
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1588

Modeling Language for Machine Learning
Tsuyoshi Okita, and Tatsuya Niwa

Abstract— For a given specific problem an efficient algorithm has
been the matter of study. However, an alternative approach orthogonal
to this approach comes out, which is called a reduction. In general
for a given specific problem this reduction approach studies how to
convert an original problem into subproblems. This paper proposes
a formal modeling language to support this reduction approach. We
show three examples from the wide area of learning problems. The
benefit is a fast prototyping of algorithms for a given new problem.

Keywords—Formal language, statistical inference problem, re-
duction.

I. INTRODUCTION

WHEN we use machine learning algorithms [8] as a
software component in commercial applications, one

of the typical difficulties has been the mechanism of achieving
reliability. For example in an application such as speech
recognition or handwritten digit recognition, the first question
from public is usually related to the accuracies of their results.
Traditionally this reliability has assessed by time consuming
simulations. However recently, statistical learning methods,
such as Support Vector Machines [4], kernel methods [12], and
variational methods [5], made a revolution how to guarantee
the reliability in a theoretical manner, which is achieved by
bounds. Therefore in the perspectives of software reliability,
statistical learning is the only promising clue at this moment,
which should be emphasized. However, there are two imme-
diate weaknesses.

Firstly the traditional approach to create a new algorithm for
a new arising problem has disadvantageous in time and human
power. Machine learning problems are continuously widening
and deepening according as the expansion of application
areas. All the more single problem requires various algorithms
depending on the criteria, not only the efficiency in speed, but
also efficiency in memory or power.

Secondly, the increase of the machine learning algorithms
and target problems makes application designers more con-
fused without using any synthetic design methodologies, such
as the Unified Modeling Language (UML) in the area of soft-
ware engineering. This is because there are several fundamen-
tal differences between the traditional methodology and that of
machine learning. The first difference is the way that machine
learning bases on the algorithm induction. As we do not know
how to write algorithm directly, machine learning algorithm
learns its hypothesis from data. The second difference is that
this process has two steps: a learning phase and an application
phase (or training phase and test phase). Similarly, there are

T. Okita and T. Niwa are with Vrije Universiteit Brussel, Pleinlaan 2,
1050 Brussel, Belgium (phone: +32.2.629.37.24; fax: +32.2.629.37.08; e-mail:�

Tsuyoshi.Okita, tniwa � @vub.ac.be).

crucial differences in terms of decomposition of problems and
the number of samples as well.

The first problem of continuously arising problems can be
solved by a recent appeared reduction approach [7]. Tradi-
tionally, for a given specific target problem, the creation of a
new algorithm is the matter of study. A reduction approach,
which is orthogonal to this traditional approach, breaks down
a problem into decomposed problems that can be solved by
already known algorithms, such as classification algorithms.
Together with the statistical learning perspective, if we de-
rive overall bounds from individual bounds of decomposed
subproblems, this could be the definitive advantage over the
traditional approach although this paper does not show this
point. For the second problem of paradigms the related work
is in Allison [2]. Allison formalizes the sample complexity
using a functional language Haskell. However, this approach
does not say anything about other aspects which we mentioned
before.

The contribution of this paper is 1) to construct a formal
modeling language in order to solve those two problems,
and 2) to show several examples using this formal modeling
language including new algorithms. The rest of the paper
is organized as follows. In Section 2 we show briefly our
new programming paradigm and our summary of language in
the following Section, including syntax and semantics of our
modeling language. In Section 4 we show several examples
using our modeling language and conclude.

II. INDUCTIVE INFERENCE PROGRAMMING PARADIGM

We introduce an inductive inference programming paradigm
as the background of our formal modeling language. Firstly,
we should separate an algorithm (or function) from an input,
while in the procedural language an algorithm is directly
connected with an input. This would be natural because
machine learning learns from data, whereas these data consist
of not only input data but also output data. At the same
time, this would be natural because we are in difficulties
in writing algorithms directly, which is the reason why we
use machine learning methods to ‘learn’ them. Secondly, we
should represent both of two phases, which consist of a
training phase and a test phase. The learning algorithms learn
hypotheses from data, but usually the second phase that uses
these hypotheses fulfills the function in an application. In sum,
a schema 1) shows a form of a traditional procedural language
and 2) shows that of ours.

