
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2353

Abstract—Standards for learning objects focus primarily on

content presentation. They were already extended to support
automatic evaluation but it is limited to exercises with a predefined
set of answers. The existing standards lack the metadata required by
specialized evaluators to handle types of exercises with an indefinite
set of solutions. To address this issue existing learning object
standards were extended to the particular requirements of a
specialized domain. A definition of programming problems as
learning objects, compatible both with Learning Management
Systems and with systems performing automatic evaluation of
programs, is presented in this paper. The proposed definition includes
metadata that cannot be conveniently represented using existing
standards, such as: the type of automatic evaluation; the requirements
of the evaluation engine; and the roles of different assets - tests cases,
program solutions, etc. The EduJudge project and its main services
are also presented as a case study on the use of the proposed
definition of programming problems as learning objects.

Keywords—Content Packaging, eLearning Services,
Interoperability, Learning Objects.

I. INTRODUCTION
EARNING Objects (LO) are units of instructional content
that can be used, and most of all reused, on web based

eLearning systems. The LO definition was targeted for
Learning Management Systems (LMS) and thus they are
specialized on content presentation. They encapsulate a
collection of interdependent files (HTML files, images, web
scripts, style sheets) with a manifest containing metadata. This
metadata is important for classifying and searching LO in
digital repositories and for making effective use of their
content in LMS. Standardize metadata plays an important role
in keeping LO neutral to different vendors, both of LMS and
of repositories.

Despite its success in the promotion of the standardization
of eLearning content, the generic LO standards are inadequate
to some domains. This fact led to the creation of application
profiles – extensions to standards, policies and guidelines
meeting the needs of specific communities. Those application
profiles are still targeted mostly for general purpose systems,

such as LMS and repositories and do not cater for the needs of
specialized eLearning systems such as automatic evaluators.

This paper focuses on a definition of programming
problems as LO adequate to the interoperability of services in
the area of programs automatic evaluation. This definition is a
new application profile for learning objects based on
Instructional Management Systems (IMS) specifications. It is
being used in a European research project called EduJudge,
which aims to integrate a collection of problems created for
programming contests into an effective educational
environment.
 The remainder of this paper is organized as follows. Section
2 traces the evolution of LO standards and schema languages
used for defining them. The following section starts with the
definition of an evaluation model for programming problems
and, based on it, a new application profile extending standard
specifications and guidelines is presented, as well as the data
model for representing metadata of programming problems.
Then, a case study regarding the use of the new application
profile in the EduJudge project is presented. Finally, a
summary of the main contributions and a perspective of future
research conclude this paper.

II. LEARNING OBJECT STANDARDS
The evolution of eLearning systems in the last two decades

was impressive. In their first generation, eLearning systems
were developed for a specific learning domain and had a
monolithic architecture [1]. Gradually, these systems evolved
and became domain-independent, featuring reusable tools that
can be effectively used virtually in any eLearning course. The
systems that reach this level of maturity usually follow a
component-oriented architecture in order to facilitate tool
integration. An example of this type of system is the LMS that
integrates several types of tools for delivering content and for
recreating a learning context (e.g. Moodle, Sakai).

The present generation values the interchange of learning
objects and learners' information through the adoption of new
standards that brought content sharing and interoperability to
eLearning. Standards can be viewed as "documented
agreements containing technical specifications or other precise
criteria to be used consistently as guidelines to ensure that

Defining Programming Problems
as Learning Objects

José Paulo Leal1 and Ricardo Queirós2
1CRACS & DCC-FCUP, University of Porto, Portugal

zp@dcc.fc.up.pt
2CRACS & DI-ESEIG/IPP, Porto, Portugal

ricardo.queiros@eu.ipp.pt

L

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2354

materials and services are fit for their purpose" [2]. In the
eLearning context, standards are generally developed with the
purpose of ensuring interoperability and reusability in
systems. In this context, several organizations [3]-[5] have
developed specifications and standards in the last years [6].
These specifications define, among many others, standards for
eLearning content [7]-[9] and interoperability [10], [11].

