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Abstract— ICA which is generally used for blind source separation 
problem has been tested for feature extraction in Speech recognition 
system to replace the phoneme based approach of MFCC. Applying 
the Cepstral coefficients generated to ICA as preprocessing has 
developed a new signal processing approach.  This gives much better 
results against MFCC and ICA separately, both for word and speaker 
recognition. The mixing matrix A is different before and after MFCC 
as expected. As Mel is a nonlinear scale. However,  cepstrals 
generated from Linear Predictive Coefficient being  independent 
prove to be the right candidate for ICA.  Matlab is the tool used for 
all comparisons. The database used is samples of ISOLET. 
 

Keywords - Cepstral Coefficient, Distance measures, Independent 
Component Analysis, Linear Predictive Coefficients. 

I. INTRODUCTION 

NE of the most common approaches in speech 
recognition involves frame based approach where 

development of front end feature measurements coefficients or 
spectral analysis is done. This involves feature detection in 
frequency space as in FFT or in time space as in LPC or in 
cepstral space in MFCC.  
 
Pattern recognition technique is purely statistical for which the 
analog pattern must be digitized by sampling. Speech being 
highly dynamic in time, some methods must be utilized to find 
a short time stationary signal. This is done by forming small 
comparable block/frames and then window it to avoid the 
discontinuity at the end. This signal is processed. 
 
Comparison of two samples in time domain in terms of 
amplitude is not possible and there is a huge variation in 
results as the same wave shape can be represented from 
infinite numbers of amplitudes loosing uniqueness in 
comparison results. There are a good number of techniques 
which can be used for comparison of two physical signals in 
frequency domain. Some popular techniques are : 
Autocorrelation, Discrete Fourier Transform(DFT), Fast 
Fourier Transform(FFT),  Linear Predictive Coefficients(LPC) 
and Mel Frequency Cepstrum Coefficient(MFCC). For all 
simple purposes FFT gives the fastest results as the number of 
computations reduce drastically. FFT has its upper hand due 
to immunity to noise, but as the speech signal is non-
stationary, its FFT is not possible. Further its STFT(Short 
Time Fourier Transform) may be calculated for a small frame, 
duly windowed. Further, it may be taken to wavelet 
transforms. In 1978 FFT lost its research track in speech 
recognition due to continuously failing in the constantly rising 
expectations of complexity. 

The most thorough test of various front ends was done two 
decades back by Davis in his famous paper[1]. In this paper 
Linear Predictive Coefficients(LPC), Linear Predictive 
Cepstral Coefficient (LPCC), Linear Freq. Cepstral 
Coefficient(LFCC), Reflection Coefficient (RF) and Mel 
Frequency Cepstral Coefficient (MFCC) were tested for 
effects on accuracy of word recognition in a template based, 
dynamic time warping speech recognizer. 
 
The basic inference drawn out of this work was that MFCC 
parameters give the best performance with six coefficients (or 
ten coefficients with increased performance of Automatic 
Speech Recogniser) addressing to most information, which is 
relevant for speech recognition. Even now his basic findings 
stand unchallenged [1].  
 
Later, Joseph W. Picone[2] studied the works in Speech 
Recognition and discussed signal-modeling techniques in four 
sub categories: 
 

[1] Spectral Shaping 
[2] Spectral Analysis  
[3] Parametric transformation  
[4] Stastical modeling 
 

It was highlighted that the difference in time of processing 
between various signal-modeling approaches was a small 
percentage of the total processing time. It was underlined that 
the focus was in maintaining high performance and 
minimizing the degrees of freedom. All techniques were 
compared in these four spheres and conclusion was: 

1. Neural Network based systems tend to use filter bank 
amplitudes directly 

2. Cepstral Coefficients are the dominant acoustic 
measurement 

3. FFT-derived-mel-scaled cepstral coefficients are the 
most common form of cepstral analysis used  

4. FFT is immune to noise 

Here again, authority of MFCC stood unchallenged. However, 
it was an early age in Speech Recognition and there were 
many more things to come[2]. 

