution between the
computers in the network. An example of such network
system is the Grid Networks [1]. These networks use the
resources of many computers connected by a network to solve
large-scale computation problems.

To achieve this, there is a need for an effective load-
balancing paradigm to distribute the load among the
computers available on the network. When one node is
overwhelmed by work, it can make use of unused computing
power in the network. Therefore, implementing an integrating
an efficient load distribution and resource discovery will have
an essential role in implementing the self-configuring and self-
optimizing characteristics of Grid networks.

The paper is organized as follows. Section II reviews related
load-balancing work. Section III describes the stochastic

network system. Section IV presents the mathematical
analysis of the network system and provides a stationary
distribution solution. Section V provides a description of
network and simulation implementation. Finally, simulation
results and conclusion have been discussed in section VI and
section VII respectively.

II. RELATED WORK

Load balancing is an active research field, and many
methods and algorithms have been used to approach this
problem [2-6]. The use of polling, agent-based methods,
global random choice, randomized algorithms, and local
diffusion methods has produced great advances in the field of
load balancing [7-13]. However, most of these methods
depend on central server techniques, which can be efficient in
small-scale networks, or on particular properties of the load
distribution in larger networks. As central servers require high
computing power and large bandwidth, network systems that
depend on such techniques are un-scalable [14][15]. Besides,
reliability is another concern since the central server is a single
point of failure.

Recently, a new specialty called Complex Networks Theory
emerged, which has deep roots in statistical and non-linear
physics. Complex networks theory is the field where the
structural and dynamic properties of networks are analyzed.
Statistical models of large systems will let systems detect or
predict overall performance problems from the stream of data
from individual devices.

Traditionally, complex networks have been described by
Graph Theory [16][17]. Random graph theory was the
simplest theory to describe complex network. Pál Erd�s and
Alfréd Rényi were the first who studied Random Graphs [16].
According to the Erd�s-Rényi (ER) model, we start with N
nodes and connect every pair of nodes with probability p. At
the end of this process, the graph will have approximately
pN(N-1)/2 edges distributed randomly. Therefore, the
probability of having a graph with N nodes and k edges
follows a Binomial distribution, and it is given by
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In a large random graph, there are several nodes with the
same degree, and the number of nodes with a given degree can
be calculated. Accordingly, in a random graph with
connection probability p, the number of nodes with degree k is
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chosen from the total number of edges N-1. Thus, in ER
model, the probability that an ER graph has more or less than
the expected number of edges decreases exponentially. This
binomial distribution implies that each node will have a degree
near to the average degree, and that the number of nodes with
much higher or much lower degree than average is very small.
Thus, the probability that any node has the expected number
of edges is the same, which gives us load balancing.

III. STOCHASTIC NETWORK SYSTEM

For efficient usage of Grid network’s resources, one would
want to distribute processes as evenly as possible, so that no
server is more loaded than others are. Therefore, we need to
create a dynamical network system that gives balanced load
distribution and efficient resource discovery.

In order to design such dynamical system, we will analyse
the degree distribution of nodes in a stochastic network system
with a fixed number of nodes and fixed average number of
edges. A node’s in-degree refers to the free resources of a
node. The job assignment and resource updating processes
required for load balancing are encoded in the network
structure. Therefore, when a node receives a new job, it will
remove one of its edges to decrease its in-degree.

Similarly, when the node completes a job, it will add an
edge to itself to increase its in-degree. In steady state, the rate
at which jobs arrive would equal the rate at which jobs are
completed, and hence the underlying network has a fixed
average number of edges. Hence, the generated graph using
this protocol will be a strongly connected directed graph.

The increment and decrement of node’s in-degree is
performed via Fitted Random Sampling. Random sampling is
the process of randomly picking up the nodes of a network
with equal probability. The sampling starts at some fixed
node, and at each step, it moves to a neighbour of the current
node randomly chosen according to an arbitrary distribution.

Similar techniques have been used for load balancing which
produced some significant results [11][18]. However, the
proposed scheme has advantage over the previous methods in
that the network structure is dynamically changed to
efficiently distribute the load, and the load-balancing process
will not require any monitoring mechanisms since it is
encoded in the network structure.

