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Estimation of Time -Varying Linear Regression with

Unknown Time -Volatility via Continuous

Generalization of the Akaike Information Criterion
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Abstract—The problem of estimating time-varying regression is
inevitably concerned with the necessity to choose the appropriate
level of model volatility - ranging from the full stationarity of instant
regression models to their absolute independence of each other. In the
stationary case the number of regression coefficients to be estimated
equals that of regressors, whereas the absence of any smoothness
assumptions augments the dimension of the unknown vector by the
factor of the time-series length. The Akaike Information Criterion
is a commonly adopted means of adjusting a model to the given
data set within a succession of nested parametric model classes,
but its crucial restriction is that the classes are rigidly defined by
the growing integer-valued dimension of the unknown vector. To
make the Kullback information maximization principle underlying the
classical AIC applicable to the problem of time-varying regression
estimation, we extend it onto a wider class of data models in which
the dimension of the parameter is fixed, but the freedom of its values
is softly constrained by a family of continuously nested a priori
probability distributions.

Keywords—Time varying regression, time-volatility of regression
coefficients, Akaike Information Criterion (AIC), Kullback informa-
tion maximization principle.

I. INTRODUCTION

THE Akaike Information Criterion (AIC) [1] is adopted in

data analysis as a simple and effective means of adjusting

the most adequate model to the given data set among a discrete

succession of nested parametric model classes.

Let the given data set y = (yt, t = 1, . . . , N) be considered

as a sample of independent random variables with an unknown

density ϕ∗(y), whereas the observer assumes a parametric

family ϕ(y |c), c ∈ R
m. It is a typical case that the parameter

dimension m is certainly too large for the ”actual” density

ϕ∗(y) and the size N of the sample, what makes senseless

the maximum-likelihood estimate

ĉ(y) = arg max lnΦ(y |c), lnΦ(y |c) =
N

∑

t=1

lnϕ(yt |c). (1)
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The observer’s assumption is that the elements of c are

naturally ordered by their ”importance”. The idea is to truncate

the parameter vector ci = 0, n < i ≤ m:

c = (cn, cm−n), cn ∈ R
n, cm−n = 0 ∈ R

m−n. (2)

So, the density family Φ(y|c) turns into a succession of nested

families Φ
(

y | c = (cn,0)
)

, R
nmin ⊂ · · · ⊂ R

nmax .

The classical AIC is a criterion of choosing the dimension

as the most appropriate level of model complexity n̂(y) =

arg maxn

[

lnΦ
(

y |
(

ĉn(y),0
)

)

−n
]

instead of the plain like-

lihood maximization (1). However, this formula was designed

under the assumption that ▽2

cncn

lnΦ
(

y | (cn,0)
)

is a full-

rank matrix at the point of the maximum likelihood, and, so,

the estimate ĉn(y) is unique. To cover the most general case,

the penalty n should be replaced by the rank of this matrix:

n̂(y) = arg maxn

{

lnΦ
(

y |
(

ĉn(y),0
))

−

Rank
[

▽2

cncn

lnΦ
(

y |
(

ĉn(y),0
))]

}

.
(3)

The main idea underlying the AIC is the view of the

maximum point of Kulback similarity between the model and

universe

n∗ = arg max
n

∫

[

lnΦ
(

y |(c∗n,0)
)

]

Φ∗(y)dy (4)

just as the desired dimension under the assumption that

Φ∗(y) = Φ
(

y | (c∗n∗ ,0)
)

with some value (c∗n∗ ,0), cut out

from the unknown c∗ = (c∗
1
, . . . , c∗m).

One of the first applications of AIC was modeling of a

nonstationary signal on the discrete time axis by dividing

the time interval into an unknown number n of blocks and

adjusting a locally stationary autoregression model of a fixed

order k to each of them [2].

After Akaike’s pioneering paper [1], numerous modification

of the information-based parsimony principle in model build-

ing were proposed [3],[4],[5],[6], among which the Bayesian

Information Criterion (BIC) [3] has found the most wide

adoption. However, all the known model selection criteria are

aimed at the problem of choosing the most appropriate model

within a succession of rigidly nested model classes.