The most widely used standard for LO is the IMS Content
Packaging (IMS CP). This content packaging specification
uses an XML manifest file wrapped with other resources
inside a zip file. The manifest includes the IEEE Learning
Object Metadata (LOM) standard to describe the learning
resources included in the package. This standard proposes a
set of 77 elements, distributed among nine categories. Though
all elements are optional, the standard is being used in several
eLearning projects all over the world [12].

The LOM standard has achieved a high degree of
acceptance in learning communities. However a closer
inspection reveals a low adoption rate of LOM elements [12].
Since LOM elements are optional and in some cases too
generic, several projects that have adopted the standard
usually define application profiles to meet the needs of
specialized domains [12].

For instance, LOM was not specifically designed to
accommodate the requirements of automatic evaluation of
programming problems. There is no way to assert the role of
specific resources, such as test cases or solutions. Fortunately,
IMS CP was designed to be straightforward to extend,
meeting the needs of a target user community through the
creation of the already referred application profiles. When
applied to metadata the term application profile generally
refers to "the adaptation, constraint, and/or augmentation of a
metadata scheme to suit the needs of a particular community"
[13]. A well know eLearning application profile is SCORM
[14] that extends IMS CP with more sophisticated sequencing
and Contents-to-LMS communication.

The creation of application profiles is based in one or more
of the following approaches:

• Selection of a core sub-set of elements and fields from
the source schema;

• Addition of elements and/or fields (normally termed
extensions) to the source schema, thus generating the derived
schema;

• Substitution of a vocabulary with a new or extended
vocabulary to reflect terms in common usage within the target
community;

• Description of the semantics and common usage of the
schema as they are to be applied across the community.

Following this extension philosophy, the IMS Global
Learning Consortium (GLC) upgraded the Question & Test
Interoperability (QTI) specification [9]. QTI describes a data
model for questions and test data and, from version 2, extends
the LOM with its own metadata vocabulary. QTI was
designed for questions with a set of pre-defined answers, such
as multiple choice, multiple response, fill-in-the-blanks and
short text questions. It supports also long text answers but the

specification of their evaluation is outside the scope of the
QTI. Although long text answers could be used to write the
program's source code, there is no way to specify how it
should be compiled and executed, which test data should be
used and how it should be graded. For these reasons QTI
cannot be considered adequate for automatic evaluation of
programming exercises, although it may be supported for sake
of compatibility with some LMS. Recently, IMS GLC
proposed the IMS Common Cartridge [15] that bundles the
previous specifications and its main goal is to organize and
distribute digital learning content.

All these standards are described by schema languages,
most often using the XML Schema Definition language
(XSD). This language overcame Document Type Definition
(DTD) limitations and provided several advanced features,
such as, the ability to build new types derived from basic
ones, manage relationships between elements (similar to
relational databases) and combine elements from several
schemata.

In spite of its expressiveness, XSD lacks features to
describe constraints on the XML document structure. For
instance, there is no way to specify dependencies between
attributes, or to select the content model based on the value of
another element or attribute. To address these issues several
schema languages were proposed, such as RELAX NG [16]
(based on TREX [17] and RELAX [18]), DSD (Document
Structure Description) [19] and Schematron [20]. The
Schematron language provides a standard mechanism for
making assertions about the validity of an XML document
using XPath expressions and can be easily combined with
XML Schema.

III. PROGRAMMING PROBLEMS AS LEARNING OBJECTS
A LO containing a programming problem must include

metadata to allow its use by different types of specialized
eLearning services, such as evaluation engines, programming
problem repositories, among others. The existing LO
standards are insufficient for that purpose, which led us to the
development of a new application profile based on existing
standards and guidelines. This section details the definition of
programming problems as LO by extending the LOM
metadata schema with new elements to support programming
problems and their automatic evaluation.

