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I. INTODUCTION

These last decades knew intense political and economic

changes which increases the uncertainty lied to real prob-

lems and makes decision making a very delicate task. In

this context, graphical decision models allow a compact and

a simple representation of decision problems. Within most

popular decision models, we can mention decision trees [14],

influence diagrams [11] and valuation based systems [18].

In this paper, we are interested, in particular, in influence

diagrams (IDs) which provide efficient decision tools under

uncertainty. An ID is composed by a graphical component

which is a Direct Acyclic Graph (DAG) and a numerical one

quantifying this DAG. The numerical component is generally

provided by experts who will express their uncertainty relative

to variables (represented by chance nodes) via probability dis-

tributions and their preferences (represented by value nodes)

through utilities. Nevertheless, in most real problems it is not

obvious to provide exact probability distributions and it is

easier to express uncertainty in a qualitative manner. Moreover,

decision makers (DM) may encounter several difficulties when

expressing their utilities.

We have already attacked these problems by proposing

what we have called possibilistic influence diagrams [7] [8]

[9] which are possibilistic counterpart of standard influence

diagrams where the numerical component is modeled in the

possibilistic framework [4] which offers an alternative choice

to the probabilistic one with a particular ability to handle

uncertain information in a qualitative manner.

In this paper, we propose another variant of possibilistic

influence diagrams considering the case of several expert

opinions in order to improve the quality of utilities. More

precisely, we develop the case where an initial expert will

propose a set of possible numerical utilities and a possibility

distribution relative to each consequence and each utility.

Then, a group of assistant experts will help him by providing,

in their turn, their opinion regarding the same elements. Then,

the initial expert will express his opinion concerning the

reliability of assistant experts by assigning confidence degrees

to each of them. In addition, he should provide a similarity

threshold which will be taken into account in the evaluation

process. In fact, only possibility distributions with similarity

measure higher than the fixed threshold will be considered.

Then, the conjunction between possibility distributions relative

to each utility and each consequence will be computed in order

to obtain one possibility distribution.

Once this step achieved, we will have a possibilistic influ-

ence diagram quantified in the same way than those presented

in [8] which means that the already developed evaluation

method can be used in order to generate best strategies.

This paper is organized as follows: Section 2 provides the

necessary background on possibility theory. Section 3 presents

possibilistic influence diagrams. Section 4 proposes the new

variant of possibilistic influence diagrams involving several

experts. Finally, Section 5 details the evaluation algorithm of

multi-source possibilistic influence diagrams.

II. BACKGROUND ON POSSIBILITY THEORY

Possibility theory was proposed as an alternative theory of

uncertainty in order to remedy the incapacity of probability

theory for modeling total ignorance and qualitative uncertainty.

This theory was initially proposed by Zadeh [20] and was

developed by Dubois and Prade [4]. This section briefly recalls

basic elements of possibility theory, for more details see [4].

The basic buildings block in the possibility theory is the

notion of possibility distribution denoted by π, it is a mapping

from the universe of discourse denoted by Ω = {ω1...ωn} to

the unit interval [0, 1]. This scale has two interpretations, a

quantitative one when the handled values have a real sense

and a qualitative one when the handled values reflect only an

ordering between the different states of the world.

In the possibilistic framework, extreme forms of partial

knowledge can be represented by complete knowledge i.e.

∃ωi ∈ Ω, s.t π(ωi) = 1 and ωj �= ωi, π(ωj) = 0 and the

total ignorance i.e. ∀ωi ∈ Ω, π(ωi) = 1.

A possibility degree is a value from the interval [0, 1]
associated to each element ω of Ω. The possibility measure of

any subset ψ ⊆ Ω is defined as follows:

Π(ψ) = maxω∈ψπ(ω) (1)

Π has a dual measure which is the necessity measure
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A possibility distribution is said to be normalized, if

maxω∈ψπ(ω) = 1 (Namely, ω is a totally possible state) and

it is said to be sub-normalized if maxω∈ψπ(ω) �= 1.

The value 1 −maxω∈ψπ(ω) is called the degree of incon-

sistency of a possibility distribution and it is commonly used

to measure the level of conflict in information issued from

multiple sources after merging them.

Namely, if 1−maxω∈ψ(π1(ω)∧π2(ω)) �= 0 then π1∧π2 is

a sub-normalized possibility distribution and there is a conflict

between π1 and π2.