The search for ways of generalizing the classical AIC,

undertaken in this paper, was prompted by the needs of

nonstationary signal analysis when the regression model of

the given time series
(

(yt,xt), t = 1, . . . , N
)

yt =cT
t xt+ηt, ct,xt∈R

k, ηt∼N (ηt |0, δ), E(ηt,ηs) = 0, (5)
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is assumed to be changing gradually over the observation

interval [7], [8]. In this scenario, the dimension of the para-

meter vector in the family of conditional probability densities

Φ(y | x, c) is fixed c = (cT
1

. . . cT
N )T ∈ R

kN and k times

exceeds the number of observations. Instead, it is assumed

that the sequence of regression coefficients to be estimated is

a hidden Markov random process

ct = ct−1 + ξt, ξt ∼ N (ξ |0, λδI) , E
(

ξtξ
T
s

)

= 0, (6)

which starts with an unknown first value c1 ∼ N (c1 |0, ρI),
ρ → ∞, and is excited by zero-mean white noise. We

assume the noise variance λδ in the Markov model (6) to

be proportional to that in the observation model (5) because

the Bayesian estimate depends only on the ratio between these

two variances. The noise-variance coefficient λ is the structural

parameter which determines the time-volatility level of the

regression coefficients, ranging from full stationarity λ = 0 to

absolute independence of instant regression models λ → ∞.

This is a typical example of a softly constrained signal

model in which the growing values of λ define a system of

continuously nested families of degenerate a priori probability

densities Ψ(c | λ) starting from the ”uniform” distribution

in R
k when λ = 0 and ending with the ”uniform” one

in R
kN when λ → ∞. This situation suggests the infor-

mal notion of some effective dimension of the parameter c

continuously changing from k to kN as λ grows instead

of the discrete sequence of integer-valued dimensions. It is

required to find the most appropriate value of λ which would

provide sufficient approximation of the given time series
(

(yt,xt), t = 1, . . . , N
)

by the nonstationary regression model
(

yt = cT
t xt, t = 1, . . . , N

)

, on the one hand, and avoid

overfitting, on the other.

It is clear that Akaike’s criterion is inapplicable to the

problem of choosing the real-valued time-volatility parameter

0 < λ < ∞ of the time-varying regression model. In [7],

[8], we applied the leave-one-out cross validation embedded

into the Kalman-Bucy filter-smoother. However, this principle

inevitably leads to the necessity to process the given signal N

times in accordance with its length, and destroys, thereby, the

originally linear computational complexity of the estimation

algorithm with respect to N .

In this paper, with the purpose of extending the compu-

tationally perfect Akaike’s principle onto the case of data

models with continuously changing effective dimension of

the unknown parameter, we consider the parametric model

of the unknown universe F ∗(y) as a continuous mixture of

conditional densities from the given family Φ(y |c), c ∈ R
m,

with some assumed mixing density Ψ(c |λ):

F (y |λ) =

∫

Φ(y |c)Ψ(c |λ)dc, c ∈ R
m. (7)

The structural model parameter λ to be adjusted to the

observed data set y is assumed to provide the optimal degree

of moderating the too large dimension of c. Once the value

of λ is chosen, the Bayesian estimate will be the final result

of data analysis:

ĉλ(y) = arg max [ ln Φ(y |c) + lnΨ(c |λ) ] . (8)

We keep to the same idea as (4), namely that of achieving

the maximum fit of the model distribution F (y |λ) (7) to the

universe F ∗(y) by varying λ. In the particular case, when the

structural parameter is a whole positive number 0 ≤ λ ≤ m

truncating the ordered elements of the parameter vector c =
(cλ, cm−λ = 0) ∈ R

m, cλ ∈ R
λ, the resulting continuous

versions of the criterion boils down to the classical AIC with

the respective choice of a priori density Ψ(c |λ).
Finally, we experimentally illustrate the proposed contin-

uous generalization of AIC by its application to the problem

of time-varying regression estimation, and compare the results

with those obtained by the usual leave-one-out cross valida-

tion.

II. TIME-VARYING REGRESSION MODEL

Observation model. In the problem of time-varying regres-

sion estimation (5)-(6), the Bayesian estimate of the hidden

sequence of regression coefficients c = (cT
1
· · · cT

N )T ∈ R
m,

m = kN , depends only on the ratio λ of assumed variances

in observation δ and state δλ, but its statistical properties

essentially depend on the observation-noise variance.