Firstly, an evaluation model for the programming problems
is identified. Secondly, a new application profile based on the
IMS-CP and LOM is proposed, relating the several metadata
schemata. Thirdly, the data model of the metadata associated
to the resources that compose a programming problem is
described.

A. Evaluation model
The goal of defining programming problems as learning

objects is to use them in systems supporting automatic
evaluation. The automatic evaluation of programming
problems is more complex them the automatic evaluation of
exercises supported by other application profiles, such as QTI,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2355

where answers are selected from a small predefined set. To
evaluate a programming problem the learner must submit a
program in source code. The evaluation of this source code
usually includes a static phase, where the source code is
compiled or checked for syntactic errors, and a dynamic
phase, where the program is executed and its behavior is
analyzed.

There are several approaches to evaluate the behavior of a
program. The most common is to compare its output and side
effects with those of a standard solution. Another approach is
to compare a set of programs from different learners and
evaluate them competitively. In order to provide meaningful
metadata to the evaluation engines, a programming problem
definition must have an unambiguous evaluation model.
Otherwise, authors could create programming problems that
risked to be evaluated differently from want they intended.

Fig. 1 Evaluation model

After considering several alternatives a single and simple
four steps evaluation model was selected. This model is
depicted in Fig. 1 and enumerated bellow.

1. The evaluator receives three pieces of data: a reference to
the LO with a programming problem; an attempt to solve it - a
single file, a program or an archive containing files of
different types (e.g. JAR, WAR); and a reference to the
learner submitting the attempt.

2. The evaluator loads the LO from a repository using the
reference and uses the assets available in the LO (static tests,
generated tests, unit tests, etc.) according to their role.

3. The evaluator produces an evaluation report with a
classification and possibly also with a correction and
feedback. The feedback that may depend on the learner's
reference and may be stored for future incremental feedback
to the same learner.

4. The evaluator returns the evaluation report immediately
or makes it available within a short delay.

The learning object metadata assigns a role to each asset
assuming this simple model. It is the responsibility of the
evaluation component to use each asset appropriately
according to its role.

More specialized evaluation models were considered. For
instance, unit tests can be used to perform program evaluation
instead of test cases. Unit testing seems a reasonable candidate
for its own specialized evaluation model, requiring a source
code for a particular unit testing framework, for instance Junit.
However, a similar result can be achieved without a unit
testing framework but with boilerplate code linked with the
learner’s attempt. In this case it may help (or not) to use test
files, that would be associated with a “standard” evaluation
model. On the other hand, unit testing using a framework fits
the general evaluation model described above, removing the
need for a specialized model.

For every considered specialized model, requiring some
features and excluding others, ways to combine it with assets
from other evaluation models would come up. This fact led to
a simple and maximal evaluation model with several optional
extension points, where a specific resource (such as a test case
generator or a special corrector) can be inserted.

It should be noticed that, although this evaluation model is
maximal, it excludes some kinds of programming problems.
For instance, it excludes programming problems where
several programs from different learners are evaluated
simultaneously in a competitive fashion. This case was
considered for a second evaluation model. However, since this
kind of programming problem is relatively rare, especially in
the eLearning context, that decision was postponed to a next
version of this definition.

B. Application profile
An IMS CP learning object assembles resources and

metadata into a distribution medium, typically a file archive in
zip format, with its content described by a file named
imsmanifest.xml in the root level. The manifest contains
four sections: metadata, organizations, resources and sub-
manifests. The main sections are metadata, which includes a
description of the package, and resources, containing a list of
references to other files in the archive (resources), as well as
dependencies among them.

