
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1092

 

 

  

Abstract—In modern era, the biggest challenge facing the 

software industry is the upcoming of new technologies. So, the 

software engineers are gearing up themselves to meet and manage 

change in large software system. Also they find it difficult to deal 

with software cognitive complexities. In the last few years many 

metrics were proposed to measure the cognitive complexity of 

software. This paper aims at a comprehensive survey of the metric of 

software cognitive complexity. Some classic and efficient software 

cognitive complexity metrics, such as Class Complexity (CC), 

Weighted Class Complexity (WCC), Extended Weighted Class 

Complexity (EWCC), Class Complexity due to Inheritance (CCI) and 

Average Complexity of a program due to Inheritance (ACI), are 

discussed and analyzed. The comparison and the relationship of these 

metrics of software complexity are also presented. 

 

Keywords—Software Metrics, Software Complexity, Cognitive 

Informatics, Cognitive Complexity, Software measurement 

I. INTRODUCTION 

  UMEROUS term software metrics related to software 

quality assurance have been proposed in the past and are 

still being proposed. Several books presenting such metrics 

exist, such as Fenton’s [1], Shepperd’s [2] and others. 

Although most of these metrics are applicable to all 

programming languages, some metrics apply to a specific set 

of programming languages. Among these metrics some have 

been proposed based on cognitive complexity called Cognitive 

Complexity Metrics. Wang[3] observed that the traditional 

measurements cannot actually reflect the real complexity of 

software systems in software design, representation, cognition, 

comprehension, and maintenance. The cognitive complexity is 

an ideal measure of software functional complexities and 

sizes, because it represents the real semantic complexity by 

integrating both the operational and architectural complexities. 

Nowadays, a quality engineer can choose a suitable metrics 

for the software development process from a large number of 

Cognitive Complexity Metrics. Now, the question posed is the 

lack of metric suite and  the selection of those metrics which 

meet the specific needs of each software project.  

The metrics presented in this survey are for Object–oriented 

programming. There are a number of Cognitive Complexity 

Metrics that are used in the procedural programming to 

 
 
A. Aloysius, Assistant Professor, Department of Computer Science, St. 

Joseph’s College (Autonomous), Tiruchirappalli – 620 002, Tamil Nadu, 

India(Mobile: 9443399227;  e-mail: aloysius1972@gmail.com).  
Dr. L. Arockiam, Associate Professor, Department of Computer Science, 

St. Joseph’s College (Autonomous), Tiruchirappalli – 620 002, Tamil Nadu, 

India(Mobile: 94439 05333;  e-mail: larockiam@yahoo.co.in).  
  

identify the complexity of the program, and a few of them are 

modified in order to satisfy the Object Oriented programming. 

Still there are other Object Oriented Cognitive Complexity 

Metrics specially developed for Object Oriented programs. 

Cognitive Informatics [6] also plays an important role in 

understanding the fundamental characteristics of the software. 

Many software complexity measures [4] [5] and [6] based on 

cognitive informatics have been proposed in the last decade. 

Cognitive complexity metrics measure the human effort 

needed to perform a task or difficulty in understanding the 

software. In cognitive informatics, it has been found that the 

functional complexity of the program depends on internal 

architecture of the software, input and output [4]. 

The aim of this survey is to list out some of the existing 

Cognitive Complexity Metrics and to make the reader aware 

of their existence and to offer references for further reading. 

The entire paper has been segregated into four major sections. 

In section 2, the Definition and the Classification of Software 

Complexity metric are introduced. The Classic Software 

complexity metrics and their variations are analyzed in   

section 3. Finally, we make the conclusion in section 6.  

II. DEFINITION AND THE CLASSIFICATION OF SOFTWARE 

COMPLEXITY  

A. Software Metrics 

The software metric is the measurement, usually using 

numerical ratings, to quantify some characteristics or 

attributes of a software entity. Typical measurements include 

the quality of the source codes, the development process and 

the accomplished applications. Some major measurements are 

listed in table 1. 

