
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1086

Abstract—In general, class complexity is measured based on any
one of these factors such as Line of Codes (LOC), Functional points

(FP), Number of Methods (NOM), Number of Attributes (NOA) and

so on. There are several new techniques, methods and metrics with

the different factors that are to be developed by the researchers for

calculating the complexity of the class in Object Oriented (OO)

software. Earlier, Arockiam et.al has proposed a new complexity

measure namely Extended Weighted Class Complexity (EWCC)

which is an extension of Weighted Class Complexity which is

proposed by Mishra et.al. EWCC is the sum of cognitive weights of

attributes and methods of the class and that of the classes derived. In

EWCC, a cognitive weight of each attribute is considered to be 1.

The main problem in EWCC metric is that, every attribute holds the

same value but in general, cognitive load in understanding the

different types of attributes cannot be the same. So here, we are

proposing a new metric namely Attribute Weighted Class Complexity

(AWCC). In AWCC, the cognitive weights have to be assigned for

the attributes which are derived from the effort needed to understand

their data types. The proposed metric has been proved to be a better

measure of complexity of class with attributes through the case

studies and experiments.

Keywords—Software Complexity, Attribute Weighted Class
Complexity, Weighted Class Complexity, Data Type

I. INTRODUCTION

HE term software complexity refers to the difficulty to

understand, change and maintain the software. Software

complexity deals with the Psychological complexity of the

programs [7]. Software metrics play a vital role in the software

industry to assure the quality of the software. Several software

Industries have moved to object oriented paradigm in order to

increase their capability through reusability function offered

by OOP. The use of OOP has increased the complexity [5].

So, there is a need for introducing new complexity measures.

The complexity reflects the cognitive load in programming

and hence cognitive complexity plays a vital role in measuring

the complexity. A new metric namely Cognitive Weighted

Class Complexity (CWCC) is proposed for an OO system

which is an extension of the Extended Weighted Class

Complexity (EWCC) proposed by Arockiam et.al [1]. AWCC

includes the cognitive complexity due to Data Type (DT) of

the attributes and is a better indicator of complexity of OO

Dr. L. Arockiam, Associate Professor, Department of Computer Science,

St. Joseph’s College (Autonomous), Tiruchirappalli – 620 002, Tamil Nadu,
India(Mobile: 94439 05333; e-mail: larockiam@yahoo.co.in).

A. Aloysius, Assistant Professor, Department of Computer Science, St.

Joseph’s College (Autonomous), Tiruchirappalli – 620 002, Tamil Nadu,
India(Mobile: 9443399227; e-mail: aloysius1972@gmail.com).

systems.

A DT in a programming language is a set of data with

values having predefined characteristics. Three DT’s are

commonly identified such as the Primary, derived and user

defined data types. Integer, float, char, etc., are classified as

Primary Data Types (PDT). Array is known as Derived Data

Types (DDT). Structure, union, class, etc., are classified as

User Defined Data Types (UDDT). It is proven that an UDDT

may be represented as the combination of PDT and DDT.

Cognitive complexity of computer program can be studied

with respect to many cognitive processes. One of the

important cognitive processes involved in programming is

program comprehension. In this paper, a new metric AWCC is

defined and validated against comprehension process.

II. LITERATURE REVIEW

Several metrics have been proposed for OO systems by

researchers. A metric suite proposed by Chidamber and

Kemerer (C&K) is one of the best known suites of OO

metrics. The six metrics proposed by CK are Weighted

Method per Class (WMC), Depth of Inheritance Tree (DIT),

Response For Class(RFC), Number Of Children(NOC), Lack

of Cohesion of Methods(LOCM) and Coupling Between

Objects(CBO)[4,9]. A metric for Class Inheritance Hierarchy

[6] has been proposed by Rajnish K, and Bhattacherjee V. In

2008, Sanjay Mishra and Ibharam Akman have proposed

object oriented complexity measure called weighted class

complexity [3], which is calculated by the method complexity

and the Number of Attributes in the class.

Classes are the building blocks of any object oriented

program. Class is an encapsulation of attributes and methods.

