
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2544

Abstract—It is a challenge to provide a wide range of queries to

database query systems for small mobile devices, such as the PDAs
and cell phones. Currently, due to the physical and resource
limitations of these devices, most reported database querying systems
developed for them are only offering a small set of pre-determined
queries for users to possibly pose. The above can be resolved by
allowing free-form queries to be entered on the devices. Hence, a
query language that does not restrict the combination of query terms
entered by users is proposed. This paper presents the free-form query
language and the method used in translating free-form queries to
their equivalent SQL statements.

Keywords—Cell phone, database query language, free-form
queries, unplanned queries.

I. INTRODUCTION
NABLING querying of information from remote
databases anytime anywhere has become increasingly

important for today’s highly mobile society. However, for
developers to build a database querying system for small
mobile devices that can support a large range of possible
queries is rather a challenge. Since these devices such as the
Personal Digital Assistants (PDAs), palmtops and cell phones
are known to be limited in terms of their physical, resource
and networking capabilities [1], majority of the database
querying systems developed for them are solely dedicated to
their intended applications. Hence, possible queries that can
be formulated on these systems are mostly being pre-
determined by the application developers as sets of options
provided on a menu such as the systems presented in [2],[3]
and [4]. However, such a measure tends to limit the usage of
these systems. It leaves no room for users to issue other
queries than those given. Furthermore, this approach of
accepting only precise queries also hinders such systems from
being easily adopted for other databases or applications.

Therefore, a database querying system for mobile devices
should be able to allow users to pose any query that they want.
And, this has to be done using as minimal resources as
possible. Thus, in this paper, a query language which is free-
formed will be introduced and explained. Using the language,
users can combine any database schema term, i.e., relation

R. Ahmad is with the department of Computer and Information Sciences,

Universiti Teknologi PETRONAS (UTP), Malaysia (phone: 605-3687477;
fax: 605-3656180; e-mail: rohiza_ahmad@ petronas.com.my).

S. Abdul-Kareem is attached to the Faculty of Computer Science and
Information Technology, University of Malaya, Malaysia (e-mail:
sameem@um.edu.my).

name and/or attribute name, of their choice in any particular
order to form queries. Hence, no pre-determined queries will
need to be provided by the developers.

The remainder of this paper is organized as follows. Section
2 highlights some related works, Section 3 introduces the free-
form query language, Section 4 presents the translation
process of converting free-form queries to relevant SQL
statements, and Section 5 provides conclusions.

II. RELATED WORK
Database querying has been the focus of many database

researchers for a long time. However, the capability of
transacting queries while on the move using small mobile
devices has only recently gained interest from the database
community. Currently, the above interest is mainly targeted to
mobile devices of considerable resources such as the PDAs
and the palmtops. Even for these devices, the works reported
are mostly application specific. For example, Hung and Zhang
[2] presented a telemedicine system which can be used to
access patient general information and medical conditions
such as blood pressure (BP) reading and ECG diagramming
on PDAs. Meanwhile, Koyama et al. [3] developed a system
for education application. Their system can be accessed on
PDAs by students who want to perform lesson’s unit test.
Boonsrimuang, Kobayashi and Paungma [4], on the other
hand, presented a system for transportation application, also
on PDAs. Even though the above applications and others are
undeniably important, they are very limited in terms of their
functionalities. In other words, their usefulness is confined to
a single domain of application, and even within that particular
domain, they are restricted to the functions (queries) that have
been pre-defined by their developers. Thus, there is no
possibility for unplanned queries to be formulated on such
systems.

By using precise input query method as the above,
unplanned queries are rather hard to implement since they
require almost all combinations of possible query terms to be
thought of beforehand by the developers. These terms will
need to be presented on the system interface for the users to
choose. Especially for mobile devices, this concept would be
too expensive to implement due to the limitations mentioned
earlier. Therefore, imprecise queries which freely combined
any schema term must be allowed as an alternative. Imprecise
query has been the subject of many researchers. It has been
widely used especially in information retrieval [5][6].
However, for database, imprecise query was only discussed in
some keyword-based schema-less related query systems such

Free-Form Query for Cell Phones
R. Ahmad, and S. Abdul-Kareem

E

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2545

as those of Agrawal, Chaudhuri and Das [7] and Calado et al.
[8]. Both works allow users to enter queries using content as
search terms, e.g., John. Furthermore, these systems were
developed for usage on conventional devices which have
fixed network connection. As for small mobile devices, to the
authors’ knowledge, no such querying concept is yet to be
found.

