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Abstract—Detection of incipient abnormal events is important to
improve safety and reliability of machine operations and reduce losses
caused by failures. Improper set-ups or aligning of parts often leads to
severe problems in many machines. The construction of prediction
models for predicting faulty conditions is quite essential in making
decisions on when to perform machine maintenance. This paper
presents a multivariate calibration monitoring approach based on the
statistical analysis of machine measurement data. The calibration
model is used to predict two faulty conditions from historical reference
data. This approach utilizes genetic algorithms (GA) based variable
selection, and we evaluate the predictive performance of several
prediction methods using real data. The results shows that the
calibration model based on supervised probabilistic principal
component analysis (SPPCA) yielded best performance in this work.
By adopting a proper variable selection scheme in calibration models,
the prediction performance can be improved by excluding
non-informative variables from their model building steps.

Keywords—Prediction, operation monitoring, on-line data,
nonlinear statistical methods, empirical model.

I. INTRODUCTION

HE monitoring or detection of abnormal events of machines
is an essential part of the operational tasks to produce high

quality products consistently. To achieve this, one should build
models that describe the nature or sources of variation. One
option is to use mathematical models or knowledge-based
models. Though they are potentially powerful methods, such
models are time-consuming and practically difficult to develop
[1]. An alternative approach is to construct empirical models
based on historical data, which are readily available for most
industrial processes.

Many multivariate statistical techniques had been developed
and applied to fault detection and monitoring: principal
component analysis (PCA), partial least squares (PLS),
principal component regression (PCR), and so forth. In addition,
there has been much interest in kernel-based nonlinear learning
techniques such as support vector machines (SVMs) [2]. This
facilitated the development of other kernel-based methods.
These nonlinear kernel-based methods have been successfully
applied to many problems. They have the common aspect that
input data are mapped into a nonlinear space and then these
mapped data are analyzed. Such a kernel trick has also been
used to develop a nonlinear kernel PCA [3], kernel PLS [4] and

Hyun-Woo Cho is with the Department of Industrial and Management
Engineering, Daegu University, 712-714 Kyungsan, Republic of Korea (phone:
+82-53-850-6547; fax:+82-53-850-6549; e-mail: hwcho@daegu.ac.kr).

kernel FDA [5].
Prediction of machine or parts operating conditions for a

monitoring purpose can be formulated as a multivariate
calibration problem. A major objective of this calibration model
is to predict unusual conditions of machine from experimental
or historical measurement data. In most cases, however, the high
dimensionality and collinearity of measurement data makes it
difficult to build a calibration model. Many applications in a
variety of areas frequently utilized PLS-based multivariate
calibration models. PLS is a dimension reduction technique that
seeks to find a set of latent variables by maximizing the
covariance of two variable blocks (i.e., predictor X and
response Y).

Recently, new calibration methods have been developed such
as orthogonal-PLS (O-PLS) and supervised probabilistic
principal component analysis (SPPCA) [6], [7]. The predictor
variable X, in general, contains unwanted variations that are
unrelated (or orthogonal) to response variable Y. In such a case,
the unwanted variation may degrade the predictive ability of a
calibration model. The task of feature or variable selection is a
quite important step in multivariate analysis because modern
industrial processes are gathering high-dimensional data from
automated sensor systems of plant in an on-line basis. The
exclusion of unnecessary or non-relevant variables or noises in
the data must produce better results even with simpler models.
The idea of variable selection in calibration is to select a set of
variables, in which prediction results are better than the results
obtained using the full set of variables. The selection of
variables for calibration can be considered as an optimization
problem. In this respect, genetic algorithm (GA) is a very
efficient technique for variable selection.

The objective of this study is to evaluate the predictive
performance of several well established statistical prediction
methods. These methods include PLS and some more recent
methods such as SPPCA and KPLS, with and without GA-based
variables selection scheme. Here, GA is used as an optimization
tool to determine variables that maximize predictive abilities of
calibration models. The adoption of feature selection in
calibration framework helps to identify an optimal subset of
original variables for calibration model building. For a
performance comparison in this work the prediction
performance of the several prediction schemes are tested and
compared. This study uses real machine measurement data for
faulty conditions. Part mismatch indicates one of the prevalent
faulty events associated with machines. It may cause noise or
vibration and sometimes lead to accelerated wear or
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malfunction.
The remainder of this paper is organized as follows. First, a

brief review of PLS, KPLS, and SPPCA is given in section II.
Then section III presents comparison results obtained from real
machine data. Finally, concluding remarks are given.