During that time ICA (Independent Component Analysis) was 
in its young stage. Herault and Jutter gave a general algorithm 
derived from PCA (Principal Component Analysis) which 
deals with IInd order statistics. In 1983 the problem of ICA 
was addressed and a real time iterative algorithm was 
proposed based on neuro-minetic architecture. In 1986, the 
name ICA came into horizon. However, at those times, the 
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higher order statistics and cumulants were not introduced 
explicitly. PCA forms an orthogonal set of axes pointing in 
the direction of maximum variance, so it forms a 
representational basis that projects in the direction of 
maximum variability. ICA is a generalization of PCA that 
decorrelates the high order moments of the features up to 
infinite order in theory. Early approaches showed an infinite 
number of cross cumulants and a maximum of fourth order 
independence. The most popular fixed-point algorithm was 
given by Hyvarinen [4], known as FASTICA. Giannakis 
et.al.[10], in 1987 addressed the issue of identifiability of ICA 
in 1986 using third order cumulants. Cardoso focused on 
algebraic properties of fourth order cumulants and interpreted 
them as linear operators acting on matrices[11]. Later he 
investigated other algebraic approaches using only fourth 
order cumulants[12,13]. In this series the most recent research 
has been carried out with third and fourth order cumulants 
named as CuBICA by Blaschke and Wiskott [5]. 
 
 

II.  LPC ANALYSIS 
 
i) Preemphasis – The digitized speech is passed through a first 
order low pass filter. This process flattens the signal and 
makes it less susceptible to finite precision effects later in the 
signal processing. To average the transmission conditions and 
backgrounds, or, even to average the signal spectrum, the 
preemphasizer is made to adapt slowly.  
The first order preemphasis network is defined as : 
 
H(z) = 1-az-1     0.9≤a≤1.0         (1) 
 
Thus, the output of preemphasis network s~(n) is related with 
the input s(n), by the difference equation: 
 
s’(n) = s(n)- as’(n-1)               (2) 
 
the values of a commonly used is 15/16=0.9375 or 0.95 
One possibility to choose a in (2) is to choose a’(n) = 
rn(1)/rn(0) 
 
In this paper, a one step forward linear prediction has been 
used i.e. the value of x(n) by a weighted linear combination of 
past values x(n-1), x(n-2),…,x(n-p) has been predicted. Hence 
the linearly predicted value of x(n) is  

∑
=

−−=
p

k
p knXkanX

1

)()()('
          (3) 

 
where ap(k) represents the weights in the linear combination. 
The difference between the value x(n) and the predicted value 
x’(n) is called the forward prediction error  fp(n): 
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ii) Frame Blocking- The preemphasized speech signal, is 
blocked into the frames of N samples, with adjacent frames 
being separated by M samples. Let the first frame consist of 
first N samples. The second frame begins M samples after the 

first frame, and overlaps N-M samples.. This process 
continues until all the speech samples are accounted for in one 
or more frames. A common technique is to have small frame 
size with wide overlapping. It is easy to see that M≤N, then 
the adjacent frames overlap, and the resulting LPC spectral 
estimates will be correlated frame to frame. If M<<N, the LPC 
spectral estimates from frame to frame will be smooth with a 
trade off with complexity of computation. On the other hand, 
if M>N, then there will be loss of information and the speech 
will not be recognized or reconstructed. A typical result is an 
analysis frame of 300 samples and no. of samples shift 
between frames to be 100 

 
iii) Windowing- For speech processing we want to assume 
that the signal is short-time stationary and perform a Fourier 
transform on these small blocks. A simple solution is to 
multiply the signal by a window (gate) function that is zero 
outside some definite range. Then the resulting windowed 
signal is defined as:  
 
xl’(n) = xl(n)w(n)   0≤n≤N-1          (5) 
 
This can generate the discontinuities. 
One way to avoid these discontinuities and taper the signal at 
the beginning and the end of each frame is use of a Hamming 
Window for auto correlation method of LPC due to its raised 
cosine structure. It is defined as follows: 

)
1

2cos(46.054.0)(
−

−=
N

nnw π

     0≤n≤N-1 (6) 
 
iv) Autocorrelation Analysis- In this step, each frame of 
windowed signal is auto correlated to give: 