Metadata information in the manifest file usually follows
the IEEE LOM schema, although other schemata can be used.
These metadata elements can be inserted in any section of the
IMS CP manifest. In this definition, the metadata that cannot
be conveniently represented using LOM is encoded in
elements of a new schema – EduJudge Meta-Data (EJ MD) -
and included only in the metadata section of the IMS CP. This
section is the proper place to describe relationships among
resources, as those needed for automatic evaluation and
lacking in the IEEE LOM. The compound schema can be
viewed as a new application profile that combines metadata
elements selected from several schemata. The structure of the
archive, acting as distribution medium and containing the
programming problem as a LO, is depicted in Fig. 2.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2356

Fig. 2 Structure of a programming problem as a LO

The archive contains several files represented in the

diagram as gray rectangles. The manifest is an XML file and
its elements' structure is represented by white rectangles.
Different elements of the manifest comply with different
schemata packaged in the same archive, as represented by the
dashed arrows: the manifest root element complies with the
IMS CP schema; elements in the metadata section may
comply either with IEEE LOM or with EJ MD; metadata
elements within resources may comply either with IEEE LOM
or IMS QTI. Resource elements in the manifest file reference
assets packaged in the archive are represented by solid arrows.

The resources section of the IMS CP provides a suite of
resource elements composed each one by several files. In
order to link the EJ MD domain metadata, it is necessary to
create a reference mechanism to link it with the related
resources. This mechanism takes the ID/IDREF types of the
XML Schema specification to link the EJ MD metadata
element with the identifier attribute of the resource element.

The IMS CP specification is defined by a W3C XML
Schema Definition (XSD). The schema describes which
elements may exist in the document manifest and how those
elements may be structured. Unfortunately, not all constraints
of EJ MD can be expressed in XML Schema. For instance, the
XSD cannot check if the EJ MD elements are included in the
proper place of the manifest. Thus Schematron rules
embedded in the XSD of EJ MD are also used. The XSD can
be preprocessed using a XSLT; the resulting Schematron
schema is further processed as a second order transformation
to validate the manifest.

This application profile uses elements from several
schemata and namespaces were used to avoid name clashes. In
the EJ MD specification, the namespaces, filenames and
namespace prefixes of XML instances are as follows:

TABLE I

SCHEMATA IN THE NEW APPLICATION PROFILE
Spec. Namespace Filename

IMSCP http://www.imsglobal.org/xsd/imscp_v1p1 imscp_v1p1.xsd
LOM http://www.imsglobal.org/xsd/imsmd_v1p2 imsmd_v1p2.xsd

QTI http://www.imsglobal.org/xsd/imsqti_v1p1 imsqti_v1p1.xsd
EJMD http://www.edujudge.eu/ejmd_v2 ejmd_v2.xsd

These references will be used for online validation, to

conform to IMS CP Best Practice Document - to prefer online
references on the IMS website, rather than static XSD files in
the LO package, as they will be the most up-to-date
specifications.

To represent programming problems as learning objects,
able to be evaluated according to model just described, the
metadata of the IMS CP was extended to assign a role to each
asset. Metadata can be inserted in several points of the
manifest. The placement of different types of metadata related
to assets was assigned to the available extension points:

• Domain metadata (EJ MD), related to the automatic
evaluation, in IMS CP manifest/metadata element;

• Resource metadata (IEEE LOM), independent from
their use in automatic evaluation, within the IMS CP
manifest/resource/file/metadata elements (without any domain
metadata) and linked by the domain data through IDREF
attributes.

C. Data Model
The core of the proposed application profile is the

EduJudge schema that introduces new elements for resources
specific to programming problems. This subsection presents
its data model, represented schematically in Fig. 3.

The domain metadata is a hierarchy of elements whose
leaves are resources. The basic Resource type is an asset in
the distribution medium, referred by a relative filename. The
ProgramResource is a specialized type of resource that refers
to a source code program file. This type of resource requires
as attributes all the information to compile and execute the
program, including the language name and version, and
compilation and execution command lines.

The metadata type hierarchy has three main categories in
the first level: the General category describes generic
metadata and recommendations; the Presentation category
describes metadata on resources that are presented to the
learner (e.g. description and skeleton resources); the
Evaluation category describes the metadata on resources used
to evaluate the learner's attempts and provide feedback.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2357

Fig. 3 The EduJudge data model

The elements of the Evaluation type define all the

resources needed to judge a programming problem. It has
attributes to identify the problem's evaluation module and its
version and three elements pointing to different types of
evaluation resources: tests, correctors and solutions.