The attributes are used for storing and manipulating the data in

the program. Attributes are one of the major factors which will

affect the complexity of the class and it is clear that the use of

different data type of attributes will increases the complexity

of the programs. There is no Specific measure exists to

calculate the complexity arising due to inheritance. Hence, a

new metric [AWCC] has been proposed for object oriented

system with inheritance.

The proposed metric AWCC is explained in section 3, the

experimentation of a new metric and the case study is

described in section 4, a comparative study of AWCC with

WCC, WMC, EWCC and the metric calculated using a tool in

section 5 and Section 6 presents the conclusion and future

work.

Attribute Weighted Class Complexity: A New

Metric for Measuring Cognitive Complexity of

OO Systems
1Dr. L.Arockiam, 2A.Aloysius,

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1087

III. PROPOSED METRIC: ATTRIBUTE WEIGHTED CLASS

COMPLEXITY (AWCC)

AWCC is used to calculate the complexity of the class

using the method complexity, attribute complexity of the

class, and the inherited members’ complexity.

If there are n attributes, m methods in a class and the class

is derived from m1 number of classes then, the AWCC of that

class can be calculated using the Equation (1).

AWCC � � AC�
�

��	

 � MC�

��	

 � ICC�

�

��	
 �1�

Where

 AC is the attribute complexity,

 MC is the method complexity,

 ICC is the inherited class complexity.

Attribute complexity (AC) is used to calculate the

complexity of the attribute in the class, by using the

Equation (2).

�� � ���� � ���
 ���� � ���
 ����� � ��� �2�

 Where

 PDT is the number of Primary Data Type attributes

 DDT is the number of Derived Data Type attributes

 UDDT is the number of User Defined Data Type

attributes

 Wb is the Cognitive Weights of the PDT attributes

 Wd is the Cognitive Weights of the DDT attributes

 Wu is the Cognitive Weights of the UDDT attributes

The weighting factor of attribute is based on the

classification of cognitive phenomenon as described by

Wang[11], is as follows

 Weights

Sub-Conscious Cognitive Attribute

(PDT)
1

Meta Cognitive Attribute (DDT) 2

Higher Cognitive Attribute (UDDT) 3

 The Method Complexity (MC) is calculated by assigning

the cognitive weights proposed by Wang et.al, to the control

structures in the method. Wang[7] has proposed cognitive

weights 1, 2, 3, and 2 to the sequence, branch, iteration and

call structures respectively. J.Charles et. al [2] has also

validated the weights proposed by Wang. ICC can be

calculated using the Equation (3)

 ICC � �DIT � C#� � ∑ RMC�&��	
 RN(�3�
 Where

 s is the number of inherited methods

 RNa is the total number of Reused

 attributes

 RMC is the Reused Method Complexity

 IC is the Inherited Complexity

 DIT is the Depth of Inheritance Tree

 CL is the Cognitive Load of Lth level

CL is the cognitive Load of Lth level which will differ from

person to person according to the cognitive maturity level [5].

Here, the value of CL is assumed to be 1 for simplicity.

IV. EXPERIMENTATION AND A CASE STUDY

The proposed complexity metric given by equation 1 is

evaluated with the following three programs namely

PROGRAM 1, PROGRAM 2 and PROGRAM 3.

Program 1(with Primary data type attributes):

#include <iostream>

using namespace std;

class BaseClass {

protected:

 int i, j;

public:

 void set(int a, int b) {

 i = a;

 j = b;

 }

 void show() {

 cout << i << " " << j << endl;

 }

};

// i and j inherited as protected.

class DerivedClass1 : public BaseClass {

 int k;

public:

 void setk() {

 k = i*j;

 }

 void showk() {

 cout << k << endl;

 }

};

class DerivedClass2 : public DerivedClass1 {

 int m; // i and j inherited indirectly through

DerivedClass1.

public:

 void setm() {

 m = i-j;

 }

 void showm() {

 cout << m << endl;

 }

};

int main()

{

 DerivedClass1 object1;

 DerivedClass2 object2;

 object1.set(2, 3);

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1088

 object1.show();

 object1.setk();

 object1.showk();

 object2.set(3, 4);

 object2.show();

 object2.setk();

 object2.setm();

 object2.showk();

 object2.showm();

 return 0;

}

Fig. 1 An example of an object oriented system with Primary data

type of attributes

BaseClass

AWCC*+ � � AC�
�

��	

 � MC�

��	

 � ICC�

	