∑
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     m=0,1,2,….,p, (7)   
 
where highest correlation value, p, is the order of LPC 
analysis. Typically, values of p from 8 to 16 are used. It is 
interesting to note that the zeroth autocorrelation, Rl

(0), is the 
energy of lth frame. The frame energy is an important 
parameter for speech-detection. 
In our case, 

 
-n

l)x(n)x(nl)-x(n)x(n(l)
xx ∑ ∑

∞
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∞
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n
γ

 
for l=0,±1, ±2,…   (8) 
 

v) LPC Analysis- The next processing is LPC analysis, which 
converts each frame of p+1 autocorrelations into an ‘LPC 
parameter set’. In our case, it is LPC coefficients. It can also 
be the reflection (PARCOR) coefficients, the log area ratio 
coefficients, the cepstral coefficients, or any desired 
transformation of the above. We have used Levinson/Durbin 
Algorithm: 
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1. E(0) = r(0)                   (9) 

2. 
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   1≤i≤p   (10) 
3. αi

(i) = ki                    (11) 
4. αj

(i)= αi
(i-1) - ki αi-j

(i-1)               (12) 
5. E(i)=(1-ki

2)E(i-1)           i=j=i-1   (13) 
 
Where the summation of is omitted for i=1. On solving the 
equations recursively for i=1,2,3,…p, the final solution is 
given as: 
 
am = LPC coefficients = αm

(p)           1≤m≤p   (14) 
  
vi) LPC Parameter Conversion to Cepstral Coefficients- A 
very important LPC parameter set, directly derived from LPC 
coefficients is the LPC cepstral coefficients, c(m). The 
recursion used is: 

2lnσ=oc                   (15) 

∑
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where σ2 is the gain term in the LPC model. The cepstral 
coefficients, which are the coefficients of the Fourier 
transform representation of the log magnitude spectrum, have 
been shown to be more robust, reliable feature set for speech 
recognition than other set of coefficients. 
 
vii) Parameter Weighting- The low-order cepstral coefficients 
are sensitive to overall spectral slope and the high-order 
cepstral coefficients are sensitive to noise and other forms of 
noise like variability. Thus, a standard technique is to weigh 
the cepstral coefficients by a tapered window so as minimize 
these sensitivity. One option is to take Fourier representation 
of the log magnitude spectrum and the differentiated log 
magnitude spectrum, such that: 
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The differential log magnitude spectrum has the property that 
any fixed spectral slope in the log magnitude spectrum 
becomes a constant. Any prominent spectral peak in the log 
magnitude spectrum or formants is well preserved as a peak in 
the differentiated log magnitude spectrum. Hence, by 
considering the multiplication by (-jm) in the representation of 
the differentiated log magnitude spectrum as a form of 
weighting, we get 
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To achieve the robustness for large values of m (low weight 
near m=Q) and to truncate the infinite computation of these 
equations, we consider a more general weighing form  

mmm cwc =
^

        1≤m≤Q        (22) 
 
where an appropriate weighing is the band pass lifter is given 
as : 

)]sin(
2
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+=

      1≤m≤Q    (23) 
 
This weighing function truncates the computation and de-
emphasizes cm around m=1 and around m=Q. 
 

III. INDEPENDENT COMPONENT SOLUTION 
 

A. Definition: 
 
The independent components  are latent variables, they can 
not be directly observed.  ICA is used to find unknown 
waveforms out of the mixtures/ sources given. The observered 
m values of x correspond with n constituent source signal : 
 
X1(t)=a11S1+a12S2+…+a1nSn 
X2(t)=a21S1+a22S2+…+a2nSn 

. 

. 

. 
Xm(t)=am1S1+am2S2+…+amnSn             (24) 
 
This problem assumes that S1(t) and S2(t) are statistically 
independent at any time instant. ICA is used to estimate aij  
based on the information of the independence of the source, 
which allows us to separate the signals out of their observed 
mixtures. 
 