To put the model into an explicit form, we consider

the column vectors y = (y1 · · · yN )T ∈ R
N and c =

(cT
1
· · · cT

N )T ∈ R
kN , as well as the block-diagonal matrix

X = (Xts, t, s = 1, . . . ,N) of total dimension (kN × N)
with diagonal column-blocks

(

Xtt = xt(k× 1), t = 1, ..., N
)

and nondiagonal blocks Xts = 0 (k × 1), t 6= s.

We shall consider here as random only the observations y =
(y1 · · · yN ) and treat the sequence of regressors (x1 · · ·xN ) as

fixed. Then, for the observation noise variance conventionally

taken as equal to unity δ = 1, the observation model (5) will

produce the parametric family of probability densities

Φ(y |c) = N (y |XT c, I) =

1

(2π)N/2
exp

[

−
1

2

(

(y − XT c)T (y − XT c)
)]

,
(9)

and the logarithmic likelihood function

lnΦ(y |c)=const −
1

2

∑N

t=1

(

yt−xT
t ct

)2

=

const −
1

2

(

(y − XT c)T (y − XT c)
)

,
(10)

whose negative semidefinite Hessian is usually called Fisher

information matrix:
A = ▽2

cc
lnΦ(y |c). (11)

For time-varying regression, the Hessian A = −XXT (kN ×
kN) is always degenerate as being block-diagonal matrix with

diagonal degenerate blocks Att = xtx
T
t (k×k), t = 1, . . . , N .

If the regressors
[

(xit, t = 1, . . . , N), i = 1, . . . , k
]

are

linearly independent, the rank of A reaches its maximum value

Rank(A) = N .

State - space model. With δ = 1, the hidden Markov model

of regression coefficients (6) is expressed by the family of nor-

mal a priori distributions with zero mathematical expectations:

Ψ(c |ρ, λ) = N (c1 |0, ρI)
∏N

t=2
N (ct |ct−1, λI) =

1

ρk/2λk(N−1)/2(2π)kN/2
exp

[

−
1

2

(1

ρ
cT
1
c1+

1

λ

∑N

t=2

(ct − ct−1)
T (ct − ct−1)

)]

,
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lnΨ(c |ρ, λ) = const −
1

2

[

k ln ρ + k(N − 1) lnλ+

1

ρ
cT
1
c1 +

1

λ

∑N

t=2

(ct − ct−1)
T (ct − ct−1)

)]

.

In practice, the a priori information on the first vector of

regression coefficients c1 in the Markov state-space model (6)

is hardly available, therefore, we put the variance ρ equal to a

sufficiently large number ρ → ∞. Under this assumption, we

come the logarithmic a priory density

ln Ψ(c |λ) = const − 1

2

[

k(N − 1) lnλ+

1

λ

∑N

t=2

(ct − ct−1)
T (ct − ct−1)

]

.

(12)

The Bayesian estimation of time-varying regression coef-

ficients ĉλ(y) = ĉλ(y,X) =
(

c1,λ(y,X), . . . , cN,λ(y,X)
)

(8) is provided via minimization of the Flexible Least Squares

criterion

ĉλ(y) = arg min
[

∑N

t=1

(

yt − xT
t ct

)2

+

1

λ

∑N

t=2

(ct − ct−1)
T (ct − ct−1)

]

(13)

by the Kalman-Bucy filter-smoother [7], [8] for the time

proportional to N .

Cross-validation principle of choosing the time-volatility

level. Up to now, the leave-one-out cross validation has been

the only known method of estimating the state-space variance

λ responsible for the time-volatility of regression coefficients

[7], [8].

In the full time series
(

(y1,x1), . . . , (yN ,xN )
)

, sin-

gle elements t = 1, . . . , N are skipped one-by-one
(

(y1,x1), . . . , (yt−1,xt−1), (yt+1,xt+1), . . . , yN ,xN )
)

, each

time via replacing the sum
∑N

t=1

(

yt − xT
t ct

)2

in (13)

with a tentative value of λ by the truncated sum
∑N

s=1,s 6=t

(

ys − xT
s cs

)2

, and the optimal vector sequences
(

c
(t)

s,λ(y), s = 1, . . . , N
)

are found, where the upper index (t)
means that the observation (yt,xt) was omitted when com-

puting the respective estimate. For each t, the instantaneous

squared prediction error is calculated using the respective sin-

gle estimate
(

yt − (c
(t)

t,λ)T xt

)2

. The cross-validation criterion

for the given λ is computed as the average over all of the local

squared prediction errors

CV (λ | y) =
1

N

∑N

t=1

(

yt − (c
(t)

t,λ)T xt

)2

. (14)

The value λ̂(y) = arg minλ CV (λ | y) is recommended as

the optimal time-volatility parameter for the given time series.

