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Abstract—One-way functions are functions that are easy to 

compute but hard to invert. Their existence is an open conjecture; it 
would imply the existence of intractable problems (i.e. NP-problems 
which are not in the P complexity class). 

If true, the existence of one-way functions would have an impact 
on the theoretical framework of physics, in particularly, quantum 
mechanics. Such aspect of one-way functions has never been shown 
before. 

In the present work, we put forward the following. 
We can calculate the microscopic state (say, the particle spin in the 

z direction) of a macroscopic system (a measuring apparatus 
registering the particle z-spin) by the system macroscopic state (the 
apparatus output); let us call this association the function F. The 
question is: can we compute the function F in the inverse direction? 
In other words, can we compute the macroscopic state of the system 
through its microscopic state (the preimage F -1)? 

In the paper, we assume that the function F is a one-way function. 
The assumption implies that at the macroscopic level the Schrödinger 
equation becomes unfeasible to compute. This unfeasibility plays a 
role of limit of the validity of the linear Schrödinger equation. 

 
Keywords—One-way functions, P versus NP problem, quantum 

measurements. 

I. INTRODUCTION 

ET us consider a macroscopic system M  (a measuring 
apparatus) whose macroscopic state Ξ  results from the 

state Q  of a microscopic system S interacting with M ; so 
we can put 

Ξ→Qf :    . (1) 

On the other hand, by the definition of the system MS + , 
its macroscopic state Ξ  provides information about the 
system microscopic state Q , that is, if we know Ξ , we 
certainly know Q : 

QF →Ξ:    . (2) 

This implies, that the function F  must be computationally 
feasible (otherwise, M  cannot be a device for measurement). 

For example, assume that in a Stern-Gerlach spin analyzer, 
if a printer connected to the analyzer prints one, the incoming 
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electron has z-spin equal to 21+ , and if the printer prints 
zero, the electron z-spin is 21− . Then if we know the 
macroscopic state of the analyzer (the printout 1 or 0), it is 
easy to calculate the analyzer microscopic state (spin up z↑  
or spin down z↓  in the z direction): 
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The image of the function QF →Ξ:  is the set of all 
possible microscopic states that the function F  associates 
with macroscopic states. Accordingly, the preimage (the 
inverse image) of F  is the function Ξ→Qf : , which 
determines the set of all possible macroscopic states that the 
function f  associates with microscopic states. 

In the physical theoretical framework, it is presupposed that 
regardless of the system MS +  complexity, the preimage 

fF ≡−1  is feasible to compute as much as the function F  
itself. 

This belief has never been questioned systematically. 
However, according to the conjecture of the one-way function 
existence, it could be that the function F  is hard to invert, i.e. 
its preimage f  is computationally unfeasible. 

One-way functions are mathematical objects, which are 
based on the conjecture of computationally unfeasible 
(intractable) problems. That is, the one-way function existence 
would imply that the complexity classes P and NP are not 
equal [1-3]. 

A problem is in the P class if its solution time is bounded 
by a polynomial. 

A problem is assigned to the NP class if it is solvable in 
polynomial time by a nondeterministic Turing machine, or 
equivalently, if the problem positive solution can be verified 
in polynomial time given the right information [4,5]. 

If P ≠ NP, then the solution of NP-problems requires (in the 
worst case) an exhaustive search, while if P = NP, then 
asymptotically faster algorithms may exist. Nonetheless, in 
practice, a NP-problem may be tractable if the problem size is 
relatively small. Besides, a problem might not belong to P but 
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be solved quickly if we accept an approximate or probabilistic 
solution. In fact, this is a common approach to solve problems 
in NP not known to be in P [5]. 

Even though the existence of one-way functions is still an 
open conjecture, it would be interesting to analyze its possible 
impact on some difficult problems in physics and philosophy 
such as quantum measurements. 

II.  THE PROBLEM OF MEASUREMENT IN QUANTUM 
MECHANICS 

In quantum mechanics, any observable quantity 
corresponds to an eigenstate of a Hermitian operator. The 
linear combination of two or more eigenstates results in 
quantum superposition of two or more values of quantity. 

The problem naturally arose as to why macroscopic objects 
do not seem to display quantum superposition. In 1935, Erwin 
Schrödinger devised a well-known thought experiment, now 
known as Schrödinger’s cat, which highlighted this problem 
[6]. 

In this experiment, a Geiger counter M  monitors a 
radioactive source S , which is so weak “that perhaps in the 
course of one hour one of the atoms decays, but also, with 
equal probability, perhaps none” [6]. Detection of a decaying 
atom triggers a spray of poisonous gas into the box occupied 
by a cat. “If one has left this entire system MS +  for an 
hour, one would say that the cat still lives if meanwhile no 
atom has decayed. The first atomic decay would have 
poisoned the cat. The psi function for the entire system 

MS +  would express this by having in it the living and the 
dead cat mixed or smeared out in equal parts” [6]. 