The N element vector is the mixture input to ICA which is 
actually the Fourier coefficients of input signals. There are n 
such mixtures of m independent sources so that m<n. The 
basic mixing model of ICA without noise  is presented as: 

Asx =                     (25) 
or  

∑
=

=
n

i
ii sax

1
                  (26) 

Noise is generally considered gaussian to simplify a problem, 
but in ICA it will further complicate the problem, as it has 
already been proved that only one of the sources can be 
gaussian. 
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B. Assumptions 
 

The assumptions are : 
1. The components si are statistically independent. 
2. Independent components must have non-gaussian 

distribution because gaussian mixtures can not be 
separated. 

3. As supported by theorem 11, in combination to theorem 
10,of the famous paper of Pierre Comon; only one of the 
mixtures can be Gaussian[7]. 

 
Let us check each assumption at a time. 
 
1. The components si are statistically independent: 
Consider two scalar-valued random variables s1 and s2. they 
have no information about each other, but not x1 and x2, 
which are mixture variables. When defined in probability 
density; If  p1(y1) is the probability density function  of y1 
alone and If p2(y2) is the probability density function  of y2 
alone, then independence means that their joint probability is 
factorisable: 
 
p1(y1,y2)= p1(y1). p2(y2)              (27) 
 
or given two functions, h1 and h2, we always have their 
expectations: 
 
E{h1(y1) h2(y2)}=E{h1(y1)} E{h2(y2)}         (28) 
 
Independence implies uncorrelated ness. However, 
uncorrelated ness does not imply Independence- two random 
variables y1 & y2are said to be uncorrelated , if the covariance 
is zero: 
 
i.e.E{y1y2}=E{y1 }E{y2}              (29) 
 
whereas, E{y1

2y2
2}≠E{y1

2 }E{y2
2}          (30) 

 
Thus, ICA methods constrain the estimation procedure so as 
to get uncorrelated independent components estimates. This 
simplifies the problem of ICA by reducing the number of free  
parameters. 
 
2. Independent components must have non-gaussian 
distribution because gaussian mixtures can not be separated: 
 
Say A is orthogonal and sources Si are gaussian. Then mixture 
x1 & x2 are gaussian , uncorrelated and of unit variance. 
Then probability density function becomes:  

∞<<−∞
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2
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Where -∞<µ<∞ is mean and σ>0 is standard deviation. The 
distribution function becomes 

dtexF
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   with σ=1 and µ=0    (32) 

 
 

Then, their joint densities are given by  
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This is a completely symmetric circle.  
It does not contain information on the direction of the columns 
of mixing matrix A, Thus, A can not be estimated. 
 
3.  Only one of the sources can be Gaussian- 
For X=AS .Let : 

a. X and S be two random vectors. 
b. A is a rectangular matrix 
c. S has independent components. 
d. X has pairwise independent components. 

If A has two non-zero entries in the same column j, then Sj is 
either gaussion or deterministic.This is a direct consequence 
of Darmois Theorem stated in 1953 as: 
 Define the two random variables X1 and X2 as – 
 

∑
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i
ii xaX

1
1      ∑
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ii xbX
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2       (34) 

 
 Where xi are independent random variables. Then if x1 and x2 
are independent, all variables xj for which aj bj≠0 are gaussian. 
Also , Let  S be a vector with independent components, of 
which at most one is Gaussian, and whose densities are not 
reduced to a point like mass. Let A be an orthogonal NXN 
matrix and X the vector X=AS. Then the following properties 
are equal. 

a. The components Xi are pair wise independent. 
b. The components Xi are mutually independent 
c. C=∧P,    Where,   ∧ is scaling diagonal matrix, 

               P is permutation. 
 
Note that implications  iii) ⇒ ii) and ii) ⇒i) are quite obvious. 
Last one i) ⇒iii) has to be proved. 
Assume X has pair wise independent components, and let A is 
not of form ∧P. since A is orthogonal, it is necessarily has two 
non –zero entries in at least two different columns. Then using 
the entries proof twice, S has at least two Gaussian 
components, which is contrary to the original hypothesis, that 
A is not of form ∧P. So if A is ∧P then only one of the source 
can be Gaussian.  Converse of this is equally  true i.e. If the 
distribution is non gaussian it is independent. The central limit 
theorem , states that sums of independent random variables 
tends to be normally distributed even though its summands are 
not. Thus the sum of two independent random variables 
usually has a distribution that is closer to gaussian than any of 
the two original random variables.Now a very natural question 
arises here is measure of gaussianity or non gaussianity, which 
gives rise to an estimation principal of ICA. 
 