II. METHODOLOGIES

A. PLS and KPLS

PLS was developed and adopted to model the relation
between a predictor matrix X and a response matrix Y. It seeks
to find a set of latent variables that maximizes the covariance
between X (n×N) and Y (n×M). PLS decomposes X and Y into
the form as follows [8]:

ETPX T
(1)

FUQY T
(2)

where T and U are (n×A) matrices of the extracted A score
vectors, P (N×A) and Q (M×A) loading matrices, and E (n×N)
and F (n×M) residual matrices. The PLS method based on
nonlinear iterative partial least squares (NIPALS) algorithm
searches for weight vectors w and c that maximizes the sample
covariance between t and u.

By regressing X on t and Y on u after convergence, loading
vectors p and q can be obtained and then PLS regression model
can be expressed using regression coefficients B and residual
matrix G:

GXBY (3)
TT CWPWB 1)( (4)

As shown in Fig. 1, the goal of PLS is to use the factors to
predict the responses in the population. It can be achieved
indirectly by extracting latent variables T and U from sampled
factors and responses, respectively. The extracted factors T are
used to predict U.

Fig. 1 A schematic diagram of partial least squares (PLS)

A nonlinear kernel version of PLS, called kernel PLS, differs
from linear PLS in that original input data are first nonlinearly
transformed into a nonlinear feature space via nonlinear
mapping [4]. Then a linear PLS is performed in the feature
space. KPLS can be easily obtained by using nonlinear kernel
functions. KPLS requires only linear algebra and does not need
to nonlinear optimization problems. This is the main advantage

that KPLS has over other nonlinear PLS methods. KPLS also
provides flexibility to model a wide range of nonlinearities by
using various kernel functions. KPLS algorithm can be directly
derived from linear PLS algorithm with some modifications.

B. SPPCA

While principal component analysis (PCA) originates from
the analysis of data variances, probabilistic PCA, a latent
variable model, defines a generative process for the data. Here,
latent variables are conventionally assumed as a Gaussian
distribution with zero mean and unit variance. The key concept
of supervised probabilistic PCA considers that all the
observations are conditionally independent given the latent
variables. This indicates that the principal components in
probabilistic PCA are the latent variables which best explain the
data covariance. When supervised information is available,
each object of input data can be associated with an output real
values for regression task or binary values (e.g., 1 or -1) for
classification.

The observed data (x, y) is generated from a latent variable
model as:

yyy

xxx

εμdWy

εμdWx (5)

The latent variable (d) and the error terms ( yx εε , ) are

defined as isotropic Gaussians distribution:

),0(~),,0(~),,0(~ 22 IεIεId yyxx NNN σσ (6)

It was shown that the maximum likelihood estimate of Wx and
Wy can be obtained (Yu et. al 2006). The projected latent
variable d* for centered new input x* is given by
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III. RESULTS AND PERFORMANCE

A. Data and Feature Selection

In this work data sets were collected using a motor attached
through a coupling at two kinds of faulty conditions. The data
recorder stored the input currents and voltages and the data sets
for this analysis consist of 2,700 input variables of the frequency
spectrum and the two response variables of the two faulty
conditions. For the verification of a number of calibration
models, a total of fifty observations were divided into three
subsets so that each subset has almost equal observations. For
each of subsets a calibration model is then constructed three
times. That is, at each time we leave out one of the three subsets
from training or model-building. As test data only the remaining
subset is used so that we can obtain the prediction results using
the different three test data sets. In order to do feature selection
for the spectra data, genetic algorithm (GA) is implemented to
select necessary variables for prediction. It should be noted that
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many researchers have developed GA-based feature selection
methods, each of them using a different GA structure. The
algorithm [9] is used in this work because it was successfully
applied to a large variety of data including spectral datasets. The
feature selection in calibration is to select a subset of variables
or features useful for building calibration model [10]. With
feature selection prediction results of the prediction models are
better than or comparable to the results obtained using the full
set of variables. In this work, genetic algorithms are used as an
optimization tool to select variables that maximize the
predictive capabilities of calibration models for the two cases:
case 1 for fault 1 condition and case 2 for fault 2 condition.

We performed comparative performance tests three times
using the data obtained from the two cases of case 1 and case 2
fault conditions. The predictive performance of different
calibration models was evaluated over the two faulty datasets.
For comparison purposes, prediction errors for each of the 50
samples were calculated to evaluate the prediction results of
calibration models. Here we used root mean squared error in
prediction (i.e., RMSEP) for test datasets, which is the mean
squared difference between the observed (true values) and the
predicted (calibrated values).