This method is quite time consuming, because, to compute

one value of the criterion (14), it is required to run the dynamic

programming procedure N times for each skipped element of

the signal.

III. SUMMARY OF BASIC PROPERTIES OF THE ASSUMED

PARAMETRIC DENSITY FAMILIES

Below, in Section IV, when studying the way of extending

the classical AIC onto a wider class of probabilistic data

models, we are not going to restrict our consideration to only

the problem of time-varying regression estimation.

We consider the given data set y, in general, as a realization

of a random variable defined by a parametric family of

probability densities Φ(y | c) in the respective space of obser-

vations. The only assumptions are, first, that the logarithmic

likelihood lnΦ(y | c), c ∈ R
m, is concave quadratic function

around the maximum-likelihood estimate ĉ(y) (1), even if it is

not unique, as it is in the case of time-varying regression model

m = kN > N , and, second, that the Hessian A (m×m) (11)

does not depend on the random data y:

lnΦ(y |c)=ln Φ
(

y | ĉ(y)
)

+
1

2

(

c−ĉ(y)
)T

A
(

c−ĉ(y)
)

,

▽c log Φ(y |c) = A
(

c − ĉ(y)
)

.

(15)

In the particular case of time-varying regression estimation,

we have A = −XXT .

Further, we suppose that

lnΨ(c |λ) = constλ +
1

2
cT Dλc,

▽c lnΨ(c |λ) = Dλc,
(16)

which assumption covers, in particular, the time-varying re-

gression model (12) with

constλ = const −
1

2
k(N − 1) ln λ, Dλ = −(1/λ)B, (17)

where B is block-three-diagonal matrix (kN × kN) with the

diagonal
(

I, 2I, . . . , 2I, I
)

and two off-diagonals
(

−I, . . . ,−I
)

formed by identity matrices I(k × k).
For a fixed λ, the Bayesian estimate ĉλ(y) (8) is unique

if the Hessian ▽cc [lnΦ(y |c) + ln Ψ(c |λ)] = A + Dλ is

negative definite. This is the case in most practical situations

even if A is degenerate and, so, the maximum likelihood

estimate ĉ(y) is not uniquely defined. More over, A + Dλ is

usually nondegenerate even if both A and Dλ are degenerate.

In what follows, we shall need some more detailed proper-

ties of the relationship between ĉ(y) and ĉλ(y).
Let the random sample y be produced by a probability

distribution Φ(y |c) with some fixed parameter value c. It is

well known for a much wider class of conditional densities

than the above-specified class (15), that, if A is full-rank

matrix Rank(A) = m , the random maximum likelihood

estimate ĉ(y) is unbiased
∫

ĉ(y)Φ(y |c)dy = c, (18)

and its conditional covariance matrix is completely determined

by the Fisher information matrix:
∫

(

ĉ(y) − c
)(

ĉ(y) − c
)T

Φ(y |c)dy = −A−1. (19)

In the more general case, if Rank(A) < m , (18) and (19)

should be treated as
∫

A
(

ĉ(y) − c
)

Φ(y |c)dy = 0, (20)

∫

[

A
(

ĉ(y) − c
)

][

A
(

ĉ(y) − c
)

]T

Φ(y |c)dy = −A. (21)

If (15) and (16) are met, the random Bayesian estimate (8)

is a linear function of the likelihood estimate

ĉλ(y) = (A + Dλ)−1Aĉ(y) (22)
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with conditional covariance matrix relative to the fixed value

of parameter c

∫(

ĉλ(y) − ĉλ(c)
)(

ĉλ(y) − ĉλ(c)
)T

Φ(y |c)dy =

−(A + Dλ)−1A(A + Dλ)−1,
(23)

where ĉλ(c) is the conditional mathematical expectation

ĉλ(c) =

∫

ĉλ(y)Φ(y |c)dy = (A + Dλ)−1Aĉ. (24)