C.   Principals of ICA Estimation: 
 
Two major principals are used for ICA estimation: 
a. The information theory approach to ICA is minimization of 
mutual information ie finding most non gaussian direction. 
Non gaussian is Independent. 
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Mutual Information is defined as: 
Let x be a random variable with values in RN and denoted by 
px(u) its probability density function. Vector x has mutually 
independent components if and only if  

∏
=

=
N

i
ixix upup

1

)()(               (35) 

So , a natural way of checking whether x has independent 
components is to measure a distance between both sides  

 ),(
1
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i
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ppδ                 (36) 

So the average mutual information of x is :  
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If we recall kullback- leibler divergence defined for 
probability density form 

du
up
upuppI

z

x
xx .)

)(
)(log()()( ∫=          (38) 

This equation satisfies 
0),( ≥zx ppδ  

And it satisfies   the equality if and only if px(u) = pz(u) almost 
everywhere. Thus, (37)holds if and only if the variables xi are 
mutually independent.   
 
 In information theory, mutual information is defined between 
m scalar random variables, yi, I = 1…..m, as follows 

∑
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−=
m

i
iyyy yHyHI

m
1

)....( )()(
,2,1

                           (39) 

where H(yi) is length of codes with yi when these elements are 
coded separately and H(y) is the length of code when y is 
coded as random vector. (39) is always positive and zero, if 
and only if the components are statistically independent. 
 
Non gaussianity can be used to estimate the Independence of 
the components. The measure of non gaussianity is kurtosis or 
fourth order cumulant defined by  

224 }){(3}{)( yEyEykurt −=          (40) 
 
Properties of kurtosis are: 
1. Kurtosis may be positive or negative: so that square of 
kurtosis are mod(kurtosis) can be used as a measure of non 
gaussianity.  
2. Kurtosis is linear : 

)()()( 2121 xkurtxkurtxxkurt +=+  

and )()( 4 xkurtxkurt αα =             (41) 
 So, independent components can be formed by kurtosis 
minimization. 
The additive property of kurtosis states: 
For 2211 szszxWy T +==   
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and since variance is unity thus 

1)( 2
2

2
1

2 =+= zzyE  
  
It is easy to show by deflation approach of adaptive blind 
separation of independent sources that maxima of  z1

4kurt(S1) 
+ z2

4kurt(S2) – are at the points when one of the elements of  
vector Z is zero and other nonzero. Because of unit circle 
constrain one element is 1or –1 .Thus, kurtosis can very well 
be theoretically used as optimization criterion for ICA. 
Disadvantages of kurtosis: 
Kurtosis can be very sensitive to outliers. Its value may 
depend on only a few observation in the tails of distribution. 
While may be erroneous or irrelevant observations. 
 
b. Another measure of non gaussianity is negative entropy. 
Entropy is coding length of random variable. The more 
random/ unpredictable or unstructured the variable is , the 
more positive entropy is then, 
For discrete random variable, Entropy is defined by 
 ∑ ∑−===−=

i i
ii PPaYPaYPyH log)(log)()(  

                                                                                             (43) 
Similarly the differential entropy for continuous random 
vector y with density f(y) is defined by 

∫−= dyyfyfyH )(log)()(            (44) 

The gaussian variable has the largest entropy among all 
random variables of equal variance. So negentropy is 
difference between maximum entropy , gaussian and entropy 
of the given random variable defined as 
 
J(y) =H(ygaussian) – H(y)               (45) 
  
Hence negentropy can only be positive, it is actually the 
relative entropy. Defined as negative entropy or negentropy. 
Both gaussian feature and natural independence can be 
characterized by with the help of negentropy. The only 
problem of using negentropy lies is its computation 
complexity, so its simpler approximations are used. 
 