B. Prediction Results

The prediction results of four calibration models are assessed
using the data as stated earlier. The first model is a PLS model,
which utilizes all the features available without performing
GA-based feature selection (denoted as PLS). The second
model is similar to the PLS model in that the linear technique of
PLS is adopted, but it performed feature selection procedure
based on genetic algorithms (denoted as GA-PLS). The
remaining two models are as follows: nonlinear KPLS and
SPPCA model with GA-based feature selection (denoted as
GA-SPPCA).

Fig. 2 Cumulative selection frequency for case 1

Prior to building the prediction models, GA was executed on
each data set of the two faulty conditions with the optimal
number of evaluations. This process was executed five times to
verify the robustness of the predictive ability and effect of
variable selection. It is due to the fact that the final solutions of
different GA runs will not be exactly the same due to GA’s
stochastic nature. Common information from the results of five

GA runs was extracted to select the most informative variables
for prediction. This information is obtained from the frequency
with which each variable is selected. Thus, we selected the
variables that are consistently selected (i.e., variables having
high selection frequency) in the five runs. Consequently, a total
number of 173 (for case 1) and 213 (for case 2) variables were
selected from the five selection frequency plots, one of which
was shown in Fig. 2. Here, a dotted line of fig.2 indicates a
cutoff value for variable selection. It is calculated by F-test, but
it is out of scope of this paper [11], [12].

A prediction performance of the calibration models is
evaluated over the datasets of the two different machine
conditions. As stated before, a total of 50 observations were
divided into three subsets. Then, calibration models are
constructed three times, each time leaving out one of the three
subsets from training or modeling data. RMSEP values for the
different three test datasets were obtained for each of the four
prediction models, based on which we evaluated the prediction

results of the calibration models. Prediction results are
summarized in Tables I (case 1) and II (case 2). Tables I and II
showed root mean squared error in prediction (RMSEP) for
each of the three subsets and compared the performance of the
four calibration models. As listed in Table I, for example, the
GA-SPPCA prediction model yielded the RMSEP value of 1.01
for subset 1, in which the training data for this case consist of
subset 2 and subset 3.

TABLE I
RESULTS FOR CASE 1

RMSEP VALUE

PLS GA-PLS KPLS GA-SPPCA
D1 1.60 1.25 1.31 1.01
D2 1.36 1.08 1.10 0.89
D3 1.54 1.18 1.22 0.96

Total 1.50 1.17 1.21 0.95

TABLE II
RESULTS FOR CASE 2

RMSEP VALUE

PLS GA-PLS KPLS GA-SPPCA
D1 4.28 2.80 3.07 2.12
D2 3.82 2.03 2.34 1.85
D3 3.97 1.95 2.20 1.97

Total 4.02 2.26 2.54 1.98
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Fig. 3 Predicted vs. observed plots (a) PLS and (b) GA-SPPCA

For the case 1 of the faulty condition (Table I), the GA-SPPCA
prediction model showed the best prediction performance in
that it yielded the minimum average RMSEP value of 0.95. It is
observed that the GA-SPPCA model has the minimum RMSEP
over the entire datasets. Overall, GA-PLS, KPLS, and
GA-SPPCA models showed a significantly better prediction
performance for all data subsets than the linear PLS model. For
example, for test data of subset 3 linear PLS calibration model
yielded maximum RMSEP value while the performances of the
other models are comparable.
RMSEP values for the three datasets of case 2 are listed in

Table II based on the four calibration models. Similar to the
faulty condition of case 1, the GA-SPPCA prediction model
produced the minimum average RMSEP value of 1.98: GA-PLS
with 2.26, KPLS with 2.54, and PLS with maximum of 4.02. It
should be noted that in the subset 3 the RMSEP value of the
GA-SPPCA (i.e., 1.97) is better than those of PLS (i.e., 3.97)
and KPLS (i.e., 2.20), but lower than GA-PLS (i.e., 1.95). The
effect of adopting GA-based feature selection in calibration can
be seen by comparing the prediction results of calibration
models. When compared to the PLS model, the GA-PLS
prediction model produced better prediction performance:
average RMSEP value from 2.54 to 2.26. Although not shown
here, this observation is also valid for KPLS models of both
case 1 and case 2. This is also the case for GA-SPPCA in that
average RMSEP values of simple SPPCA models (without
GA-based feature selection) for the two cases deteriorated
slightly. Thus from the prediction results it can be stated that the
models constructed based on selected features yielded better
performance than the models without feature selection.