Moreover, the number of sampling steps will be limited to a
finite length, and the nodes’ selection will be based on a
predefined criteria rather than the last node in the walk. In this
paper, fitted random sampling will be used where nodes’
selection will depend on the free recourses (in-degree)
available for each node.

Lov'asz and Winkler [19] mentioned that in undirected
graph, if the random walk was long enough, then in stationary
state, the probability that the walk will stop at a specific node
is proportional to its stationary in-degree distribution. We
found that this can be also applied to our directed graphs since
the underlying network has fixed average number of edges.
Therefore, fitted random sampling technique will be used in
our dynamic network to provide the required load balancing,
and the edge insertion and deletion strategy assures that the
load will be distributed equally across all the nodes in the
network.

IV. STATIONARY DISTRIBUTION ANALYSIS

To analyse our network system, we will consider a network
system with N nodes, and we will assume that all the nodes in
the network have similar capabilities and jobs can be executed

in any node. Suppose kp is the probability that a node has k

edges. Then, the average number of edges, E, in the network is

kE N kp= ⋅� (3)

At each step, a randomly chosen edge will be deleted, and a
randomly chosen edge will be inserted. Thus, the numbers of
edges inserted and deleted are both random variables that are
selected to have a fixed average number of edges.

Let D be the average number of deleted edges in the
network, and let M be the maximum number of edges a node
can have. To make our system compatible with ER random
graphs, it is assumed that each node can have up to N-1 edges,

thus M� N-1. This assumption is not a limitation of the

mechanism; it is only to show that this system is designed for
large-scale networks. The expected number of edges in the
network is given by

-E NM D= (4)
Since the probability that a random sampling with a

sufficient length will stop at a specific node is proportional to
its stationary in-degree, thus, if a node’s edges have been
deleted uniformly randomly, then the probability that the node
will lose one or more of its edges is proportional to its in-
degree. Therefore, the rate at which the in-degree of a specific
node will decrease is given by

k

k k
R

E NM D
= =

−
(5)

In the same way, the probability that the in-degree of a
certain node will increase is proportional to the number of
deleted edges from this node. Thus, the node’s in-degree will
increase one edge at a rate given by

k

M k
S

D

−
= (6)

And since the average number of edges is assumed to be
fixed, we can describe this network as a Markov Chain [20]
with insertion and deletion rates given by Equations (5) and
(6). In Markov Chain, the in-degree of a node is represented as
a state of chain with the probability of going from one state to

another being given by kR and kS ; see Figure 1.

Fig. 1 Transition graph (states) for node’s in-degree in the network.
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For Markov chain, the stationary distribution for the
expected number of jobs per node is defined as

[ ] 0V T I− = (7)

where T is the transition matrix, I is the identity matrix, and V
is the distribution vector (transition probability) and it is
defined as

[ ]1 1k k kV p p p+ −= (8)

From Figure 1, we can now obtain the transition matrix T;

1 1

1 1

1 0

1 ( )

0 1

k k

k k k k

k k

R R

T S R S S

S S

+ +

− −

−

= − +

−

� �
� �
� �
� �� �

(9)

By solving Equations (7), (8), and (9), the probability that a

node has k edges, kp , becomes
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From the above equation, we can see that in steady state, the
rate at which node’s in-degree increases will equal the rate at
which node’s in-degree decreases. Therefore, our network
system has a fixed expected number of edges.