Given two possibility distributions from two distinct sources

of information, then it is possible to compute the similarity

between these two sources through a similarity measure be-

tween the two possibility distributions. In the literature, several

similarity measures have been proposed such as Manhattan

Distance and Euclidean Distance which satisfy basic proper-

ties of any possibilistic similarity measure [12].

In the possibilistic approach, there are several combination

modes to ensure the information fusion and the choice of the

appropriate method is related to the reliability of information’s

sources.

The most known combination operators are the symmetric

ones, namely the conjunctive and the disjunctive operators:

1) The conjunctive fusion: If all sources are reliable,

then we can combine them using the intersection, the

conjunctive operator
⊗

is defined as follows:

∀ ω ∈ Ω, π∧(ω) =
⊗

i=1..n

πi(ω) (2)

where πi be the possibility distribution supplied by

source i.
⊗

is a t-norms such that minimum or product or linear

product according to the uncertainty scale’s interpre-

tation. Indeed, the min operator is supported by both

quantitative and qualitative possibility distributions.

However, the use of the product operator assumes that

possibility degrees are numerical.

2) The disjunctive fusion: This mode of combination is

applied when it is known for sure that at least one of

the sources is reliable but it is not known which one.

The disjunctive operator
⊕

is defined as follows:

∀ ω ∈ Ω, π∨(ω) =
⊕

i=1..n

πi(ω) (3)

⊕

is a t-conorms such that maximum or probabilistic

sum or Lukasievicz according to the uncertainty scale’s

interpretation. Indeed, all of these t-conorms can be

applied in the quantitative setting. However, only the

maximum operator can be applied in the qualitative

setting.

The conditioning represents a special case of information

fusion. Indeed, it consists in revising our initial knowledge,

represented by a possibility distribution π, which will be

changed into another possibility distribution π′ = π(.|ψ) with

ψ �= ∅ and Π(ψ) > 0.

The two interpretations of the possibilistic scale induce two

definitions of the conditioning:

• Min-based conditioning relative to the ordinal setting:

π(ω|mψ) =

⎧⎨
⎩

1 if π(ω) = Π(ψ) and ω ∈ ψ
π(ω) if π(ω) < Π(ψ) and ω ∈ ψ

0 otherwise
(4)

• Product-based conditioning relative to the numerical set-
ting:

π(ω|pψ) =

{
π(ω)
Π(ω)

ifω ∈ ψ

0 otherwise
(5)

III. POSSIBILISTIC INFLUENCE DIAGRAMS

Few works exist on possibilistic networks and existing ones

concern reasoning under uncertainty without considering the

decision aspect [1], [2].

Recently, Sabbadin et al. [5] have proposed possibilistic

influence diagrams using optimistic and pessimistic utilities

[4] for the quantification of value nodes. Giang et al. [6]

noted that this utility framework is based on axioms relative

to uncertainty attitude contrary to the VNM axiomatic system

[13] based on risk attitude, which does not make a sense

in the possibilistic framework since it represents uncertainty

rather than risk. Moreover, to use pessimistic and optimistic

utilities, the decision maker should classify himself as either

pessimistic or optimistic which is not always obvious. To

overcome these limitations, Giang et al. [6] propose a more

generalized framework based on the axiomatic system of

possibilistic binary utility.

The theory of possibility offers a rich and effective frame-

work for the representation and the treatment of the uncer-

tainty, what motivated us to develop possiblistic influence

diagrams which benefit also of the simplicity of standard

influence diagrams.

Formally, a possibilistic IDs has two components:

1) A graphical component defined by a directed acyclic

graph (DAG), denoted by G(N,A), where N is the set

of chance, decision and value nodes and A is the set of

arcs in the directed graph.

2) A numerical component evaluating different dependen-

cies between chance nodes and utilities for value nodes.

• For each chance node Ci, we should provide con-

ditional possibility degree Π(cij | pa(Ci)) of each

instance cij of Ci in the context of each instance of

its parents. In order to satisfy the normalization con-

straint, these conditional distributions should satisfy,

∀pa(Ci):

maxcij
Π(cij | pa(Ci)) = 1, (6)

Note that for root chance nodes (i.e. (Pa(Ci) = ∅),

equation (6) corresponds to maxcij
Π(cij) = 1.