���
Output algorithm(Input)��� � Algorithm

TestOutput �TestInput 	 TrainingInput

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1589

III. OUR MODELING LANGUAGE

The aim of our modeling language is to describe (induc-
tive / statistical) inference problems in the area of machine
learning, especially to describe the necessary and sufficient
input / output information. Therefore based on the inductive
inference programming paradigm we introduced above, we
can formalize this problem description as a specification of a
problem. The core of this modeling language is to introduce A)
the notation of data structures, B) relationships between those
data structures, especially inference relations, C) rewriting
rules between problems, and D) semantics of rewriting rules,
especially related to the number of samples.

 A. Data Structures

We introduce a sequence and a (directed) graph. Although
we do not describe an undirected graph in here for the sake
of brevity, it is a direct extension of our framework. For a se-
quence we denote by ��������	� a sequence
�� ��� �� �

 � � � � .
For a (directed) graph we denote by ���
 � � a pair of a DAG
������� ��� �

and a joint probability distribution � of the
random variables in some set � , where � is a finite and
nonempty set whose elements are called nodes, and � is a
set of ordered pairs of distinct elements of � . Sometimes in
order to emphasize that the nodes in a DAG comprise � � , we
write ������� � �
 � � instead of ���
 � � .

TABLE I

DATA STRUCTURES IN OUR MODELING LANGUAGE

symbols meaning

data structures���
i-th sample of

�� � ��!
i-th variable in

�" �#�
a sequence of observation$&%'$ �#�)(+* ,-(
a pair of a DAG of samples

�
in topological order and

correspondent probabilities.$&%'$ �.� ��! (�* ,-(
a pair of a DAG of variables in

�
in topological order

and correspondent probabilities./ �.� ��!
union of variables

 B. Relationships between Data Structures (Problem)

The summary of notation is shown in Table I and II. Among
them we define by ‘ 	 ’ the (inductive / statistical) inference
relations, which is a natural extension of ‘ 0 	213��4 ��5 � ’.
This notation compresses a training and a test process. Firstly,
training examples are put at the right-hand side and a resulting
hypothesis is put at the left-hand side. We will use capital
letters for training examples (which signifies random variables)
and lower case letters for test examples (which signifies values
of random variables). Secondly, a test example is shown in the
second element at the left-hand side and the name of the output
by this test example is in the first element. This notation does
not lose the implication of the number of samples. Now we
show several examples.

Example 1 (Classification problem): A classification prob-
lem is defined as ‘ 6 � 0 	7� � 8 ’.

TABLE II

RELATIONSHIPS BETWEEN DATA STRUCTURES

symbols meaning

inductive inference relations9':<; an hypothesis 9 is (inductively / statistically) inferred by
the given training set ; .9>=@? 9�AB:C; an hypothesis 9D=@? 9�A which Outputs 9D= for the given test
example 9 A is (inductively / statistically) inferred by the
given training set ; .9':<; = ? ; A an hypothesis 9 is (inductively / statistically) inferred by
the training set ; = , each of which is given with a label; A or a model ; A .

relations between observationsE
OR of observation

, multi-view of observation

independenciesFF
independencies in observation$&%'$ ����(�* ,-()GGIH $J%'$ �#�)(+* ,-(

satisfies the Markov condition.

In this case, an hypothesis 6 � 0 which outputs 6 for the given
test example 0 is (inductively / statistically) inferred by the
given training set � , each of which is given with the label 8 .

A clustering problem is to place a label 6 for the given test
example 0 based on the observation � [12] [11], usually with
assuming the resulting cluster number K . It is noted that some
classical clustering algorithm such as k-means clustering may
not place labels on new test example, but only on training
examples, which may easily be extended.

Example 2 (Clustering): A clustering problem is defined as
‘ 6 � 0 	L� ’. (6NM<8 , 8O�P
 � �

 � K � when K is known).