The elements of type Tests describe resources supplied to
evaluate the submitted program. This definition supports
several testing methodologies, each with a specific element
type, including among others:

1. TestFiles contains a pair of input and output files;
2. TestGroup contains an unbound collection of test files

and an associated valorization;
3. TestDescription identifies a test file encoded in a

language that describes test cases;
4. TestGeneration identifies a program that will generate

input files for test cases.
The TestFiles element supports the simplest type of

evaluation and is expected to be the most commonly used.
This element must contain references to input and output files,
and may have a valorization and feedback. An element of this
type corresponds to a single test case, thus it can be repeated
to create a comprehensive set of tests. In this case the learner's
program is executed once for each TestFile element, receiving
as input the content of the file referenced by the
corresponding element, and/or from the arguments attribute.
The resulting output is compared to the expected output

contained in the TestFile element.
The TestFiles element can also be used for grading and

correcting programs. This element may include a valorization
attribute, in which case the grade of the program is the sum of
the valorizations of successful executions. To correct the
program is used the optional Feedback element. These
elements provide, for each test case, a feedback message
associated with a particular error condition (e.g. “Wrong
Answer”, “Time Limit Exceed”, “Execution Error”) or invalid
output. The showAfterNumberAttempts attribute controls when
the feedback message should be sent to the learner based in
the actual number of attempts. The valorization attribute of
the feedback element enables partial grading for predefined
errors.

The TestGroup element is a container of TestFile elements
and is used to create different test sets, with an optional
valorization for the complete set. The TestDescription
element refers to a file describing test cases. This file is meant
as input for a test case generation tool. The test description is
an asset of the LO but the test generation tool must be
available to the evaluation engine. Alternatively, the
TestGenerator element refers to a program that when
executed generate tests to this particular programming
exercise.

The Correctors element is optional and refers to custom
programs that change the general evaluation pattern for a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2358

given problem. There are two types of correctors:
• Static: invoked immediately after compilation, before any

execution. Can be used to: compute software metrics
on the source code, judging the quality of source code;
perform unit testing on the program; check the
structure of the program's source code.

• Dynamic: invoked after each execution with a test case.
Deals with non-determinism (e.g. the solution is a set
of unordered values, in this case the corrector
normalizes the outputs before comparing them).

A single programming problem may use an arbitrary
number of correctors. The order in which they are executed is
defined by the depends attribute.

Finally, optional elements of type Solution refer to files
containing the problem solution.

IV. CASE STUDY
The purpose of a LO is to make a particular piece of

instructional content available to multiple eLearning systems,
especially LMS.

A LO containing a programming problem, with adequate
metadata for a well-defined evaluation model, can also be
used by specialized eLearning systems and promote their
interoperability. These features are part of the requirements of
the EduJudge project that was used as a case study for the
proposed definition of programming problems as LO.

This section starts with a general description of the
EduJudge project and proceeds with a brief explanation of its
components. For each component is succinctly described its
architecture and highlighted the impact of the programming
problem definition presented on the previous section.

A. The EduJudge project
The European research project EduJudge [21] aims to open

the Valladolid online judge (http://uva.onlinejudge.org/) to
secondary and higher education, benefiting from its
considerable collection of programming problems from
international and worldwide ACM-ICPC [22] competitions.
The vision of the EduJudge project is of an eLearning system
that integrates systems already in use, such as LMS, with
programming problems that are already available from
programming competitions.

To fulfill this vision the architecture of the EduJudge
system adheres to service oriented principles [23]. This
architectural model is based on services that are able to
participate on different reconfigurable processes. Services
reside on a physical location, act on their own resources and
are loosely coupled to other services. The EduJudge project
includes three types of such services:

Learning Objects Repository (LOR), to store

programming problems and to retrieve those suited to a
particular learner profile;

Evaluation Engine (EE), to automatically evaluate and
grade the students' attempts to solve the problems;

Learning Management System (LMS), to manage the
presentation of problems to learners.