IV. MEASURING THE KULLBACK SIMILARITY BETWEEN

THE MODEL AND UNIVERSE: THE PRINCIPLE OF MAXIMUM

FIT TO THE ACTUAL DISTRIBUTION OF THE OBSERVED

VARIABLE

It appears natural to mathematically express the observer’s

aim as maximizing the Kullback similarity between F (y |λ)
and F ∗(y) like in (4):

λ∗ = arg max
λ

∫

[

lnF (y |λ)
]

F ∗(y)dy. (25)

This ”ideal” criterion suits for any actual distribution F ∗(y),
but we assume here that it is consistent with the accepted

parametric family Φ(y | c), i.e., there exists a distribution

Ψ∗(c) such that

F ∗(y) =

∫

Φ(y |c)Ψ∗(c)dc. (26)

However, an immediate realization of criterion (25) is

impossible even for the reason alone that the actual distrib-

ution F ∗(y) is unknown. The maximization of the likelihood

function for the only available sample lnF (y | λ) (7) as an

unbiased estimate of the criterion is also senseless, because it

will prefer the values of the structural parameter suppressing

moderation of the too large dimension of c ∈ R
m.

To overcome ”the curse of the only sample”, we apply the

respective generalization of Akaike’s reasoning underlying the

classical AIC [1], namely, imagine the existence of another

independent sample ỹ yielding the random Bayesian estimate

ĉλ(ỹ) (8), and replace lnF (y | λ) in (25) by the mathematical

expectation of lnΦ(y | ĉλ(ỹ)):

λ̂ = arg max
λ

∫ {∫

{

∫

[

lnΦ(y | ĉλ(ỹ))
]

Φ(ỹ |c)dỹ
}

×

Φ(y |c)dy

}

Ψ∗(c)dc.
(27)

Theorem 1. Under the assumptions (15) and (16),
∫ {∫

{

∫

[

lnΦ(y | ĉλ(ỹ))
]

Φ(ỹ |c)dỹ
}

×

Φ(y |c)dy

}

Ψ∗(c)dc =
∫

J(λ |y)F ∗(y)dy,

(28)

J(λ |y) = ln Φ
(

y | ĉλ(y)
)

− Tr
[

A(A + Dλ)−1

]

. (29)

Proof is based on the quadratic representation of lnΦ(y |c)
(15) at c = ĉλ(ỹ) and equalities (19)-(23).

Theorem 1 suggests a way of forming a continuous analog

of the classical AIC. Despite the fact that the density Ψ∗(c)

in (26) remains unknown and, so, the original criterion (27)

is computationally intractable, the equality (28) shows that

the easily computable function J(λ | y) is an unbiased

estimate of the full criterion. As a reasonable compromise,

which is analogous to Akaike’s reasoning, this function may

be immediately maximized with respect to the sought-for value

of the structural parameter:

λ̂(y) = arg maxλ J(λ |y) =

arg maxλ

{

lnΦ
(

y | ĉλ(y)
)

− Tr
[

A(A + Dλ)−1

]}

.
(30)

This is just a continuous generalization of AIC (3). Compar-

ison of (30) and (3) suggests interpretation of the penalty term

Tr
[

A(A + Dλ)−1

]

as a conventional effective dimension of

the parameter c whose choice is constrained by the a priori

distribution lnΨ(c | λ).

V. A PARTICULAR CASE: THE CLASSICAL AIC

Let the structural parameter be a whole positive number 0 ≤
λ ≤ m truncating the ordered elements of the parameter vector

c = (cλ,cm−λ) ∈ R
m as in (2) with n = λ, i.e. cλ ∈ R

λ,

cm−λ = 0 ∈ R
m−λ. The absence of any a priori information

on vector c may be expressed in terms of an ”almost uniform”

normal distribution:

Ψ(cλ |λ) =
∏λ

i=1
ψi(ci), ψi(ci) = N (ci |0, σ2), σ2 → ∞,

Ψ(cλ |λ) ∼= const = 0, ln Ψ(cλ |λ) ∼= const ≪ 0.

Since only the first part of the vector parameter is free in

the conditional density Φ(y|cλ, cm−λ), the Hessian Aλ =
▽2

cλcλ

lnΦ(y|cλ,0) is a matrix (λ×λ). Under these assump-

tions, the continuous AIC (30) reduces to the criterion (3):

max
cλ

lnΦ(y |cλ,0) − Rank (Aλ) → max
λ

.