A sequential prediction problem is defined in Conditional
Random Fields (CRF) [6]. In a training phase, we take a
sequence of words with labels �3�Q� � 8 �

as training examples.
In a test phase, we predict a sequence of labels �<6 based on
the test sequence of words �<0 . In summary,

Example 3 (Sequential prediction): A sequential prediction
problem is defined as ‘ �R�Q6 � 0 � 	7�3��� � 8 �

’.
Using Hidden Markov Models (HMMs) we can solve a

couple of different kinds of problems. One problem is solved
by the Viterbi algorithm [10], which associates an optimal
sequence of states to a sequence of observations, given the
parameters of a model of HMMs. More formally, for a given
model ������� � �
 � � and a sequence of observations �TSVU�WYX-6 � ,
we choose the optimal state sequence �[Z\U W^] 0 � .

Example 4 (Path selection): A path selection problem is
defined as ‘ �Q� Z U�W^].0 � � ���J_`��0 � �
 a � 	b��X�U+WYXc8 � �d������� � �
 � � ’.
 C. Syntax of Rewriting Rules

From now on we consider a problem with an algorithm.
Rewriting rules are shown in Table III and IV, where an
arrow shows a transition. There are several categories of
rewriting rules: 1) e (logical ’OR’), 2) independencies, and 3)
dimensionality transformation. An algorithm might be altered
when examples are split in the case of the rewriting rule
(1), and when different hypotheses are merged in the case
of the rewriting rule (13) and (14). It is noted that one famous
example that uses sequence dimensional reduction is CRFs
[6].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1590

TABLE III

REWRITING RULES WHERE WE HANDLE PROBLEMS WITH ALGORITHMS

rewriting rules

1 � algorithm A9': $; E�� (��� algorithm A� =�� $ 9�:�; (E � algorithm A� A�� $ 9': � (E � algorithm B� � � = E � A
[OR separation]

2 � algorithm A9':�; � � algorithm A9�: $; E	� (
3 � algorithm A9':�; ? � � � algorithm A9�: Q ;-=\? � = (E $; A ? � A ()(�
 $; = / ;�A � ; (

[OR separation]

4 � algorithm A
problem I

� � algorithm B
problem I

[algorithm conversion]

5 � algorithm A�Y? � ��! : � ? � � � algorithm A� ? : � ? �
[equalization of training and test set]

6 � algorithm A" $ �Y? (: " $ � ? � (�� � algorithm A�Y? : " $ � ? � (
[sequence dim-reduction]

7 � algorithm A$ �Y? (: " $ � ? � (� � algorithm A" $ � ? (: " $ � ? � (
[sequence dim-augmentation]

8 � algorithm A" � ? $&% " �)(: " $ � ? � (� � algorithm A�Y? : � ? �
[graph dim-reduction]

9 � algorithm A�Y? : � ? � � � algorithm A" �Y? %'$ " �Q(: " $ � ? � (
[graph dim-augmentation]

 D. Semantics of Rewriting Rules

Rewriting rules related to decomposition and merge has two
semantics : 1) decomposition semantics and 2) semantics of
the number of samples.

Decomposition semantics relates to the fact that we decom-
pose the input or the output examples instead of algorithms.
This is due to the fact that an algorithm in machine learning
consists of learned hypotheses, which are usually not able to
decompose, which is different from the traditional decomposi-
tion of algorithms, such as parallelization of algorithms. In this
reason, correspondent algorithms when decomposed should
be carefully chosen based on the original algorithm. Assume
that we divide an original training set into two sets. After
learning an individual training set, we have to choose carefully
how to merge those two hypotheses, where there are many
possibilities in this merge. Similarly, correspondent algorithms
when merged should be carefully chosen. Semantics of the
number of samples can be used for the calculation of overall
bounds from individual bounds.

IV. EXAMPLE OF REWRITING

In this section we show several examples of reduction of a
source problem into a destination problem. The first example
shows a parallelization of SVMs [9]. It is noted that there are
many other ways to decompose this problem other than our
examples.