��	

AC= (2*1)+(0*2)+(0*3)= 2

MC=2

ICC=0

AWCC= 2+2+0 = 4

DerivedClass1

AWCC,+	 � � AC�
�

��	

 � MC�

��	

 � ICC�

	

��	

AC= (1*1)+(0*2)+(0*3)= 1

MC=2

ICC=3

AWCC= 1+2+3= 6

DerivedClass2

AWCC,+- � � AC�
�

��	

 � MC�

��	

 � ICC�

	

��	

AC= (1*1)+(0*2)+(0*3)= 1

MC=2

ICC=3

AWCC= 1+2+3= 6

Total Attribute Weighted Class Complexity of the above

object oriented code is given by;

AWCC= AWCCbc + AWCCdc1 + AWCCdc2

AWCC= 4+6+6 =16
Program 2(with derived data type attributes):

#include <iostream>

using namespace std;

class BaseClass {

protected:

 int i, j;

 int a[10],b[10];

public:

 void get() {
 cout << “Enter the first array elements” << endl;

 for(i=0;i<10;i++) {

 cout << “Element “ << i+1 << “:” ;

 cin>>a[i];

 }

 cout << “Enter the second array elements” << endl;

 for(j=0;j<10;i++) {

 cout << “Element “ << j+1 << “:” ;

 cin>>b[j];

 }

 }

 void show() {

 cout << “First array elements:” << endl;

 for(i=0;i<10;i++) {

 cout << “Element “ << i+1 << “:” << a[i];

 }

 cout << “Second array elements:” << endl;

 for(j=0;j<10;i++) {

 cout << “Element “ << j+1 << “:” << b[j];

 }

 }

};

// i and j inherited as protected.

class DerivedClass1 : public BaseClass {

 int k;

 int c[10];

public:

 void setk() {

 for(k=0;k<10;k++) {

 c[k]=a[k]*b[k];

 }

 }

 void showk() {

 cout << “Result1:” << endl;

 for(k=0;k<10;k++) {

 cout << “Element “ << k+1 << “:” << c[k];

 }

 }

};

class DerivedClass2 : public DerivedClass1 {

 int m; // i and j inherited indirectly through DerivedC

lass1.

 int d[10];

public:

 void setm() {

 for(m=0;m<10;m++) {

 d[m]=a[m]-b[m];

 }

 }

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1089

 void showm() {

 cout << “Result2:” << endl;

 for(m=0;m<10;m++) {

 cout << “Element “ << m+1 << “:” << d[m];

 }

 }

};

int main()

{

 DerivedClass1 object1;

 DerivedClass2 object2;

 object1.set();

 object1.show();

 object1.setk();

 object1.showk();

 object2.set();

 object2.show();

 object2.setk();

 object2.setm();

 object2.showk();

 object2.showm();

 return 0;

}

Fig. 2 An example of an object oriented system with derived data

type of attributes

BaseClass

AWCC*+ � � AC�
�

��	

 � MC�

��	

 � ICC�

	

��	

AC= (2*1)+(2*2)+(0*3)= 2 + 4 = 6

MC=6

ICC=0

AWCC= 6+6+0 = 12

DerivedClass1

AWCC,+	 � � AC�
�

��	

 � MC�

��	

 � ICC�

	

��	

AC= (1*1)+(1*2)+(0*3)= 3

MC=6

ICC=3

AWCC= 3+6+3= 12

DerivedClass2

AWCC,+- � � AC�
�

��	

 � MC�

��	

 � ICC�

	

��	

AC= (1*1)+(1*2)+(0*3)= 3

MC=6

ICC=3

AWCC= 3+6+3= 12

Total Attribute Weighted Class Complexity of the above

object oriented code is given by;

AWCC= AWCCbc + AWCCdc1 + AWCCdc2

AWCC= 12+12+12 =36

Program 3(with user defined data type attribute):

#include <iostream>

using namespace std;

class BaseClass {

protected:

 int i, j;

 int a[10],b[10];

 Struct sample {

 char name[20];

 int dno;

};

public:
 void get() {
 cout << “Enter the first array elements” << endl;

 for(i=0;i<10;i++) {

 cout << “Element “ << i+1 << “:” ;

 cin>>a[i];