VI. THE CONTINUOUS AIC FOR THE TIME-VOLATILITY OF

TIME-VARYING REGRESSION COEFFICIENTS

The form of the continuous effective dimension

Tr
[

A(A + Dλ)−1
]

in (30) as function of the structural

parameter λ depends on how it occurs in the Hessian of

the logarithmic a priori density Dλ (16). If it is a strictly

increasing function of λ, the logarithmic likelihood at the

a posteriori optimal point will be increasing function, too,

tending to a constant lnΦ
(

y | ĉλ(y)
)

→ const as λ → ∞. It

should be expected, in this case, that J(λ |y) has a maximum.

In the general case, the most appropriate value λ̂(y) can be

found by computing the criterion for a succession of tentative

values λ(1) < . . . < λ(M) with a sufficiently small step, just

as when the classical AIC (3) or the cross-validation criterion

(14) is applied.

A more detailed study of J(λ | y) requires making more

specific assumptions on the Hessian Dλ as matrix function

of λ. In this Section, we consider the specificity of the

time-varying regression model which allows, first, for easy

computation of the penalty term in the continuous AIC (30)

and, second, for a numerical iterative maximization of the

criterion instead of the plain search in a sufficiently dense

set of fixed values λ(1) < . . . < λ(M).
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In accordance with notations accepted in (10) and (16), the

penalty term in the criterion (30) will have the form

Tr
[

A(A + Dλ)−1

]

= Tr
[

XXT
(

XXT +
1

λ
B

)

−1
]

.

Let the symmetric inverse sum of matrices
(

XXT + 1

λ
B

)

−1

be represented in block-wise form as
(

XXT + 1

λ
B

)

−1

=
Gλ = (Gλ, t, s,t = 1, . . . , N) with square blocks Gλ,ts =
GT

λ,st. Then, since matrix XXT is block-diagonal, the penalty

term will depend only on the diagonal blocks of Gλ:

Tr
[

A(A + Dλ)−1

]

= Tr
[

XXT
(

XXT + 1

λ
B

)

−1
]

=
∑N

t=1

Tr
(

xtx
T
t Gλ, tt

)

.

Thus, to compute the penalty term in the criterion (30), it is

enough, instead of full inverting the sum of matrices for each

value of λ, to compute the diagonal blocks of inversion Gλ, tt.

Generally speaking, the problem of finding each column of

blocks (Gλ, 1t, . . . ,Gλ, Nt) is that of solving a system of

linear equation, which is block-three-diagonal because so is

the initial matrix
(

XXT + 1

λ
B

)

to be inverted. Hence, in

each column, the symmetrically indexed block Gλ, tt can be

easily computed by a slight modification of the sweep method

without computing other blocks.

Theorem 2. For any sequence of vector regressors (xt, t =
1, . . . , N) such that their elements

[

(xit, t = 1, . . . , N), i =
1, . . . , k

]

are linearly independent, the following assertions are

met:














lim
λ→0

Tr

[

XXT
(

XXT +
1

λ
B

)

−1

]

= k,

lim
λ→∞

Tr

[

XXT
(

XXT +
1

λ
B

)

−1

]

= N.

(31)

Proof is omitted here. However, this mathematical result

appears to be expectable. Indeed, if λ → 0, the model loses

its time-volatility, and k instantaneous values of the regression

coefficients completely determine the entire sequence. On

the contrary, if λ → ∞, there is no a priori information on

the kN coefficients, but the maximum number of unknown

values which can be inferred from N observations if noise is

completely absent equals just the rank of the Hessian of the

likelihood function XXT , namely, the number of observations.

The first item of the AIC criterion (30) is the logarithmic

likelihood function at the point of the Bayesian estimate of

the sequence of regression coefficients lnΦ
(

y | ĉλ(y)
)

. This

is a strictly increasing random function of λ, which tends to

its constant maximum-likelihood value ln Φ
(

y | ĉ(y)
)

(15)

as λ → ∞. The difference J(λ | y) (29) is also a random

function, but it remains practically always unimodal. A typical

plot of the continuous AIC and its constituents as functions

of λ is shown below in Figure 1.

The strong unimodality of the continuous AIC allows for

computing its maximum point by an appropriate method of

one-dimensional optimization. We use the method of golden

section, which consists in finding a sequence of shortening

intervals (λ′

s, λ
′′

s ), s = 0, 1, 2, ..., starting with a sufficiently

large initial interval (λ′

0
= 0, λ′′

0
= λmax).