The communication among these components complies to

the IMS DRI specification and is depicted schematically in
Fig. 3 as an UML sequence diagram. The concept of
programming problem as a LO is central to this
communication model.

Fig. 4 Communication model among EduJudge components

The life cycle of a LO starts with the request of an

identification and the submission of a LO to the repository.
Next, the LO is available for searching and download by other
eLearning systems. Then, the learner in the LMS can use the
LO and submit it by sending an attempt of the problem
solution to the EE. Based on the received feedback the learner
may repeat the process. In the end, the LMS sends a report of
the LO usage data back to the repository. This DRI extension
will be, in our view, the basis for a next generation of LMS
with the capability to adjust the order of presentation of the
programming exercises in accordance with the needs of a
particular student.

B. Learning object repository
The repository of specialized LO of EduJudge is named

crimsonHex. It was developed as part of the EduJudge project
to act as a programming problem repository service to the EE
and the LMS. This subsection highlights the architecture of
crimsonHex and its relation to the programming problem
definition presented in the previous section. Details on the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2359

implementation of crimsonHex can be found elsewhere [24].
 The architecture of crimsonHex repository is divided in

three main components:

Core, to expose the main features of the repository, both to

external services, such as the LMS and the EE, and to internal
components - the Web Manager and the Importer;

Web Manager, to allow the creation, revision,
uploading/downloading of LO and related metadata, enforcing
compliance with controlled vocabularies;

Importer, to populate the repository with existing legacy
repositories.

Searching LO in the repository is based on queries on their
XML manifests. Since manifests are XML documents with
complex schemata, particular attention was paid to databases
systems with XML support: XML enabled relational databases
and Native XML Databases (NXD), such as eXist and Sedna.

XML enabled relational databases are traditional databases
with XML import/export features. They do not store internally
data in XML format hence they do not support querying using
XQuery. Since queries in this standard are a DRI
recommendation this type of storage is not a valid option. In
contrast, NXD uses the XML document as fundamental unit
of (logical) storage, making it more suitable for data schemata
difficult to fit in the relational model. Finally, eXist [25] NXD
was chosen since it supports all the required XML standards
and it has a strong user community.

The crimsonHex is a repository of specialized learning
objects. To support this multi typed content the repository
must have a flexible LO validation feature. The eXist NXD
supports implicit validation on insertion of XML documents
in the database but this feature could not be used for several
reasons: LO are not XML documents (are ZIP files containing
an XML manifest); manifest validation may involve many
XSD files that are not efficiently handled by eXist; and
manifest validation may combine XSD and Schematron
validation and this last is not fully supported by eXist.

C. Evaluation engine
The evaluation engine of the EduJudge project is an

improvement and optimization of the Online Judge evaluation
engine [26]. To process an evaluation request the engine
receives a program in source code and a programming
problem reference. This reference is an URL that is used for
downloading the LO from the repository. The metadata from
the EJ MD schema is used for identifying the relevant assets
in the LO, in particular test files, valorizations and feedback.

The evaluation engine has three main components:

Submission handler, responsible for receiving evaluations

requests from different sources, (web services, web forms,
email messages) and feeding them to the judge daemon's
queue; it returns a ticket that is used by the service client,
typically an LMS, to retrieve the evaluation report;

Judge daemon, processes a queue of evaluation requests

and, for each request, fetches the programming problem
definition, compiles the submitted source and executes it
against the provided test cases; it is also responsible for
grading and correcting using the metadata provided by the
LO;

Web front-end, for configuring the service and submitting
programs to test and debug the evaluator.

All components use a shared Structured Query Language
(SQL) database as primary means of communication among
them.