• For each value node Vi, there are several ways to

represent decision maker’s preferences on the set of

consequences, namely using cardinal utility, ordinal

utility, possibilistic utility or as well as a compound

utility.

Note that likewise standard IDs, decision nodes in

possibilistic IDs are not quantified.

Different combinations between the quantification of chance

and utility nodes offer several kinds of possibilistic IDs which

can be regrouped into three principal classes:
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• Product-based possibilistic IDs where both dependencies

between chance nodes and value nodes are quantified in

a genuine numerical setting.

• Min-based possibilistic IDs or qualitative possibilistic

ID where both dependencies between chance nodes and

value nodes are quantified in a qualitative setting used

for encoding an ordering between different states of the

world.

• Mixed possibilistic IDs where dependencies between

chance nodes and value nodes are not quantified in the

same setting.

Product-based and min-based possibilistic IDs represent

homogeneous possibilistic IDs and mixed possibilistic IDs are

the heterogeneous ones.

In a previous study, we have developed min-based

possibilistic IDs where for the quantification of value nodes,

we have handled two cases: the first one concerns the

use of the ordinal utility [7] and the second [9] is about

the application of the qualitative binary possibilistic utility [6].

In addition, we have developed product-based possibilistic

IDs where for the quantification of value nodes, we have

handled two cases: the first one concerns the use of cardinal

utility [9] and the second one treat the case where decision

makers provide a set of numerical utilities and a possibility

distribution relative to each consequence and each utility [8].

The chain rule relative to product-based possibilistic IDs is

as follows: Π(C | D) = ΠCi∈Cπ(Ci | Pa(Ci))

To evaluate these possibilistic IDs, we have proposed an

indirect evaluation method, in which we have used the in-

formation fusion in the possibilistic framework. In fact, the

product operator was used for the conjunction and the max

operator was used for the disjunction. This paper proposes an

extension of these IDs to the case of several experts as detailed

in next section.

IV. MULTI-SOURCE POSSIBILISTIC INFLUENCE DIAGRAMS

The new variant of possibilistic IDs proposed in this paper

deals with the case of several experts that will collaborate

for the quantification of value nodes. Indeed, in these IDs

dependencies between chance nodes will be expressed by

quantitative possibility distributions and value nodes are quan-

tified by several experts.

In fact, an initial expert E0 and n assistant experts (Ei
where i ∈ {1..n}) will model their uncertainty relative to each

value node.

More precisely, the initial expert will provide a set of m

numerical utilities, denoted by UT and also a possibility

distribution relative to each utility and each consequence

(without affecting the exact value of utility to the appropriate

consequence). Then, assistant experts will help initial expert to

improve the accuracy of his knowledge concerning value nodes

and they will provide, in their terms, possibility distributions

relative to each utility and each consequence.

The possibility distribution provided by the initial expert

will be denoted by Π0, and the one expressed by the assistant

expert Ei by Πi. These possibility distributions should satisfy,

∀x ∈ X:

maxUTj∈UTΠi(U(x) = UTj) = 1 ∀i ∈ {0..n} (7)

To avoid unreliable opinions and possible contradictory

knowledge, the initial expert will assign a confidence degree

to each assistant expert. These degrees reflect the confidence

of the initial expert in each assistant expert. The confidence

degree relative to the assistant expert Ei is denoted by αi such

that αi ∈ [0, 1]. We can distinguish the following different

cases concerning αi:

• if αi = 0 then E0 has no confidence in Ei.

• if αi = 1 then E0 has a total confidence in Ei.

• if αi = 0.5 then E0 is neutral concerning Ei.

• if αi ∈]0, 0.5[ then E0 isn’t confident in Ei.

• if αi ∈]0.5, 1[ then E0 is confident in Ei.

In addition, the initial expert will fix a similarity thresh-

old (denoted by TH), beyond it possibility distributions are

considered in contradiction with his knowledge. TH ∈ [0, 1].
According to the value of TH , we can classify the behavior

of the initial expert as follows:

• if TH = 0 then E0 has a pessimistic behavior character-

ized by uncertainty aversion.

• if TH = 1 then E0 has an optimistic behavior character-

ized by uncertainty attraction.

• if TH = 0.5 then E0 has a neutral behavior.

Example 1: Let us consider the simple decision problem

represented by the possibilistic ID of figure 1 containing 3

chance nodes (A,B,C), 1 decision node (D) and 1 value

node (V ). Possibility distributions for the chance nodes are

presented in table I.