D.  Preprocessing for ICA 
  
1.Centering the data- 
The most basic and necessary preprocessing is to center the 
data. This is done by subtracting its mean vector m=E{x}  so 
as to make x a zero mean variable. This implies that now s is 
also zero-mean. It can be shown by taking expectations on left 
and right side basic equation of ICA.  However, after ICA this 
mean vector is added back to centered estimates of s.  
 
2. Whitening- 
Next is to whiten the observed variables by transforming the 
observed vector x linearly so that its components are 
uncorrelated and their variances are equal to unity, so that 
E{x’x’T}=I. It is done by eigen value decomposition. This 
reduces the number of parameters to be estimated. Instead of 
n2 parameters of Ã only n(n-1)/2 parameters of orthogonal 
matrix A is found. Discarding the eigen value dj of E{xxT} 
 will further reduce the dimension of data. 
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3. Filtering- 
The performance of ICA for a given set of data may depend 
upon  some band pass filtering. Let x*

i(t) be the linearly 
filtered output of observed signals xi(t).The ICA model still 
holds for x*

i(t), with the same mixing matrix. In this paper it is 
extended whether this holds for linear cepstrals which are 
independent also.  
 
E. ‘FastICA’ 
 
A very efficient and famous algorithm of  ‘FastICA’ was 
given by Hyvarian. This allows a preliminary ‘whitening’ step 
for the zero mean mixture signals, which improves the 
convergence speed of the ICA procedure. The process is as 
follows: 
 

A. Initialize nonzero weights W. 
B. Iterate till it converges:     

 
1.For outputs p=1,…,n: perform steps(2-4): 
2.Vector update: 

 p
T
p

T
pp wxwgExwxgEw )}('{)}({ −=+

  
      (46) 

where g  is a nonlinear function, g’ its derivative with time. 
 
3..Normalize to a unitary-length vector: 
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p
p w

w
w               (47) 

4.De-correlation of current vector (by a Gram-Schmidt 
orthogonal) against the previous vector set : 
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F.     Measure of Dissimilarity 

 
For two feature vectors defined on a vector space χ, We 
define a metric or distance function ‘d’ on the vector space χ 
as a real-valued function on the Cartisian product χxχ such 
that it qualifies the following properties: 
1. Positive Definiteness –  
0≤d(x,y)<∞ for x,y∈χand d(x,y)=0 if and only if x=y 
2. Symmetry – d(x,y) = d(y,x) for x,y ∈χ 
3. Triangular Inequality – d(x,y)≤d(x,z)+d(y,z) for x,y,z∈χ 
4. Distance Function – d(x+z,y+z) = d(x,y) 
Distance function is included because speech is a subjective 
data and something like loudness cannot be measured with 
only first three properties. 
 
For speech recognition, only MSE does not fulfill the purpose 
of distance with subjective meaningfulness [8]. Thus,   two 
components for Identification /Faulty rejection are taken. 
They are:  
 

 
1. Rejection of correct data (utterance/ speaker wise) 
2. Identification of wrong data (utterance/ speaker wise) 
So, the performance index must have two components as 
shown in eqn.(7). 
 
Distance has been assigned as sum of square of distance and 
the error is considered as inverse of the same. MSE[-yi,si] and 
MSE[yi,si] are computed and lower value is found. These 
MSE(s) form a matrix E=[ai,j]nxn; where each element  

],[
1

ii
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a =               (49) 

  
 
One more error element is added to this error which is a 
penalty to wrong identification i.e. if a single reference 
component is matched with more than one tested component; 
so that the total error becomes positive and its magnitude is 
large enough to be compared as Performance Index (PI).  
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G. Applications 
Applications of  ICA can be prominently divided into three 
parts:- 
a)  Depending upon the type of mixing matrix X: 
i) If mixing matrix A is Toeplitz and triangular then ICA is 
only a deconvolution problem. 
ii) if A is not triangular, the filter is allowed to be non-causal. 
iii) If A is non-toeplitz, the filter is allowed to be non-
stationary.Thus, blind deconvolution is a constrained ICA 
problem. 
 