The new evaluation engine is planned to support several
evaluation models including, among others: 1) single input-
output test files; 2) multiple input-output test files; 3)
interactive server problems and 4) interactive user problems.
The first two models overlap the evaluation model underlying
the proposed definition of programming problems as LO.
Moreover, all the problems in the UVA Online Judge
correspond to the first model. The second model is very
important from a pedagogical point-of-view since it allows
better grading and feedback. Part of the effort of populating
the EduJudge repository was the automatic conversion
between these two models. The last two models are not yet
covered by the definition but they are seldom used in
eLearning and they are absent from the UVA collection of
programming problems.

D. Learning management system
Moodle [27] is the reference LMS selected for the

EduJudge system. The integration of Moodle in the EduJudge
network is achieved through a set of plugins and modules.
These include a user interface for configuration of remote
services (LOR and EE) and to select competitive learning
strategies implemented locally that complement the services
provided by the evaluation engine. Moodle provides several
extension mechanisms, two of which were used in EduJudge
to implement these central components:

 Activity Module, an evolution of a contest-driven learning
activity module (QUESTOURnament) [26] that incorporates
competitive and collaborative contests involving both
programming problems and general purpose questions;
 Question-Type plugin, managing question-types for
remote evaluation (provided by an EE) and remote storage (in
a LOR). With this plugin Moodle is be able to delegate to
external services the evaluation of some kinds of exercises.

 The Question-Type plugin provides also a centralized
questionnaires management system for the
QUESTOURnament module. Each challenge can be defined
as a complete questionnaire made up of a set of questions
from the database. The plug-in was implemented on top of the
Question Engine and the Question Bank of Moodle.

The Question-Type plug-in interacts with the repository in
order populate the Question Bank and uses both general
metadata provided by the LOM schema, such as name and

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:10, 2009

2360

author, and also specific metadata provided by the EJ MD
schema, such as problem descriptions and source code
skeletons.

V. CONCLUSION
This paper presents a definition of programming problems

as learning objects. The main contribution of this work is the
extension of an IMS standard to the particular requirements of
a specialized domain - the automatic evaluation of
programming problems. The described approach can be
adapted to other learning domains, in particular those with
other forms of non-trivial automatic evaluation.

The definition of programming problems as learning
objects is framed by an evaluation model that allows us to
assign specialized roles to different assets. Based on this
model a scope for the new metadata, and how it interplays
with existing specifications and guidelines, was defined. For
this new application profile a data model for the metadata that
characterizes assets of LO containing programming problems
was defined.

The result of this research work is being used in EduJudge
project to promote interoperability among its services. The
experience with EduJudge is presented as a case study of the
applicability of the proposed definition. A short description of
the project and of the services that are most affected by this
definition was included

In its current status the EduJudge Metadata (EJ MD) is
available for test and download [28]. The future work includes
the adaptation of the schema to support new evaluation
models, for instance, programming problems where the
evaluator aggregates programs submitted by two or more
learners.

ACKNOWLEDGMENT
This work is part of the project entitled “Integrating Online

Judge into effective e-learning”, with project number 135221-
LLP-1-2007-1-ES-KA3-KA3MP. This project has been
funded with support from the European Commission. This
communication reflects the views only of the authors, and the
Commission cannot be held responsible for any use which
may be made of the information contained therein.

REFERENCES
[1] Dagger, D., O'Connor, A., Lawless, S., Walsh, E., Wade, V.: Service

Oriented eLearning Platforms: From Monolithic Systems to Flexible
Services (2007)

[2] Bryden, A.: Open and Global Standards for Achieving an Inclusive
Information Society.

[3] IMS Global Learning Consortium. URL: http://www.imsglobal.org
[4] IEEE Learning Technology Standards Committee. URL:

http://ieeeltsc.org
[5] ISO/IEC- International Organization for Standardization. URL:

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
[6] Friesen, N.: Interoperability and Learning Objects: An Overview of E-

Learning Standardization". Interdisciplinary Journal of Knowledge and
Learning Objects. 2005.

[7] IMS-CP – IMS Content Packaging, Information Model, Best Practice
and Implementation Guide, Version 1.1.3 Final Specification IMS

Global Learning Consortium Inc., URL:
http://www.imsglobal.org/content/packaging.