The essence of the problem is this. We know that 
superposition of possible outcomes must exist simultaneously 
at a microscopic level (because we can observe interference 
effects from there). We know that the cat in the box is dead, 
alive or dying and not in a smeared out state between 
alternatives. So, when and how does the model of many 
microscopic possibilities resolves itself into a particular 
macroscopic state? 

The disappearance of macroscopic superpositions is the 
major issue; the fact that such superpositions cannot be 
resolved at any stage within the linear Schrödinger equation 
may seen as the major difficulty of quantum mechanics [7]. 

A.  Assumption 

If we know the macroscopic state Ξ of the system MS +  
(the cat is dead or alive), we can easily calculate the system 
microscopic state Q  (the radioactive atom has decayed or not 
decayed). 

We will assume that QF →Ξ:  is a one-way function. 
In other words, we will assume that whereas it is easy to 

compute the microscopic state of the system MS +  through 
its macroscopic state, the inverse operation – given the system 
microscopic state to find the macroscopic one – is hard. 

B.   Schrödinger Equation is in NP 

In quantum mechanics, both microscopic and macroscopic 
state of the system MS +  is described by the system state 
vector Ψ . 

As the state of the system MS +  changes over time, Ψ  
is a function of time. The quantitative description of the time 
evolution of the state vector Ψ  is provided by the 
Schrödinger equation: 

Ψ
∂
∂

=Ψ
t

iĤ    , (4) 

where Ĥ is the Hamiltonian operator of the system MS + . 
Because of the fact that the Hamiltonian typically includes 

partial derivatives with respect to the position variables, the 
Schrödinger equation is a difficult linear partial differential 
equation to solve. 

Actually, it happened to be very difficult to find analytical 
solutions for Hamiltonians of even moderate complexity [8]. 
The Hamiltonians to which we know analytical solutions, such 
as the hydrogen atom, the quantum harmonic oscillator and 
the particle in a box, are too idealized to adequately describe 
most systems. Therefore, for most systems only numerical 
solutions to the Schrödinger equation can be found. 

With that, an exact numerical polynomial-time algorithm 
for solving the Schrödinger equation for a system of the 
arbitrary complexity is unknown. This entails, that for a given 
system, it might be necessary to test each possibility 
sequentially in order to determine if it is the solution 
(exhaustive search). 

Conversely, if a solution Ψ  to the Schrödinger equation is 
somehow known, then demonstrating the correctness of the 
solution Ψ  can be done easy (i.e. in polynomial time). 

In brief, verifying that Ψ  is a solution to the Schrödinger 
equation is much faster than finding Ψ  in the first place. 

All this suggests that the Schrödinger equation is in the NP 
complexity class. 

If it turned out that P does not equal to NP, it would mean 
that for a given system the Schrödinger equation could only be 
solved by exhaustive search in the worst case. (Otherwise, if P 
= NP, it would mean that there exists an efficient solution 
method for any Hamiltonian, or, in other words, that the 
Schrödinger equation is as easy to compute as to verify.) 

C.   Macroscopic Superposition 

The crux of the difficulties with the Schrödinger’s cat 
experiment is the presupposition that the Schrödinger equation 
can be computable (i.e. computed quickly or in a reasonable 
amount of time) at any stage of the measuring chain, which 
starts with the atom decay and goes on until it reaches the 
macroscopic state. 

If the Schrödinger equation is really computable at any 
stage, then there is nothing to prevent transformation of “an 
indeterminacy originally restricted to the atomic domain into 
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macroscopic indeterminacy” [9]. As the recent proof of the 
“insolubility theorem” goes, by sticking to the linear 
Schrödinger equation we stuck also with the result that at the 
end of the measurement process (i.e. at the macroscopic level), 
there must be “superpositions of macroscopically distinct 
states of the apparatus, and in general of a macro-system” 
[10]. 

Therefore, the assumption proposed in this paper (which 
entails that the Schrödinger equation – the NP-problem – is 
not in P) might be “an additional ingredient” to the theory in 
order to avoid macroscopic superpositions. 

Indeed, form the assumption follows that while for the 
initial stages of the measuring chain – when the number of 
degrees of freedom is still limited – the Schrödinger equation 
can be computable (tractable), at the macroscopic level it 
cannot be solved efficiently. 

For example, if constituent quantum particles of the 
macroscopic measurement apparatus M  strongly correlate 
with each other, then the dimension of the Hilbert space 
describing M  as a system of N such particles will scale 
exponentially in N. This makes an exact numerical solution for 
M  unfeasible: every time an extra particle is added to M , 
the computational resources would have to be doubled. 

This brings us to the following question. If a macroscopic 
solution of the Schrödinger equation is unfeasible, can we 
describe a macroscopic state of the composite system MS +  
by a wave function? 

The answer to this question depends on how the word 
“unfeasible” is explained. 

For instance, a computationally unfeasible problem might 
be solved analytically one day. In addition, even if only 
numerical solutions to the problem are possible, new 
computing models such as quantum computers may be able to 
solve it quickly. 

However, to solve analytically the Schrödinger equation for 
a macroscopic system MS +  means to solve a system of 
around 1023 simultaneous differential equations. It is difficult 
even to imagine how this solution would look like. Perhaps 
humans may not be able to solve such system analytically. 