b) Blind Source Separation: 
During 1989-91 the problem of separation of two and more 
than two sources was addressed by various researches. In his 
doctoral thesis, Fety, [13-5,24] addressed the problem of 
identifying the dynamic model of y(t) = F.z(t) using second 
order cumulants. This was addressed as signal operation 
problem. This problem was later addressed by Tond in 1991 
[14-5,61]. This has applications in famous ‘Cocktail Party 
problem’ or used in channel identification. Other applications 
are in antenna array processing, in estimation of radiating 
sources form the unknown arrays [5-20], or jammer rejection 
or in noise reduction or in two stage localization procedure, if  
array are perturbed/ noisy or ill- calibrated[4]. 
  
c) Feature Extraction: 
The second application of ICA is feature extraction, on which 
this  work has been carried out. This is a fundamental problem 
in digital signal processing where it is a challenge to find out 
suitable signature or characteristic features for image, audio, 
channel properties and for data compression and denoising.  
Independent Component Analysis is a statistical method for 
transforming an observed multidimensional random vector 
into components that are statistically independent from each 
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other[6]. Thus feature extraction turns out to be an   
application of ICA[4]. For successful extraction of features a 
lot of techniques were developed as Fast Fourier Transform, 
Bank of filters front end processor, Short Term Power 
Spectrum, Linear Predictive Coefficients, Discrete Cosine 
Transform (DCT), MFCC to name a few most respected ones. 
It is interesting to note that linear cepstrals being independent 
can form the same output matrix. 
 

IV. EXPERIMENTS 
 

The three approaches tested are: 
1. Standard MFCC features 
2. ICA for speech feature detection 
3.Weighted LPC cepstrals passed through ICA for speech 
feature detection 
The two set of data is : 
1. Single speaker multiple utterances: Word Identification  
2. Single utterance multiple speakers : Speaker Identification 
 Here the responses on database of utterances from one 
speaker based on samples of ISOLET database has been 
investigated. The ISOLET speech database of spoken letters 
of the English alphabet. The speech is high quality (16 kHz 
with a noise canceling microphone). 150 speakers x 26 letters 
of the English alphabet twice in random order. The original 
frame based approach has been accepted. First all the 
components are rescaled in<-1,1> range. The endpoints are 
detected, then a frame of  10 ms with a hamming window with 
50% overlap is created. The features are extracted only 
beyond a certain threshold level. The features extracted were 
three formant frequencies from LPC analysis and 15 MFCCs 
with one endpoint detection component. These features were 
stored in a reference matrix per spoken word r(i). Now, the 
test input is generated.  Its features are extracted say y(i) and 
compared with reference input components say s(i). Later all 
features are extracted from LPC analysis. For better results the 
LPC cepstrals are weighted. 
Then the same database is used for ICA technique. The 
templates of ICA are created and compared. Then on the same 
database its LP cepstrals  are taken and  this vector is applied 
to ICA. All the comparisons are done after Dynamic Time 
Warping (DTW).  
 

Fig.1: Windowing of signals (Hamming window reducing 
discontinuity) 
 

 
Fig. 2: LPC of two utterances ‘A’ and ‘B’ 
 

 
Fig.3.:Weighted LPC Cepstrals giving a smoother curve 
 
Ist Set: Single speaker multiple utterances: 
Table I: Comparison of error using formant frequencies and 
MFCC as features. 

Tested / 
Reference 
Letter 

A1 A2 B1 B2 

A1 5.39 10.31 205.81 203.02 
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A2 12.67 5.26 189.66 203.09 
B1 201.33 203.45 5.38 10.73 
B2 199.64 204.84 11.65 5.14 

 
Fig.4: Plot of Error in utterances using MFCC 
Table II: Comparison of error using ICA as features. 
Tested/ 
Reference 
Letter 

A1 A2 B1 B2 

A1 6.43 12.87 230.91 224.98 
A2 12.92 6.86 189.66 214.53 
B1 214.87 231.09 7.03 13.05 
B2 220.61 219.01 12.79 6.76 

 

 
Fig.5: Plot of Error in utterances using ICA 
 
Table III: Comparison of error using weighted LPC applied to 
ICA as features. 