TABLE I  

DIFFERENT MEASUREMENTS IN TERMS OF DIFFERENT ROLES 
 

Role Measurements 

User Usability, Simplicity, Stability, Cost… 

Designer 
Extendibility, Scalability, 

Manageability… 

Programmer Complexity, Maintainability… 

 

B. The Metric of Software Complexity 

The metric of the software complexity is an essential and 

critical part of the software metric. The metric of the software 

complexity focuses on the quality of source codes. The 

complexity of software can be divided into three classes: the 

essential complexity, the selecting complexity and the 

A Survey on Metric of Software Cognitive 

Complexity for OO design 

1
A.Aloysius, 

2
L. Arockiam 

N



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1093

 

 

incidental complexity [7]. The essential complexity is 

determined by the problems that the software tries to solve. 

The selecting complexity is determined by the program 

languages, the problem modeling methods and the software 

design methods. The incidental complexity is determined by 

the quality of the involved implementer. Some information 

about them is shown in the table 2. 
 

TABLE II 
 

THE CLASSIFICATION OF THE COMPLEXITY 
 

Class Origin Influence Improvement 

Essential Problem Huge Extreme Hard 

Selecting Method Medium Hard 

Incidental Implement Small Fair 
 

The target of measuring the software complexity is to manage 

and reduce the incidental complexity, and improve the 

development of the software and the software itself. 

C. Cognitive Informatics  

Cognitive informatics is a trans-disciplinary enquiry of 

cognitive and information sciences that investigates the 

internal information processing mechanisms and processes of 

the brain and natural intelligence, and their engineering 

applications via an interdisciplinary approach [3]. In CI, the 

cognitive information and knowledge modeled in the brain can 

be divided into different abstraction levels, such as analogue 

objects, natural languages, professional notation systems, 

mathematics, and philosophies. A classification of the 

cognitive abstract levels is shown in table 3. In order to 

identify, whether a given object can be categorized as a type 

of information in the abstract world, or a type of an entity in 

the physical world, table 3 would facilitate. According to the 

classification of abstract levels of cognitive information in 

table 3, it can be seen that software is a kind of information at 

abstract levels 3 or 4, rather than a physical entity. 

TABLE III  

ABSTRACT LEVELS OF COGNITIVE INFORMATION 

Level Category Description 

1 Analogue objects Empirical artifacts 

2 Natural languages 
Empirical methods, heuristic 

rules 

3 Special notation systems 
Professional languages, 

formal methods 

4 

   

Mathematics 

High-level abstraction of 

objects, attributes, and their 

relations and rules, particular 

those that are time and space 

independent. 

4.1 Formulae 
Mathematical description of 

relations or rules 

4.2 Theorems Proved relations or rules 

4.3 Corollaries 
Derived conclusions based of 

relations or rules 

5 Philosophies 

The highest-order abstraction 

of generic objects and their 

relations and rules, particular 

those that are time and space 

independent. 

According to Wang the major problems yet to be solved in 

CI are: the architectures of the brain, mechanisms of the 

natural intelligence, cognitive processes, mental phenomena 

and personality. It is interesting in computing and software 

engineering arena to explain the mechanisms and processes of 

memory, learning and thinking. It is expected that any 

breakthrough in CI will profoundly pave the way to the 

development of the next generation technologies in 

informatics, computing, software, and cognitive sciences. 

D.  Classifications of the metrics of software cognitive   

 complexity 

Before discussing the details of the software cognitive 

complexity metrics, we can classify the metrics of software 

cognitive complexity by what they are calculated on. The 

classification of the 5 different metrics is shown in the table 4. 
 

TABLE IV 

THE CLASSIFICATION OF THE COGNITIVE COMPLEXITY 

METRICS BY THEIR CALCULATION BASIS 

Metrics 
Target 

Method Attribute Inheritance Average 

CC *    

WCC * *   

EWCC * * *  

CCI *  *  

ACI *  * * 

III. CLASSIC METRICS OF SOFTWARE COMPLEXITY AND 

VARIATIONS 

A. Class Complexity(CC) 
 

a. Definition and computing of CC 

Mishra [9,10] proposed a complexity metric for Object 

Oriented system by using cognitive weights known as Class 

Complexity(CC). This metric first calculates the weight of 

individual method in a class by associating a number (weight) 

with each member function (method), and then it simply adds 

all the weights of all methods. This gives the complexity 

(weight) of a single class. 