 }

 cout << “Enter the second array elements” << endl;

 for(j=0;j<10;i++) {

 cout << “Element “ << j+1 << “:” ;

 cin>>b[j];

 }

 }

 void show() {

 cout << “First array elements:” << endl;

 for(i=0;i<10;i++) {

 cout << “Element “ << i+1 << “:” << a[i];

 }

 cout << “Second array elements:” << endl;

 for(j=0;j<10;i++) {

 cout << “Element “ << j+1 << “:” << b[j];

 }

 }

};

// i and j inherited as protected.

class DerivedClass1 : public BaseClass {

 int k;

 int c[10];

public:

 void setk() {

 for(k=0;k<10;k++) {

 c[k]=a[k]*b[k];

 }

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1090

 }

 void showk() {

 cout << “Result1:” << endl;

 for(k=0;k<10;k++) {

 cout << “Element “ << k+1 << “:” << c[k];

 }

 }

};

class DerivedClass2 : public DerivedClass1 {

 int m; // i and j inherited indirectly through DerivedC

lass1.

 int d[10];

public:

 void setm() {

 for(m=0;m<10;m++) {

 d[m]=a[m]-b[m];

 }

 }

 void showm() {

 cout << “Result2:” << endl;

 for(m=0;m<10;m++) {

 cout << “Element “ << m+1 << “:” << d[m];

 }

 }

};

void main()

{

 sample s1;

 cout << “Enter the name of the student”;

 cin >> s1.name;

 cout << “Enter the department number of the student”;

 cin >> s1.dno;

 DerivedClass1 object1;

 DerivedClass2 object2;

 object1.set();

 cout << “Name: \t“ << s1.name << endl << “Dno: \t” <<

s1.dno << endl;

 object1.show();

 object1.setk();

 object1.showk();

 object2.set();

 object2.show();

 object2.setk();

 object2.setm();

 object2.showk();

 object2.showm();

 return 0;

}

Fig. 3 An example of an object oriented system with user defined

data type of attributes

BaseClass

AWCC*+ � � AC�
�

��	

 � MC�

��	

 � ICC�

	

��	

AC= (2*1)+(2*2)+(2*3)= 2 + 4 + 6 = 12

MC=6

ICC=0

AWCC= 12+6+0 = 18

DerivedClass1

AWCC,+	 � � AC�
�

��	

 � MC�

��	

 � ICC�

	

��	

AC= (1*1)+(1*2)+(0*3)= 3

MC=6

ICC=3

AWCC= 3+6+3= 12

DerivedClass2

AWCC,+- � � AC�
�

��	

 � MC�

��	

 � ICC�

	

��	

AC= (1*1)+(1*2)+(0*3)= 3

MC=6

ICC=3

AWCC= 3+6+3= 12

Total Attribute Weighted Class Complexity of the above

object oriented code is given by;

AWCC= AWCCbc + AWCCdc1 + AWCCdc2

AWCC= 18+12+12 =42

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:5, No:10, 2011

1091

V. COMPARISON WITH OTHER MEASURES

A comparative study has been made with most widely

accepted CK metric suite [9] and found that none of the CK

metrics provides the total complexity of the class by

considering the complexity due to internal architecture of the

code (methods and attributes). This differentiates our metric

from the CK metrics. Mishra et.al suggested that one can

calculate the complexity of the class by using cognitive

weights of the methods and attributes. In our earlier paper [1],

we introduced a method for measuring the complexity of a

class with the inheritance. The current metric is one step ahead

of EWCC. It also considers the complexity that arises due to

the data type of attributes. Another advantage of our metric is

that, it takes cognitive weights into consideration. In the

following Table III, a comparison has been demonstrated with

EWCC and AWCC.

We calculated the weight of each class by calculating

Attribute Complexity (AC), Method Complexity (MC), and

Inherited Class Complexity (ICC) which is better indicator

than the EWCC. The weight of each method is calculated by

using cognitive weights and the approach suggested by

Chidamber et al. We found that the resulting value of AWCC

is higher than the EWCC. This is because, in EWCC, the

weight of each attribute is assumed to be one. However,

including cognitive weights for calculation of the attribute

complexity (AWCC) is more realistic because it provides for

the complexity of the internal architecture of attribute. A tool

was developed and used to measure EWCC and AWCC of

three different OO programs. The results are tabulated in

Table III.
TABLE III

COMPLEXITY VALUES FOR DIFFERENT CLASSES FOR THE
CHOSEN METRICS

The WMC, WCC, EWCC and AWCC values were

compared and found that AWCC measure was larger.