Tested/ 
Referenc
e Letter 

A1 A2 B1 B2 

A1 2.90 11.78 220.71 223.02 
A2 11.63 3.01 230.83 220.83 
B1 235.95 229.06 2.96 12.00 
B2 220.93 220.94 11.09 3.04 

 

 
Fig.6: Plot of Error in utterances using Linear Predictive 
Cepstral applied to ICA 
 
 
 
IInd Set: Multiple speakers same utterance(‘B’ for this 
case): 
Table IV: Comparison of error using formant frequencies and 
MFCC as features. 

Tested / 
Reference 
Speaker 

Male1 Male2 Female1 Female2 

Male1 3.26 15.62 145.421 137.82 
Male2 18.24 3.45 196.30 159.28 
Female1 139.25 150.28 3.49 20.21 
Female2 169.35 123.85 13.58 3.82 

 

 
Fig.7: Plot of Error in speakers using MFCC 
 
Table V: Comparison of error using ICA as features. 
Tested/ 
Reference 
Speaker 

Male1 Male2 Female1 Female2 

Male1 3.12 12.87 230.91 224.98 
Male2 12.56 2.99 189.66 214.53 
Female1 110.25 146.21 2.86 13.00 
Female2 156.38 112.69 12.82 2.81 
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Fig.8: Plot of Error in speakers using ICA 
 
 
Table VI Comparison of error using weighted LPC applied to 
ICA as features. 

Tested/ 
Referenc
e Speaker 

Male1 Male2 Female1 Female2 

Male1 1.48 13.92 222.70 224.58 
Male2 14.85 2.04 241.59 223.59 
Female1 270.28 210.79 2.20 16.02 
Female2 198.26 165.93 14.69 2.31 

 

 
Fig.9: Plot of Error in speakers using Linear Predictive 
Cepstral applied to ICA 
 

 
Fig.10: Two wave forms of ‘A’  and two waveforms of ‘B’  
 

 
Fig.11: DTW of MFCC of  ‘A1’ and ‘A2’ 

 
Fig.12: Plot of all Weighted LP Cepstral applied to ICA for 
‘A1’.  

V. RESULTS AND CONCLUSION 
 
In Fig.1, the first plot is signal multiplied with rectangular 
window and the second plot is of signal  multiplied with 
hamming window. It is evident that in case of rectangular 
window, there are sharp discontinuities at beginning and end 
of the window; whereas, for hamming window, the 
discontinuity is not so sharp. Fig. 2 shows the LPC coefficient 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:2, No:7, 2008

1354

 

 

fo two utterances and their comparisons. Fig. 3 shows 
weighted cepstrals and their smoothened comparative results. 
During this work the mixing matrix A was checked up with 
MFCC and without MFCC. They are different as expected 
becaure MFCC is on a Mel scale which is a non linear scale. 
Thus LPC was taken and The performance index was 
calculated as described in Section II. In Table I, comparison of 
same alphabet gives minimum error. In Table II, the 
comparisons were made out of ICA coeff. Result is worse 
than the previous (MFCC case). In Table III,  LPC 
coefficients were applied to ICA. It was found that in this 
particular case of ISOLET database, the performance is better 
than the earlier two algorithms (MFCC and ICA  separately); 
i.e. for identification of same or similar alphabet, the error has 
reduced , whereas for  different alphabet the error is larger 
than the earlier two approaches. Thus the classification is 
better. Fig. 4,5,6 are the illustrations of table I, II and III 
respectively. 
Similarly,  for speaker identification, same / similar speakers 
gave lesser error with MFCC as compared to ICA(Table IV 
and V) but  weighted LP Cepstrals applied to ICA technique 
gave better performance than the earlier two approaches(Table 
VI). In case of same speaker the PI (actually error) got 
reduced, whereas, for different speakers the PI became 
exceptionally large(Table VI), so classification is even better. 
In our future experiments  we will  find out optimum neural 
architecture in this case to improve comparison. Fif. 7,8,9 are 
the illustrations for table IV, V and VI. Fig. 10 shows two 
sample wave forms of two utterances. Figure 11 illustrates 
that the difference in time duration of two utterances (say ‘A’) 
is taken care of by Dynamic Time Warping of two signals. 
Fig12 shows the plot of all 19 weighted cepstrals applied to 
ICA. 
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