B. Some Findings 

There are two cases for calculating the whole complexity of 

the entire system depending on the architecture: 

• If the classes are in the same level then their weights 

are added. 

• If they are subclasses or children of their parent 

classes then their weights are     multiplied 

(Inheritance).  

If there are m level of depth in the OO code and level j has n 

classes then the class complexity (CC) of the system is given 

by equation (1),  

Class Complexity�CC� � � �� W���
�

���
�

�

���
                �1� 

where, Wc is the weight of the concerned class. The 

weight of a single method is given by equation (2) 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1094

 

 

�� �  � �� � ��
 

!��

"

#��
�$, &, '��

(

)��
                     �2�     

Where, total cognitive weight of a software component Wc 

is defined by Wang[9] as the sum of cognitive weights of its q 

linear blocks composed in individual BCS’s. Each block 

consists of m layers of nested BCS’s and each layer has n 

linear BCS. A higher weight indicates a higher level of effort 

required to understand the software and reduced 

maintainability. 

The CC is validated using Weyuker's properties and 

principles of measurement theory and found that the proposed 

measure satisfies seven Weyuker's property out of nine, and 

satisfied most of the parameters required by the perspective of 

measurement theory. As a result, this measure was established 

as well structured one. 

c. Advantages and Disadvantages of CC 

In CC Calculation of the complexity is very simple, 

understandability of the code is easy and language 

independent. Low complexity value gives better design 

information and the outcome of CC is also good. However, 

there are some shortages of the CC. A good metric should not 

only consider the number of methods, classes, subclasses and 

relation between them but also consider the internal structure 

of the method. 

C. Weighted Class Complexity (WCC) 

3.2.1 Definition and computing of WCC 

Mishra [11] modified the CC metric and proposed a new 

metric called weighted class complexity (WCC). It considered 

object orientation as a form of expression relation between the 

data and function, the class can be assumed as a set of data 

and set of method accessing them. Hence, the complexity of 

the class should be measured by complexity of methods and 

attributes.  In his proposed measure, the complexity of a class 

was the sum of complexity of the operation in methods, 

complexity due to data members (attributes) and complexity 

due to message call. Further, complexity of method is 

calculated by complexity of the code of operation in method 

and as well as on the number of attributes in the method. 

Weighted Class Complexity (WCC) can be calculated using 

the equation (3) 

WCC � N, - � MC/
0

/��
                                               �3� 

where,  

Na is the Number of Attribute  

MC is the Method Complexity, which is calculated by 

equation (2)  

 If there are y classes in an object oriented code, then the 

total complexity of the code is given by the sum of weights of 

individual classes. 

Total Weighted Class Complexity �  � WCC6       
7

6��
       �4� 

b.  Advantages and Disadvantages of  WCC 

The drawback of CC has been rectified in WCC by 

including the complexity due to the internal structure of 

methods and attributes. By using, Weyuker’s [12] properties 

WCC has been validated and found that it satisfies six 

properties out of nine, which established this measure as well 

structured one. WCC can be used to calculate the complexity 

of OO code with different size. WCC metric gives valuable 

idea about the design quality of object oriented codes. High 

WCC value indicates that understandability and 

maintainability of the code is difficult. Ultimately, it helps the 

software developer for better design information. The better 

OO metric should not only consider the internal structure of 

method and the number of attributes in a class but it should 

also consider the concepts of OOP like inheritance, 

encapsulation, overloading and polymorphism. 

C. Extended Weighted Class Complexity (EWCC) 

a. Definition and computing of EWCC 

Arockiam et al. [13] have proposed a new complexity 

measure namely Extended Weighted Class Complexity 

(EWCC) which is an extension of Weighted Class Complexity 

(WCC). EWCC is the sum of cognitive weights of attributes 

and methods of the class and that of the classes derived. 

EWCC includes the cognitive complexity due to Inheritance. 