Now, since the total probability kP is equal to one, and by

inserting equations (5) and (6) into equation (10), and by using
the Binomial Expansion Theorem [21] to simplify the

equations, we will find that kp is binomially distributed and it

is given by
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This degree distribution implies that the proposed network
system is equivalent to the degree distribution of ER random
network as illustrated in Equation (2) in Section II. These
analytical results show that the stationary distribution is
compatible with ER random networks. Thus, the proposed
algorithm gives nearly optimal load distribution by creating
almost regular network system where each node’s in-degree
refers to its free resources

V. NETWORK IMPLEMENTATION

The proposed network system can be easily implemented in
Grid networks. We can implement it on top of Grid network as
a virtual network [22], or, we can integrate the proposed load-
balancing scheme inside Grid network Middleware [23][24].
For example, this network system can be built directly on top
of any of the physical transport layers and use the Grid
Network as its underlying network. Thus, the network does
not need to consist of physical links between nodes; the edges
can be a routing table that gives the actual physical links or the
possible routes between the nodes in the underlying physical
layer. Furthermore, the network can be implemented by using
small and fast transport protocols sockets that can be used to
represent the edges of the network with minimum overhead.

Each node will have local information about its status (i.e. its
free resources available), which can be used for resource
allocation and load distribution.

For network simulations, we will create a network system
with N nodes, and the number of edges in each node will be
proportional to its free resources. Node’s edges will be added
or removed to keep the in-degree of a node proportional to its
free resources. Therefore, when a node initiates a new job, the
in-degree of the node that will receive the new job will be
decreased to show that its load increased and its free resources
decreased. Hence, when a node initiates a new job, it
randomly samples the network to assigns the new job to the
node that has the highest in-degree. A new edge from the node
that initiated the random sampling to the node that has the
largest in-degree is created, and one of its edges will be
randomly deleted.

Similarly, when a job is executed, the in-degree of the
node that executed the job will be increased to show that its
load decreased and its free resources increased. This done by
randomly sampling the network, and then, a new edge will be
created to connect it to the last node in the random sampling.
A node can process a unit of job at each time step and the
number of jobs that will be created or completed is a random
variable with Poisson distribution. Simulation timing unit
(iteration) is the time required to send a message or a data
packet from one node to another node.

The node’s edge insertion and deletion process described
above will simulate the change in the workload of the
network, and the amount of free resources available for the
nodes will show the job distribution status of the network.
Simulation results will be used to validate the reliability and
scalability of the proposed load balancing mechanism.

VI. SIMULATION RESULTS AND DISCUSSION

In order to verify that the proposed network system
generates almost regular graphs and matches the analytical
results, we made extensive simulations with various
parameters and the results are reported in this section.

The steady state in-degree distribution and the in-degree
standard deviation have been used to assess the load-balancing
performance. It is known that regular graphs have zero
standard deviation and zero variance since every node in the
graph has the same in-degree. However, a zero standard
deviation is only possible if the graph has an even number of
nodes. Another balanced network is a network that half of its
nodes have the expected in-degree <k>, and the other half
have in-degree <k+1> or <k-1>. In this case, the in-degree
standard deviation is +0.5 and -0.5 respectively (i.e. the
variance is equal to 0.25). Thus, the network is also considered
a balanced network when its variance is close to 0.25.

Under ideal conditions, simulation results confirm that the
proposed network dynamic creates ER random networks.
Figure 2 and Figure 3 show that the steady in-degree
distributions are very close to the binomial distribution
described in section IV. Here, the network have N = 512
nodes, with maximum in-degree N−1, and the average in-
degrees <k> are 32 and 72. Thus, random sampling technique
can be used to efficiently distribute the load between the
nodes.
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Fig. 2 The steady state in-degree distributions compared with the
predicted binomial distribution for networks with <k> = 32.
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Fig. 3 The steady state in-degree distributions compared with the
predicted binomial distribution for networks with <k> = 72.

We extended our simulations to analyse our load-balancing
technique under several parameters and conditions. For
example, to study the performance of the algorithm under
different network loads, we examined our network under
various load sizes. As we can see from figures 4, 5, and 6,
whether the network is overloaded or nearly idle, the load
balancing performance is almost identical. Thus, the algorithm
is effective for networks with different network loads.
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Fig. 4 The in-degree distributions when the network is loaded up to
25% of it capacity with N=1024 and M= 64.
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Fig. 5 The in-degree distributions when the network is loaded up to
50% of it capacity with N=1024 and M= 64.
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Fig. 6 The in-degree distributions for a network with loaded up to
85% of it capacity with N=1024 and M= 64.