Fig. 4 Predicted vs. observed plots (a) PLS and (b) GA-SPPCA

For a visualization purpose of the prediction performance of

the calibration models, predicted values were plotted against
observed values as shown in Fig. 3 and 4. Fig. 3 shows the two
plots (the PLS and GA-SPPCA models) for case 1 of the faulty
condition. In such a plot the data should fall on the diagonal
when calibration models predict the response values perfectly.
In this respect, the GA-SPPCA models for case 1 and case 2 has
a better predictive ability than PLS models. The GA-SPPCA
models produced the predicted values close to the diagonal line.
However, the predicted values of PLS are relatively different
from the observed one.

IV. CONCLUSION

This study presented the use of a combination of multivariate
calibration and GA-based feature selection as a method for
analyzing high-dimensional machine measurement data. A
GA-based feature selection was performed to identify key
variables that retain most of information of the original data
relevant to prediction of different fault conditions. The
exclusion of non-informative variables made it possible to
produce better prediction using fewer selected. The
effectiveness of the presented prediction scheme was
demonstrated using machine data in which the ultimate goal is
to predict unusual events in wrong part setup or aligning. It
turned out that the prediction results of the GA-SPPCA model
improved significantly compared to other simple prediction
models. The construction of appropriate prediction model for
faulty condition monitoring helps us to make decisions on
whether there is abnormal event occurred or not. In the near
future, we will investigate how the proposed calibration scheme
can be used together with other advanced data mining
techniques for enhanced prediction of high-dimensional data.

REFERENCES

[1] Y. S. Nga, R. Srinivasana, “An adjoined multi-model approach for
monitoring batch and transient operations,” Computers and Chemical
Engineering, vol. 33, pp. 887–902, 2009.

[2] V. Vapnik, “The Nature of Statistical Learning Theory,” Springer-Verlag,
1995, New York, NY.

[3] B. Schölkopf, A. J. Smola, and K. Müller, “Nonlinear component analysis
as a kernel eigenvalue problem,” Neural Computation, vol. 10, pp.
1299-1319, 1998.

[4] R. Rosipal, and L. J. Trejo, “Kernel partial least squares regression in
reproducing Kernel Hilbert space,” Journal of Machine Learning
Research, vol. 2, pp. 97–123, 2001.

[5] G. Baudat, and F. Anouar, “Generalized discriminant analysis using a
kernel approach,” Neural Computation, vol. 12, pp. 2385-2404, 2000.

[6] J. Trygg, and S. Wold, “Orthogonal projections to latent structures
(O-PLS),” Journal of Chemometrics, vol. 16, pp. 19–128, 2002.

[7] S. Yu, K. Yu, V. Tresp, H. Kriegel, and M. Wu, “Supervised probabilistic
principal component analysis. In: Proceedings of the 12th international
conference on knowledge discovery and data mining (SIGKDD), pp
464–473, 2006.

[8] K. Kourti, “Application of latent variable methods to process control and
multivariate statistical process control in industry,” International Journal
of Adaptive Control and Signal Processing, vol. 19, pp. 213–246, 2005.

[9] R. Leardi, and A. L. Gonzalez, “Genetic algorithms applied to feature
selection in PLS regression: how and when to use them,” Chemometrics
Intelligent Laboratory Systems, vol. 41, pp. 195–207, 1998.

[10] A. Durand, O. Devos, C. Ruckebusch, and J. P. Huvenne, “Genetic
algorithm optimisation combined with partial least squares regression
and mutual information variable selection procedures in near-infrared



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:5, 2013

810

quantitative analysis of cotton–viscose textiles,” Analytica Chimica Acta,
vol. 595, pp. 72–79, 2007.

[11] C. S.Soh, P. Raveendran, and R. Mukundan, “Mathematical models for
prediction of active substance content in pharmaceutical tablets and
moisture in wheat,” Chemometrics and Intelligent Laboratory Systems,
vol. 93, pp. 63–69, 2008.

[12] Y. Shao, and Y. He, “Nondestructive measurement of the internal quality
of bayberry juice using Vis/NIR spectroscopy,” Journal of Food
Engineering, vol. 79, pp. 1015–1019, 2007.