 

ABC

D V 

Fig. 1. An example of influence diagram

TABLE I
A PRIORI AND CONDITIONAL POSSIBILITY DISTRIBUTIONS FOR CHANCE

NODES

A Π(A) A B Π(B|A) B C Π(C|B)
T 1 T T 0.9 T T 1
F 0.6 F T 0.2 F T 0.3

T F 1 T F 0.2
F F 1 F F 1

For the utilities, the initial expert affirms that the possible

values of utilities are {4, 7, 8}.

For the sake of simplicity we will denote (U(A,D) = 4)
by U1, (U(A,D) = 7) by U2 and (U(A,D) = 8) by U3.

The initial possibility distribution Π0 relative to each conse-

quence and utility provided by the initial expert is represented

in table II:
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TABLE II
POSSIBILITY DISTRIBUTION Π0(U(A,D) = UTi)

A D Π0(U1) Π0(U2) Π0(U3)
T d1 0.2 1 0.3
F d1 1 0.1 0.2
T d2 0.6 0.1 1
F d2 1 0.1 0.3

To improve the precision of his uncertainty concerning the

utilities, the initial expert will take into account the opinion

of two other assistant experts (E1 and E2) who will provide

possibility distributions Π1 and Π2 represented respectively in

tables III and IV.

TABLE III
POSSIBILITY DISTRIBUTION Π1(U(A,D) = UTi)

A D Π1(U1) Π1(U2) Π1(U3)
T d1 0.1 0.6 1
F d1 1 0.4 0.8
T d2 0.5 0.5 1
F d2 1 0.1 0.3

TABLE IV
POSSIBILITY DISTRIBUTION Π2(U(A,D) = UTi)

A D Π2(U1) Π2(U2) Π2(U3)
T d1 0.2 0.9 1
F d1 0.7 1 0.2
T d2 0.6 0.3 1
F d2 1 0.1 0.3

Suppose that the confidence degrees relative to assistant

experts E1 and E2 are α1 = 0.7 and α2 = 0.3 which means

that E0 has a confidence in E1 and not in E2) and that the

similarity threshold fixed by the initial expert is TH = 0.3
i.e. he has a pessimistic behavior.

V. EVALUATION OF MULTI-SOURCE POSSIBILISTIC

INFLUENCE DIAGRAMS

Given a multi-source possibilistic ID, we should evaluate it

in order to generate optimal decisions. As we have mentioned

in the introduction, there are two approaches to evaluate

standard IDs, namely, direct and indirect ones.

The evaluation of possibilistic IDs, proposed in [5], is based

on an indirect evaluation method which transforms them into

decision trees. Such evaluation method was not successful in

the probabilistic framework since, contrary to those based on

Bayesian networks, it does not use independencies encoded

by IDs to save some computations since decision trees are not

able to represent independencies [21]. This argument remains

available in the possibilistic framework, as it only concerns the

graphical component which is the same in the two frameworks.

In addition, direct evaluation methods [17] require heavy

computations since they are based on arc reversal and node

deletion, contrary to indirect ones which are based on the

transformation of IDs into Bayesian networks. This explains

the great development of indirect methods in the probabilistic

case [3], [15], [16], [21].

The success of indirect evaluation methods for standard

IDs, motivates us to develop an indirect evaluation method

for possibilistic IDs. Our choice is reinforced by the fact

that a possibilistic counterpart of Bayesian networks has been

developed as well as their propagation algorithms [1].

More precisely, we will develop a possibilistic counterpart

of Cooper’s method [3] for the particular case of influence

diagram with a unique value node, since it represents the basis

of existing indirect methods.

Thus, the principle of our evaluation algorithm is to trans-

form decision and value nodes into chance nodes in order to

obtain a possibilistic network, and then to use this secondary

structure to compute maximal expected utilities via a propa-

gation process. These two major phases are detailed in what

follows.

A. Transformation phase

This phase consists in transforming decision and value

nodes into chance nodes.