If there are n methods in a class and the class is derived 

from m no of classes then, the EWCC of that class can be 

derived using the Equation (5) 

 

EWCC � N, - � MC:
�

:��
- � ICC�

�

���
                            �5� 

Where  

Na is the total number of attributes, 

MC is the method complexity, 

ICC is the inherited class complexity. 

 The Method complexity (MC)is calculated by equation (1) 

and ICC can be calculated using the Equation (6) 

 

ICC � �DIT >  C?� >  � RMC�
0

���
-  RN,                    �6� 

Where s is the no of inherited methods. 

RNa is the total number of Reused attributes, 

RMC is the Reused method complexity. 

ICC is the inherited class complexity. 

DIT is the Depth of Inheritance Tree 

CL is the cognitive complexity of Lth level   

CL is the cognitive complexity of Lth level which will 

differ from person to person according to the cognitive 

maturity level [4]. Here, the value of CL is assumed to be 1. 

b.   Advantages and Disadvantages of EWCC    

Arockiam et al. [14] have validated Extended Weighted 

Class Complexity (EWCC) and other complexity metrics with 

respect to program comprehension. In EWCC, the complexity 

of the class included the internal complexity of the class and 

the inherited classes’ complexity. It also includes the cognitive 

complexity due to internal architecture of the methods, 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1095

 

 

attributes and the inherited class complexity. On one hand, this 

makes EWCC to be a better indicator of the class level 

complexity metric. On the other hand, EWCC has some 

limitations. Cognitive Load has been assigned for Lth level 

inheritance which is not clearly defined, it simply assigned the 

value is 1 so, it needs to be well defined and more specific for 

the inheritance level. 

D. Class Complexity due to inheritance (CCI) 

a. Definition and computing of CCI 

Mishra[15] has proposed a Class complexity due to 

inheritance (CCI) which can be calculated as: 

CCI: � � C:BCDE
�

:BCDE��
- � MC�

F

���
                                �7� 

Where, CCIi is complexity of a ith class due to inheritance, 

k is the number of classes ith class is inheriting directly, 

Ciform is the complexity of an inherited class, l is the number 

of methods excluding constructors, destructors, pure virtual 

functions ith class has, MCj is the complexity of jth method in 

ith class and can be calculated using new proposed method 

complexity metric (MC). 

 Method Complexity �MC� � P - D - 1                �8� 
Where, P is the number of predicates, D is the maximum 

depth of control structures in method; if there is no nested 

control structures than D=0; if there is one inside another than 

D=1 

b.  Advantages and Disadvantages of CCI   

CCI considers the number of classes inherited in an 

inheritance tree. Inheritance metrics should not only consider 

the number of classes a particular class is inheriting but also 

the complexities of the inherited classes. Constructors and 

destructors are not considered in these calculations as they are 

not inherited. Complexities of inherited classes as well as 

complexity of the derived class are all taken into consideration 

in CCI. The average complexity of the Inherited classes are 

not consider in CCI, this is consider to be one of the limitation 

of CCI. 

E. Average Complexity of a Program due to inheritance 

(ACI) 

a.   Definition and computing of ACI 

Average Complexity of a program due to Inheritance 

(ACI)[15] is calculated by equation (9) 

 

JKL � � KKL!   
 

!��
M                       �9�O  

 

where, n is the total number of classes in the program. CCI 

is the Class Complexity due to inheritance, which can be 

calculated by using the equation (7). 

b.   Advantages and Disadvantages of ACI   

ACI considers the average number of classes inherited in an 

inheritance tree by considering how complex the inherited 

classes are or how many methods are inherited or how 

complex inherited methods are. Inheritance metrics should not 

only consider the number of classes a particular class is 

inheriting but also the complexities of the inherited classes. 

Constructors and destructors are not considered in these 

calculations as they are not inherited. If inheritance metric 

considers only the number of classes inherited, then it gives 

value 1 for all the class. But if the number of classes inherited, 

complexities of inherited classes as well as complexity of the 

derived class are all taken into consideration the value 

changes. 