VII. COMPARATIVE SPECIFICATION OF REGRESSION

TIME-VOLATILITY VIA CONTINUOUS AKAIKE CRITERION

AND CROSS-VALIDATION

The experiments are built by the following scheme:

– simulating two sufficiently large sets of 200 random

time series each with two known relatively smooth sequences

of three-dimensional regression coefficients (c
∗(1)

1
, . . . , c

∗(1)

N )

and (c
∗(2)

1
, . . . , c

∗(2)

N ) having essentially different styles of

oscillation;

– inferring the Bayesian estimates (ĉλ,1, . . . , ĉλ,N ) from

each realization by the Flexible Least Squares criterion (13)

with choosing the time-volatility parameter λ via the contin-

uous AIC and leave-one-out cross-validation;

– comparing the four averaged estimation errors.

One of the sequences of ground-truth regression coeffi-

cients (c
∗(1)

1
, . . . , c

∗(1)

N ) was built in full accordance with the

theoretically assumed normal Markov model (12). On the

contrary, the second sequence (c
∗(2)

1
, . . . , c

∗(2)

N ) was formed

by three sinusoidal functions of time c
∗(2)

it = 4 sin
(

(2π/N)t+
(2π/3)(i − 1)

)

mutually shifted by phase.

All the 400 time series
(

(y1,x1), . . . , (yN ,xN )
)

had the

length N = 50 and were simulated with the same sequence

of regressors (x1, . . . ,xN ) obtained as the set of independent

random normal three-dimensional vectors with zero mean and

the same variance of independent components. The random

output values yt (5) were generated with 10% noise variance

δ = 0.1
(

(1/N)
∑N

i=1
(xT

t c∗t )
2
)

depending on the respective

ground-truth sequence of regression coefficients.

Finally, for each of time series, the two estimates of

regression coefficients (ĉλ,1, . . . , ĉλ,N ) were compared

with the respective ground-truth model by the criterion of

relative mean deflection of the estimate from the model

ε =
∑N

t=1
(ĉ

t,λ̂
− c∗t )

T (ĉ
t,λ̂

− c∗t )
/

∑N

t=1
(c∗t )

T c∗t .

We obtained the following results:

The plots of function J(λ|y) (29) along with its constituents

lnΦ
(

y | ĉλ(y)
)

+ ln Ψ
(

ĉλ(y) | λ
)

and −Tr
[

XXT (XXT +

1

λ
B)−1

]

experimentally computed from one of the random

time series representing the sinusoidal sequence of regression

coefficients are shown in the Figure 1 below. All other

realizations of J(λ | y) display the same strong unimodality.

VIII. DISCUSSING THE EXPERIMENTAL RESULTS AND

CONCLUSION

The continuous Akaike criterion, just as the classical AIC,

on one hand, and the cross validation as a representative
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Fig. 1. An example of function J(λ | y) and its constituents.

of the large group of resampling methods, on the other, are

essentially different by the principle of adjusting a model to

the given data set within a succession of nested model classes.

The idea of resampling is quite a straightforward imitation

of the dream of an immediate access to the universe. The

leave-one-out procedure is one of possible ways of drawing

several subsets from, actually, the only available sample and

treating them as though these were the samples taken from the

universe. This is the only self-deception of the resampling,

instead, it is free of any assumptions on some ”expected”

properties of the real world.

On the contrary, the very idea of maximizing the Kulback

similarity between the class of nested probabilistic data models

and the random universe in the form of (25) is based on the

hope that the assumed class of a priori densities Ψ(c | λ)
”almost contains” the hypothetical ”actual” distribution Ψ∗(c).
If this is a justified hope, the informational approach must

essentially outperform cross-validation, but if not, it will rather

lose the competition.

The results of our experiments look as confirming these

philosophical considerations. Indeed, the assumed first-order

Markov model of the hidden sequence of regression coeffi-

cients coincides with the actual mechanism of forming the first

ground-truth sequence (c
∗(1)

1
, . . . , c

∗(1)

N ) but is in contradiction

with the second one (c
∗(1)

1
, . . . , c

∗(1)

N ), because a sinusoidal

signal can be generated only by a second-order Markov model.

The fact that the continuous AIC has won in the case of

Markov-model coefficients and lost the competition at the

sinusoidal sequence may be referred just to this difference.
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