Figures 7 and 8 show that the proposed algorithm is scalable
and that the generation of regular graphs using fitted random
sampling is effective for various network sizes. As we can see
from theses figures, the performance of the algorithm scales
well for large network sizes. The figures show in-degree
distributions are for graphs with N=512 and N=8192
respectively. Furthermore, by increasing the network size N,
the in-degree distribution is closer to the binomial distribution
of regular graphs, which indicate that this algorithm is
designed for large-scale networks.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 10 20 30 40 50

k

P(k)

Fig. 7 The in-degree distributions for a network N=512 & M= 48.
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Fig. 8 The in-degree distributions for a network N=8192 & M= 48.

Figure 9 shows the state of the in-degree distributions of our
network system with time as the network evolves. The
network is initialized randomly. For example, it starts with in-
degree variance approximately 51. Then, the network starts
reshaping with time by adding and deleting nodes’ edges to
reach an in-degree variance around 66. Then, the network
starts to settle down and the variance will rapidly decrease
until the network become almost regular with in-degree
variance close to 0.34.

Intensive simulations have been done to observe the proper
number of steps to efficiently sample the network to achieve
the required load distribution, and how it will affect on the
performance of load balancing algorithm. We found that the
performance of the load-balancing algorithm increases as the
sampling length increases.
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Fig. 9 The variance of the in-degree distribution vs. Time for a
network with N=2048 and M=48.

As we can see from Figure 10, increasing the sampling
length will decrease the in-degree variance. Here we perform
our simulations on a network of 2048 nodes with several
sampling lengths. We found that if the random sampling is too
short, the load distribution is not very efficient and the
variance is very high. However, if the random sampling length
is 16 or more, the in-degree variance is small and very close to
0.25, which is the variance for balanced networks.

Moreover, we observed that if the number of steps used to
sample the network is very large, then the decrement in in-

degree variance is very small. This observation is also noticed
in larger network sizes, and the performance achieved by
using very large sampling steps is very close to use random
samples of length close to log(N). Thus, using random samples
with length around log(N) will be sufficient to reach an in-
degree variance very close to the optimal variance, and this
confirms that random sampling technique is very efficient in
load-balancing.

To further measure the efficiency and robustness the
proposed load balancing mechanism, we extended our
simulations to investigate how nodes’ in-degree and load
distribution in the network will be affected by random errors
at run time. To do this, we have introduced the possibility of
node failure to the network after it has been settled down and
distributed the load properly among the nodes. The number of
nodes that will fail is random variable with Poisson
distribution. Figure 11 shows the in-degree variance with time
under this condition. As we can see from the figure, the
variance is increased dramatically when nodes failed.
However, we found the network starts to heal itself and
dynamically reshape itself by re-distributing the load between
the nodes. As a result, the in-degree variance will rapidly
decrease and the network will become almost regular again.
Thus, the proposed load-balancing scheme is reliable and it is
robust to random errors.
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Fig. 10 The variance of the in-degree distribution vs. Random
sampling length for a network with N=2048 and M=48.
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Fig. 11 The in-degree variance vs. Time for a network affected by
random errors. N=2048 and M=48.
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VII. CONCLUSIONS

In this paper, we have presented a stochastic network
system, which provides a distributed load-balancing scheme
by generating almost regular networks. This network system is
scalable, self-organized, robust, and depends only on local
information for load distribution and resource discovery. The
developed load-balancing scheme is based on fitted random
sampling to assign the jobs and to update resource’s
availability. Therefore, load balancing is achieved without the
need to monitor the nodes for their resources availability.
Simulation results show that the generated network system
provides an effective, scalable, and reliable load-balancing
paradigm for the distributed resources accessible on large-
scale network systems.

To further measure the efficiency of the proposed load
balancing mechanism in various situations, we will extend our
simulations to include heterogeneous nodes and cases where
jobs may require certain QoS services; such as
communications bounded, distance sensitive, and time
bounded services. This will help us in understanding how
these situations will affect on the nodes’ in-degree and load
distribution in the network. Examining how these
considerations will affect on the efficiency of load balancing is
a topic for future work.
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