Example 5: (Parallelization of SVMs) A problem 6 � 0 	
� � 8 with � ���� ��� , ��� ��� �� ��� � � with SVMs is equivalent

TABLE IV

REWRITING RULES CONTINUED FROM THE PREVIOUS TABLE

rewriting rules

10 � algorithm A$ "�� = � ��(? : � ? "�� = � �Q(��� algorithm A$)$ " A = � �)(? : � ? " A = � �)(Q(E * * * EQ "����� = � �Q(? : � ? "��� � = � �Q(Q(
with
%'$ �#�)()GG H

[decomposition by Markov property]

11 � algorithm A$ /!� = � � � ! (? : � ? � � � algorithm A$ � � = ! ? : � ? � (E * *�* E$ � � � ! ? : � ? � (
with

%'$ � � � ! ()GG H
[decomposition by d-separation]

12 � algorithm A�Y?
�" : � ? �
), � � algorithm A�Y? : � ? �
[marginalization of hidden variables]

13 � algorithm AQ � � ? �Q(: " $ �#� ? � ��(Q(E * * * E $)$ �$# ? # (: " $ � #^? � # (Q(� � algorithm B" #�&% � $ �Y? (: " $ ��� ? � ��(
[merge sequences]

14 � algorithm AQ � � � ! ? � � ! (: " $ � � � ! ? � � � ! ()(E * * * E$)$ � � # ! ? � # ! (: " $ �.� # ! ? � � # ! ()(� � algorithm B/ #��% � $ � ? (: / #��% � ��� ? / #�&% � � �
[merge variables]

15 � algorithm A9': / � � � ! ? / � � # ! $ � � � !
)� � # !(' � (� � algorithm A9#: �
[superset]

to the following decomposed problems.)******+ ******,
� SVMs algorithm- � �b6 � 0 � 	b� � � 8 � �� SVMs algorithm- �b6 � 0 	b� � 8 �� boosting algorithm
6 � 0 	 - � e - �

with � � �� � � , �.� ��� �� ��� � � and with � ��/ � , where 8 � is
a label for � � and 8 is a label for � , and � �7� � / � .

Rewriting Procedure 5: First we decompose examples �
into � � and � . It is noted that in the schema the number
shows the number of rewriting rules in Tables.

� SVMs algorithm
6 � 0 	7� � 80 �21 � � SVMs algorithm

6 �d�Q0 � eI0 � 	 � ��� � � 8 � � e �Q� � 8 � �

0 ��3 �
)******+ ******,

� SVMs algorithm- � �76 � 0 � 	7� � � 8 � �� SVMs algorithm- �76 � 0 	7� � 8 �� boosting algorithm
6 � 0 	 - � e - �

Next example rewrites from a path selection problem into
a sequential prediction problem.

Example 6: A path selection problem
�Q��Z�U W^] 0 � � ���J_`��0 � �
 a � 	7��8 � ���54 �Q� � �
 � � (4 ��� � � GG H)
with the Viterbi algorithm can be reduced into a sequential
prediction problem ��6 ��6 � 0 � 	 �R��� � 8 �

(4 �Q�7� ��� � GG H) with
CRF algorithm.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1591

Rewriting Procedure 6: Using the rewriting rule (9), a path
selection problem can be decomposed into the following
problems:� Viterbi algorithm

�)� Z U+W^] 0 � � �d��_ �Q0 � �
 a � 	 ��8 � �d� 4 ��� � �
 � �0 � ������� � � Viterbi algorithm
�3��0 � � � �3�Q0 � � a � � 	 ��8 � � �3�Q� � � � � �0	� � ��
 � � Viterbi algorithm)+ , 0 �� � �d�Q0 � � a � � 	 8 � ����� ����� � � �� � �

0�� ����0���� � � a���� � � 	b8���� � �d�Q��� � ��� �0�� � � 3 � � CRF algorithm

�3��0 ��� � � 0 ��� a � � 	O�Q��8 � � � �� �D� � ����� � �0 � � � � CRF algorithm
�3��0 ��� � � 0 � � 	 �)�3�Q8 � � � ��� � � �

We define a structure discovery (plus inference) problem is the
combination of two phases: the first phase is to learn Bayesian
networks from data and the second phase is to determine
various probabilities of interest based on the constructed
Bayesian networks. This problem can be decomposed into
multi-class classification problems as follows.