1) Decision nodes transformation : Each decision node Di

in the possibilistic ID is transformed into a chance node which

should be quantified. In the probabilistic case, this quantifica-

tion is ensured by an equi-probable distribution. Nevertheless,

this is not really appropriate, since equi-probability represents

randomness rather than total ignorance. This problem can be

overcome in the possibilistic framework where our ignorance

about the new chance node can be suitably represented via a

uniform possibility distribution. More formally:

Π(dij |p pa(Di)) = 1, ∀dij , pa(Di) (8)

Example 2: The ID presented in figure 1 has one decision

node D. The possibility distribution of the new chance node

D obtained by equation (8). is presented in table V:

TABLE V
POSSIBILITY DISTRIBUTION Π(D | C)

C D Π(D | C)
T d1 1
F d2 1
T d2 1
F d1 1

2) Value node transformation : This phase starts by a

processing step of possibility distributions given by several

experts. The goal of this step is to consider only reliable

opinions of assistant experts in order to avoid contradiction

in knowledge. This processing step is detailed as follows:

1) For each Ei (i ∈ 1..n), compute the similarity between

the initial possibility distribution Π0 and his possibility

distribution Πi. This similarity measure will be denoted

by Si(Π0,Πi) and can be computed by any quantitative

similarity measure between two possibility distributions

(see section 2).

Let sij be the similarity measure between Π0 and Πi

for the case of UTj (j ∈ 1..m). Then, the similarity

measure Si(Π0,Πi) will be the average of the all sij
i.e.

Si(Π0,Πi) =

∑m

j=1 sij

m
.

2) For each Si (i ∈ 1..n), compute the weighted similarity

measure i.e.

S′

i = αi ∗ Si.
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This step aims to balance the similarity measure taking

into account the confidence degree of the assistant

expert.

3) Eliminate opinions whose relative weighted similarity

measure are lower than the similarity threshold. Namely,

possibility distributions Πi whose S′(Π0,Πi) < TH

will be eliminated.

4) Combine reserved possibility distribution Πi with Π0

using the min operator since it concerns a conjunctive

fusion in quantitative setting. The resulted possibility

distribution will be denoted by Πr.

After this processing step, we will have a possibilistic

influence diagram quantified in the same way that those

yet developed in [8], so that the proposed value node

transformation method can be directly applied.

Example 3: Let us continue with the same example. To

measure the similarity between proposed possibility distri-

butions, we will use the Manhattan Distance MD [12] as

follows:

MD(Π1,Π2) = 1 −

∑n

i=1(|π1(ωi) − π2(ωi)|)

n

Let S1 (resp. S2) be the similarity measure between Π0 and

Π1 (resp. Π0 and Π2). Then for the computation of S1, we

have:

• s11 is the similarity measure between Π0 and Π1 in the

case of U1, namely where U(A,D) = 4 ⇒ s11 = 0.95.

• s12 is the similarity measure between Π0 and Π1 in the

case of U2, namely where U(A,D) = 7 ⇒ s12 = 0.275.

• s13 is the similarity measure between Π0 and Π1 in the

case of U3, namely where U(A,D) = 8 ⇒ s13 = 0.325.

Thus S1 = s11+s12+s13
3 = 0.516. In the same manner we

have S2 = 0.75. Then, the weighted similarity measures are

computed as follows:

S′

1 = α1 ∗ S1 = 0.7 ∗ 0.516 = 0.361
S′

2 = α2 ∗ S2 = 0.3 ∗ 0.75 = 0.225
Since TH = 0.3, then only the opinion of E1 will be taken

into account for the quantification phase

Once, this processing step is achieved, the conjunction of Π0

with the reserved possibility distribution Π1 will be computed

using the min operator as shown in table VI.

TABLE VI
POSSIBILITY DISTRIBUTION Πr(U(A,D) = UTi)

A D Πr(U1) Πr(U2) Πr(U3)
T d1 0.1 0.6 0.3
F d1 1 0.1 0.2
T d2 0.5 0.1 1
F d2 1 0.1 0.3

To compute optimal strategy, the proposed algorithm [8]

dealing with possibilistic influence diagrams using information

fusion will be used. The obtained possibilistic network after

the transformation of the decision node D and the value node

V is presented in figure 2.

The first step for the transformation of the value node V in

[8] is the transformation of numerical utilities into a possibility

distribution as presented in table VII.

 

ABC

D V

Fig. 2. Resulted possibilistic network

TABLE VII
TRANSFORMATION OF UTILITIES INTO A POSSIBILITY DISTRIBUTION

UT (A,D) V Π(V | A,D)
4 T 0
7 T 0.375
8 T 1

4 F 0
7 F 0.625
8 F 1

Each consequence has two information: Π(V |A,D) and

Πr(Ui) ∀i ∈ {1, 2, 3} which will be merged using the product

operator. The result of this conjunctive fusion is ΠVi
presented

in table VIII.