According to Mishra et.al, WCC is a better indicator of

complexity than WMC because it shows a higher value of

complexity for a given class. Arockiam et.al has proven that,

EWCC has a greater complexity than WCC because it shows

an accurate value of complexity for a given class with

inheritance. From the table 3, it is observed that AWCC value

is larger than EWCC value which concludes that AWCC is a

better indicator of complexity of the classes with inheritance

because of the consideration of attribute complexity.

VI. CONCLUSION AND FUTURE WORK

An Attribute Weighted Class Complexity (AWCC) metric

for measuring the class level complexity has been formulated.

The complexity of the class includes the internal complexity

of the class and the inherited classes’ complexity. AWCC

includes the cognitive complexity due to internal architecture

of the attributes, methods and the inherited complexity.

AWCC has proven that, complexity of the class getting

affected, which is based on the cognitive weights of the

different attributes. The metric is evaluated through a case

study and a comparative study, and proved to be a better

indicator of the class level complexity. A tool was developed

to calculate the AWCC value and to compare it with other

metrics. The proposed metric focuses only on the data type.

Further, it may be evaluated with the detailed data types

available in the 3 categories like PDT, DDT, and UDDT.

Newer metrics may also be proposed and validated for

assessing the cognitive complexity of other object oriented

features.

[1] Arockiam. L, Aloysius. A,Charles selvaraj. J “Extended Weighted Class

Complexity: A new measure of software complexity for objected

oriented systems”, Proceedings of International Conference on
Semantic E-business and Enterprise computing (SEEC), 2009, pp. 77-

80.

[2] Charles Selvaraj. J, Aloysius. A, and Arockiam. L , “A Comparision of
Proposed Cognitive weights for control structures and object oriented

programming languages”, Proceedings of International Conference on

Advanced Computing (ICAC09), 2009, pp. 380-385.
[3] Sanjay Misra and k. Ibrahim Akman, “Weighted Class Complexity: A

Measure of Complexity for Object Oriented System,” Journal of

Information Science and Engineering 24, 2008, pp. 1689-1708.
[4] Mc Quillan. J. A and Power. J. F, “On the application of software

metrics to UML model,” Lecture Notes in Computer Science, Vol. 4364,

2007, pp. 217-226.
[5] Ranjeeth. S, Ramu Naidoo “An Investigation Into The Relationship

Between The Level Of Cognitive Maturity And The Types Of Errors

Made By Students In A Computer Programming” College Teaching
Methods & Style Journal-Second Quarter, 2007, pp. 31-40.

[6] Rajnish. K, Bhattacherjee. V,” A New Metric for Class Inheritance

Hierarchy: An Illustration”, proceedings of National Conference on
Emerging Principles and Practices of Computer Science & Information

Technology”, GNDEC, Ludhiana, 2006, pp. 321-325.

[7] Wang. Y and Shao. J, “A new measure of software complexity based on
cognitive Weights.” IEEE Canadian Journal of Electrical and Computer

Engineering, 2003, pp. 69-74.

[8] Basili. VR, Briand. L. C, Melo. WL, “A validation of object oriented
design metrics as quality indicators”, Technical report,University of

Maryland, Department of Computer Science,1995, pp. 1-24.

[9] Chidamber. S. R and Kemerer. C. F, “A Metric Suite for Object-
Oriented Design”, IEEE Trans. on Software Engineering, 1994, 476-

493.
[10] Harrison. R, Counsell. SJ, Nithi. RV, “An evaluation of the MOOD set

of Object-oriented software metrics”, IEEE Trans.On Software

Engineering, 1998, pp. 491- 496.
[11] Wang. Y, “On Cognitive Informatics.” IEEE International Conference

on Cognitive Informatics, 2002, pp. 69-74.

Metrics

Programs

WMC WCC EWCC AWCC

1 6 10 16 16

2 6 26 30 36

3 6 27 29 42

REFERENCES