Example 7: A structure discovery problem/ �� ��� 0�� � � � /��� � � 0�� �&� 	 � (4 ��� � � GG H) with an arbitrary
structure discovery algorithm is equivalent to �I��� �"! �
number of multi-class classification (regression) problems
where we observe them in

/ �.� ��� with a classification
algorithm (and the hypotheses merge with an arbitrary
boosting algorithm).

Rewriting Procedure 7: Using the rewriting rule (10), a
structure discovery problem

/ 0 � � � � / 0�� � � 	 � can be de-
composed in a following manner.� arbitrary structure discovery algorithm/ 0 � � � � / 0�� �&� 	b�

0#� � � � � �
arbitrary structure discovery algorithm)********+ ********,

)+ , 0��%$ � � 0 � � � 	L�

0��%$ � � 0 � � � 	7�

)+ , 0�� � � � 0 � � � 	7�

0�� � � � 0 � � � 	b�

0 ��& � �
arbitrary structure discovery algorithm)********+ ********,

)+ , 0��%$ � � 0 	7� � ���%$ �

0��%$ � � 0 	7� � ���%$ �

)+ , 0�� � � � 0 	b� � �.� � �

0�� � � � 0 	b� � �.� � �

0�� � � 1 �
)********+ ********,

� multiclass classification /regression- �.�70��%$ � � 0 	b� � ���%$ �

� multiclass classification / regression- � �b0 � � � � 0 	7� � �.� � �� arbitrary merge algorithm- � - � e

\e - �

V. CONCLUSION

The contribution of this paper is to construct a formal
modeling language for machine learning. The syntax and se-
mantics of this formal modeling language are shown in Tables.
Due to the space restriction we could not explain enough
about each rewriting rule, but we implement the interesting
aspects in this formal language, which we named the inductive
inference programming paradigm, such as training / test phase
separation, decomposition semantics, and separation of an
algorithm and input / output. Then we show three rewriting
examples. These examples show that for a given new problem
we might be able to rewrite a wide range of new problems into
easier problems, such as classification problems. Therefore
this reduction approach enables us to do a fast prototyping
of algorithms for a new problem.

As is mentioned in Introduction, our further study is to de-
velop this formal modeling language as the basis for reduction.
Then as is shown in the paper the result of rewriting boils down
to the combination of easy algorithms in statistical learning,
such as classification and boosting. Hence we can combine
individual bounds of classification and boosting into overall
bounds, which enables us to guarantee the overall reliability.
This framework is related to the semantics of number of
sample of this modeling language.

REFERENCES

[1] Abney, S. (2002). Bootstrapping. The 40th Annual Meeting of the
Association for Computational Linguistics.

[2] Allison, L. (2003). Types and Classes of Machine Learning and
Data Mining. Twenty-Six Australasian Computer Science Conference
(ACSC2003), pp.207-215, Australia.

[3] Bartlett, P. L., Collins, M., McAllester, D., and Taskar, B. (2004). Large
margin methods for structured classification: Exponentiated Gradient
algorithms and PAC-Bayesian generalization bounds. NIPS Conference.

[4] Cristianini, N., Shawe-Taylor, J. (2000). Introduction to Support Vector
Machines. Cambridge University Press.

[5] Jaakkola, T. (2000) Tutorial on Variational Approximation Method. In
Advanced Mean Field Methods: Theory and Practice, MIT Press.

[6] Lafferty, J., McCallum, A., Pereira, F. (2001). Conditional Random
Fields: Probabilistic Models for Segmenting and Labeling Sequence Data.
International Conference on Machine Learning (ICML).

[7] Langford, J., Beygelzimer, A. (2002). Sensitive Error Correcting Output
Codes.

[8] Mitchell, T. (1997). Machine Learning. McGraw Hills.
[9] Okita, T., Manderick, B. (2003). Support Vector Learning in Distributed

Environments (poster), Conference On Learning Theory and Kernel
Machines, Washington.

[10] Rabiner, L. R. (1989) A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition. Proceedings of the IEEE, VOL. 77,
No. 2, February 1989.

[11] Scholkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J. (2000).
Support Vector Method for Novelty Detection. In Neural Information
Processing Systems.

[12] Shawe-Taylor, J., Cristianini, N. (2004). Kernel Methods for Pattern
Analysis. Cambridge University Press.