TABLE VIII
THE CONJUNCTIVE FUSION

V A D ΠV1
ΠV2

ΠV3

T T d1 0 0.225 0.3
T F d1 0 0.0375 0.2
T T d2 0 0.0375 1
T F d2 0 0.0375 0.3
F T d1 0.1 0.375 0
F F d1 1 0.0625 0
F T d2 0.5 0.0625 0
F F d2 1 0.0625 0

Since, the set of numerical utilities contains three possible

values of utility then we will have three choices for each con-

sequence (as presented in table VIII). For each consequence,

the disjunctive fusion will be applied via the max operator.

The possibility distribution issued by the disjunctive fusion is

presented in table IX.

TABLE IX
THE DISJUNCTIVE FUSION

V A D Π(V |A,D)
T T d1 0.3
T F d1 0.2
T T d2 1
T F d2 0.3
F T d1 0.375
F F d1 1
F T d2 0.5
F F d2 1

B. Propagation phase

The following step in the evaluation process of the pos-

sibilistic influence diagram is the propagation phase which

consists in the use of the appropriate propagation algorithm

in the possibilistic network issued from the transformation

phase. The selection of the appropriate propagation algorithm

depends of the DAG structure.
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The propagation phase aims to compute the Maximal Ex-

pected Utility (MEU) relative to each decision node. This

computation starts by the last decision node Dm to the first

one D1. Optimal decisions (i.e those relative to D1, ..,Di−1)

already computed should be integrated in the computation of

the optimal decision relative to Di. More formally, for each

decision Di, we have:

Π(Di, E) = Π(v = T | Pa(V ))Π(Pa′(V ) | dij , E) (9)

where E is the set of evidence and Pa′(V ) is the set of

chance nodes in Pa(V ).
For the proposed possibilistic influence diagrams, we will

always obtain a quantitative possibilistic networks, so product-

based propagation algorithms in quantitative possibilistic net-

works should be used in order to compute Π(Pa′(V ) |dij , E) .

Indeed, two product-based propagation algorithms have

been defined according to the nature of the DAG in the

possibilistic network [1]. More precisely, if the DAG is singly

connected then the possibilistic adaptation of the centralized

version of Pearl’s algorithm should be used. Then, if the

DAG is multiply connected then the possibilistic adaptation

of junction trees propagation should be used.

Once, Π(Di, E) is computed for each decision Di, we can

compute the MEU as follows:

MEU(Di, E) = maxdij

∑

pa′(V )

Π(Di, E) (10)

Example 4: Suppose now that we receive a certain infor-

mation saying that the variable C takes the value T . Since the

obtained possibilistic network presented in figure 2 is a multi-

ply connected DAG, so the possibilistic adaptation of junction

trees propagation [1] is applied to compute Π(A |D,C = T )
as presented in table X.

TABLE X
THE COMPUTATION OF Π(A |D,C = T )

A D C Π(A |D,C = T )
T d1 T 1
F d1 T 0.2
T d2 T 1
F d2 T 0.19

After the application of equation (9), we will have MEU =
0.81. Thus, the optimal decision is D∗ = d1

VI. CONCLUSION

In this paper we have proposed a new extension of possi-

bilistic influence diagrams where several source of information

regarding value nodes are available.

Indeed, dependencies between chance nodes are quantified

using possibility distributions. Then, an initial expert should

define for each value node a set of possible numerical utilities

and possibility distributions relative to each consequence and

each utility. Then, several assistant experts, characterized by

confidence degrees provided by the initial expert, will express

their uncertainty concerning value nodes in the same way

of the initial expert. In fact, they will provide possibility

distributions relative to each consequence and each utility.

To evaluate these multi-souce possibilistic influence dia-

grams, we have proposed an indirect evaluation method based

on a processing phase of possibility distributions and on the

evaluation algorithm already proposed in [8].

The proposed approach, has been implemented in a Possi-

bilistic Influence Diagram Toolbox (PIDT) which can be seen

as a decision support system.

A direct improvement of our proposal concerns multi-source

possibilistic IDs with several value nodes to deal with multi

objective decision problems when uncertainty is modeled in a

possibilistic setting.
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