[8] IMS-Metadata - IMS MetaData. Information Model, Best Practice and
Implementation Guide, Version 1.2.1 Final Specification IMS Global
Learning Consortium Inc., URL: http://www.imsglobal.org/metadata.

[9] IMS-QTI - IMS Question and Test Interoperability. Information Model,
Best Practice and Implementation Guide, Version 1.2.1 Final
Specification IMS Global Learning Consortium Inc., URL:
http://www.imsglobal.org/question/index.html.

[10] IMS DRI - IMS Digital Repositories Interoperability - Core Functions
Information Model, URL:
http://www.imsglobal.org/digitalrepositories/driv1p0/imsdri_infov1p0.ht
ml.

[11] Simon, B., Massart, D., van Assche, F., Ternier, S., Duval, E., Brantner,
S., Olmedilla, D., & Miklos, Z. (2005). A Simple Query Interface for
Interoperable Learning Repositories. In Proceedings of the WWW 2005
Conference, retrieved March 16, 2006 from http://nm.wu-wien.ac.at/e-
learning/interoperability/www2005-workshop-sqi-2005-04-14.pdf

[12] Godby, C.J.: What Do Application Profiles Reveal about the Learning
Object Metadata Standard? Ariadne Article in eLearning Standards,
2004.

[13] IMS Application Profile Guidelines Overview, Part 1 - Management
Overview, Version 1.0. URL:
http://www.imsglobal.org/ap/apv1p0/imsap_oviewv1p0.html.

[14] ADL SCORM URL: http://www.adlnet.gov/Technologies/scorm
[15] IMS Common Cartridge Profile, Version 1.0 Final Specification. URL:

http://www.imsglobal.org/cc/ccv1p0/imscc_profilev1p0.html
[16] Clark, J, Murata, M.: RELAX NG Specification, OASIS Committee

Specification, December 2001, http://relaxng.org/spec-20011203.html
[17] Clark, J.: TREX - Tree Regular Expressions for XML. Thai Open

Source Software Center, 2001, http://www.thaiopensource.com/trex/.
[18] Murata, M.: RELAX (Regular Language description for XML).

INSTAC (Information Technology Research and Standardization
Center), 2001, http://www.xml.gr.jp/relax/.

[19] Moller, A.: Document Structure Description 2.0, BRICS, 2002,
http://www.brics.dk/DSD/dsd2.html.

[20] The Schematron, An XML Structure Validation Language using Patterns
in Trees, http://www.ascc.net/xml/resource/schematron/schematron.html.

[21] EduJudge project – Integrating On-line Judge into Effective E-learning.
URL: http://www.edujudge.eu

[22] ACM ICPC – International Collegiate Programming Contest. URL:
http://icpc.baylor.edu/icpc/

[23] Krafzig, D., Banke, K., Slama, D. Enterprise SOA: Service-Oriented
Architecture Best Practices. 1.ed. Estados Unidos da América: Prentice
Hall, 2004. ISBN 0131465759

[24] Leal, J.P., Queirós, R.: CrimsonHex: a Service Oriented Repository of
Specialised Learning Objects. In: ICEIS 2009: 11th International
Conference on Enterprise Information Systems, Milan (2009)

[25] Meier, W.: eXist: An Open Source Native XML Database. In: NODe
2002 Web and Database-Related Workshops, (2002)

[26] Regueras, L.M., Verdú, E., Castro, J.P., Pérez, M.A., Verdú, M.J.Design
of a Distributed and Asynchronous System for Remote Evaluation of
Students’ Submissions in Competitive E-learning. In: ICEE 2008:
International Conference on Engineering Education, Budapest (2008).

[27] Cole, J., Foster, H.: Using Moodle - Teaching with the Popular Open
Source Course Management System, O'Reilly – Community Press.

[28] EduJudge MetaData (EJ MD) specification (version 2.0). URL:
http://mooshak.dcc.fc.up.pt/~edujudge/schemaDoc/examples/ejmd/ejmd
_v2.xsd