As to numerical solutions, a proof P ≠ NP would guarantee 
that a polynomial-time algorithm for a NP-problem would 
never be found. 

Furthermore, there is strong evidence that the solution of 
the Schrödinger equation for an arbitrary macroscopic system 
is unfeasible even on a quantum computer [11]. 

Therefore, we believe that the answer to the above question 
should be negative. That is, if the Schrödinger equation is in 
NP and P ≠ NP, then we will never be capable of affirming 
that the system MS +  is in a “blurred” state containing 
simultaneously the dead and alive cat. 

D.   Wave Function Collapse 

Suppose, at time t , when the measuring chain begins, the 
state of the microscopic system S  is represented by the 
superposition nnc ψΣ , where nψ  are state vectors 
corresponding to possible states of S  (the decayed and 
undecayed atom for instance), { }nc  is some set of complex 
numbers; so the initial state of the entire system MS +  will 
be described by 

∑=Ψ
n

nnc φψ    , (5) 

where φ  represents the initial state of the measuring 
apparatus M . 

Then, at time t ′ , when the measuring chain reaches the 
macroscopic level, we should look for the solution of the 
Schrödinger equation in the following form: 

∑=Ψ
n

nnnc φψ    , (6) 

where nφ  are state vectors corresponding to possible states 
of M  (the printer 1 and 0 output for instance, or, the dead and 
living cat). 

However, according to the proposed assumption, at the 
macroscopic level the Schrödinger equation is intractable: it 
can be solved in theory but cannot be in practice. 

So, we cannot really compute the function (6). This means 
that in practice the Schrödinger equation cannot predict the 
state of the system MS +  at t ′  (i.e. at the macroscopic 
level). 

Alternatively, quantum mechanics gives us additional 
statistical information via the so-called Born statistical 
interpretation (the Born’s rule): the probability of the system 

MS +  being registered at t ′  in one of the possible states 
represented by nn φψ  is 

{ } 2Pr nnn c=φψ    . (7) 

The rule (7) does not depend on the solution of the 
Schrödinger equation; and the probability calculation through 
(7) can be done easy (it is in P). 

In short, we cannot predict in practice the state of the 
system MS +  at the macroscopic level (because the 
Schrödinger equation is in NP), but we can predict the 
probability of each possible macroscopic state of MS +  
(because the statistical interpretation is in P). 

Graphically, all the above can be presented in a form of the 
following table. 
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TABLE I 
THE DISAPPEARANCE OF MACROSCOPIC SUPERPOSITIONS 

 AND THE RELATION BETWEEN THE COMPLEXITY CLASSES P AND NP 

Complexity classes 

  
≠ NP-problem 

  
P-problem 

Size of the problem 

(number of degrees 
of freedom involved) 

Schrödinger equation 
(time evolution) 

Born’s probability rule 
(observation and measurement) 

Microscopic level Feasible Feasible 
 

Macroscopic level Unfeasible Feasible 

 
 

The vertical arrow (at the left of the table) depicts the 
direction of the measuring chain. The diagonal arrow shows 
how quantum superposition resolves: the wave function 
“collapse” happens when the Schrödinger equation ceases to 
be tractable. 

III. CONCLUSION 

According to the most common point of view [12,13], the 
measurement problem, in a nutshell, runs as follows. 

States of quantum mechanical systems are described by 
wave-like mathematical objects (state vectors) of which sums 
(superpositions) can be formed. Time evolution (the 
Schrödinger equation) preserves such sums. Thus, if the given 
state of an electron S  is described by superposition of, say, 
two state vectors corresponding to spin in z-direction equal 

21+ and spin in z-direction equal 21− , and we let it interact 
with a measuring apparatus M , the state vector of the entire 
system MS +  will be a sum of two components, one in 
which the apparatus has coupled to (has registered) z-spin 
= 21+ , and one in which the apparatus has coupled to (has 
registered) z-spin = 21− . 

The problem is that while we may accept the idea of the 
microscopic state of the system MS +  being described by 
such sums, we cannot even begin to imagine what it would 
mean for the macroscopic state of the system MS +  to be so 
described. 

We have two choices: 
- either the macroscopic state is not described by such a 

sum, because the Schrödinger equation actually breaks 
down and needs to be modified (for example, by 
additional variables [14-16] or nonlinear Hamiltonian 
terms [16-19]),  

- or it is, but then we need to understand what that means, 
and this requires giving an appropriate interpretation of 
quantum mechanics (like the history interpretation [21- 

 
- 23] or the “many-worlds interpretation” by Everett [24]). 
 
As it turns out, it might be another choice. If the 

Schrödinger equation is in NP, and P ≠ NP, then we need 
neither to modify the Schrödinger equation, nor to seek a new 
interpretation of quantum mechanics. At the macroscopic level 
of the measuring chain, the Schrödinger equation becomes 
unfeasible to solve, and so macroscopic states cannot be in 
practice described by quantum superpositions. 
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