IV. CONCLUSION 

This survey presents various Cognitive Complexity Metrics 

which act as a base of Cognitive Complexity Metrics. The 

metrics are classified as Cognitive Complexity Metrics for 

OOP, such as Class Complexity (CC), Weighted Class 

Complexity (WCC), Extended Weighted Class Complexity 

(EWCC), Class Complexity due to Inheritance (CCI) and 

Average Complexity of a program due to Inheritance (ACI) 

are discussed in detail. From this survey, it can be observed 

that this Cognitive Complexity Metrics is an emerging field in 

the software complexity metrics. Most of the metrics 

presented here are not yet empirically evaluated. There are a 

few metric proposed for OOP, which does not take care of all 

the features in it. Future scope of improvement in these areas 

could be that a Cognitive Complexity Metrics can be proposed 

to include the other OOP features like polymorphism, 

cohesion and coupling. A unified Cognitive Complexity 

Metrics for OOPs can be empirically validated. The current 

trend in IT industry is moving towards Component Based 

System, because of its various advantages where Cognitive 

Complexity Metrics is lacking. The researchers can propose 

Cognitive Complexity Metrics for Component Based System. 

The result of this survey can be of great assistance to quality 

engineers in selecting the proper metrics for their software 

projects. 

REFERENCES 

[1]  N. Fenton & S.L. Pfleeger, “Software Metrics: A Rigorous & Practical 

Approach”, Second edition, International Thomson Computer Press, 

1997, ISBN-10: 0534954251, ISBN-13: 978-0534954253 
[2] M.J. Shepperd and D. Ince, “Derivation and Validation of Software 

Metrics”, Oxford University Press, USA, 1993, ISBN-10: 0198538421, 

ISBN-13: 978-0198538424. 
[3] Y. Wang, “The Theoretical Framework of Cognitive Informatics”, 

International Journal of Cognitive Informatics and Natural Intelligence, 

2007, pp.1–27. 
[4] Y. Wang, "On Cognitive Informatics", Proceedings of the 1st IEEE 

International Conference on Cognitive Informatics, 2002, pp.34-42. 

[5] T. Klemola and J. Rilling, "A Cognitive complexity metric based on 
Category learning", Proceedings of the 2nd IEEE International 

Conference on Cognitive Informatics (ICCI'03), 2003, pp.103-108. 

[6] Y. Wang. and J. Shao, "Measurement of the Cognitive Functional 
Complexity of Software," Proceedings of IEEE (ICCI'03), 2003, pp.69-

74. 

[7] Eric S. Raymond, “The Art of Unix Programming”, Addison-Wesley, 
2004,pp. 320-350. 

[8] Sanjay Misra, “An Object Oriented Complexity Metric Based On 

Cognitive Weights”, Proceedings of 6th IEEE International Conference 
on Cognitive Informatics(ICCI’07), 2007, pp. 134-139.  

[9] Sanjay Misra and Ibrahim Akman,  “A New Complexity Metric Based 

on Cognitive Informatics”,  Proceedings of 3rd International Conference 
on Rough Sets and Knowledge Technology, 2008, pp.620–627. 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1096

 

 

[10] Sanjay Misra and k. Ibrahim Akman, “Weighted Class Complexity: A 

Measure of Complexity for Object Oriented System,” Journal of 
Information Science and Engineering, 2008, pp.1689-1708. 

[11] E.J. Weyuker, “Evaluating software complexity measure”. IEEE 

Transaction on Software Engineering, 1988, pp.1357–1365. 
[12] L. Arockiam, A. Aloysius and J. Charles selvaraj, “Extended Weighted 

Class Complexity: A new of software complexity for objected oriented 

systems”, Proceedings of International Conference on  Semantic E-
business and Enterprise computing (SEEC), 2009, pp. 77-80. 

[13] L. Arockiam, K. Geetha and A. Aloysius, “On Validating Class Level 

Cognitive Complexity Metrics”, CiiT International Journal of Software 
Engineering and Technology, 2010, pp.152-157 

[14] Deepti Mishra and Alok Mishra, “Object-Oriented Inheritance Metrics:  

Cognitive Complexity Perspective”, Proceedings of the 4th International 
Conference on Rough Sets and Knowledge Technology, 2009, pp. 452–

460. 

 