Furthermore, the word “unplanned” in database querying is
rather subjective. This is because, like any other computer-
related operations, there is always a limit to the kind of
operations which can be executed. For database, this range of
operations depends on the level of expressiveness that a query
language exhibits [9]. Chandra [10] mentioned in his work
that a language can support relational level of expressiveness
at the lowest level to computable expressiveness at the highest
end; and these languages can be of different forms. For
example SQL is a textual language which exhibits at least
relational level of expressiveness (it supports the five basic
operations of Selection, Projection, Join, Union and Set
Difference) and Query-By-Example is a graphical language
which is also capable of supporting relational expressiveness.
For mobile devices, Polyviou, Samaras and Evripidou [11]
discussed expressive queries in their work which implement
directory-like interface for query formulation. However, their
method is only suitable for devices that have pen input
mechanism. In other words, for users who have cell phones
with only the basic input features such as keypad and function
keys, the method of expanding and contracting several sub-
nodes in the directory will be tedious to carry out. Another
interesting option to be considered for inputs on cell phones
would be voice input. However, as being highlighted in [12]
and [13], this method has one major problem of voice
recognition which needs further extensive research.

With the above brief background of related works, the next
section will present the free-form query language proposed.

III. FREE-FORM QUERY LANGUAGE
The free-form query language proposed has the structure as

shown in Fig. 1. The structure denotes that the language
supports the relational level of query expressiveness. This is
resulted from an initial data collection exercise conducted to
45 non-expert database users. Non-expert here basically
means that the users have had an experience of interacting
with a database but still at a very minimal level. This is
necessary in order to develop a language as simple as possible
that can cater even the novice users. At the same time this
group of users was also selected so that they can return
meaningful results for the data collection purposes due to their
knowledge of what a database is all about. A test database was
described to the participants and they were asked to write
down at least 5 queries or information that they would want to
get from the database. 262 queries were received and from
that number, 42 queries (16%) were of the projection type, 86
queries (33%) of the selection type, 121 queries (46%) of the
join type, and 5 queries (2%) and 8 queries (3%) were of the

union and the set difference types respectively. Reference [14]
presents the detail of the above exercise and its results.

Relation

Attribute

Condition

TempRelation

Relation

Attribute

Condition

TempRelation

AND
OR

U
-

U
-

U
-

TempRelation

Fig. 1 Structure of free-form query language

(Note: {} denotes either/or, [] denotes optional)

The structure provided in Figure 1 shows, firstly, the terms

that can be used to form a query using the language are
schema-based terms, i.e., relation names and attribute names
of the intended database. The rationale behind this is due to
the limitations of cell phones as described earlier. Schema-
based terms imply that ambiguities and time needed for
matching query terms to the instances or content stored in the
database can be reduced. Hence, refinement of the queries
which require interactions between cell phones and the
database server can be minimized or eliminated altogether.
Secondly, the structure also shows that a query term can be
used on its own or combined with other terms in any way
preferred by users. In other word, this concept of free
combination is similar to those adopted by keyword-based
languages such as [7] and [8]. However, besides using content
as query terms, both [7] and [8] only allow equal comparison
as compared to the free-form language proposed which
provides avenue for constructing other types of comparison
such as larger than, smaller than etc.

Using the structure above, queries such as q1, q2, q3 and q4
below are all valid queries. Queries, q1 combines two
relations, while, q2 combines two attributes (not necessarily
from the same table). A query which combines a relation and
an attribute is also acceptable (see q3) and the order of the
terms in the query can be reversible as well. A query, q4,
which combines two conditions, is also allowable. (Note: For
the purpose of distinguishing between relation names and
attributes terms, in this paper the former are capitalized, while
the latter are not. In the actual setting, the language is case
insensitive)

q1: STUDENT SUBJECT
q2: SUBJECT.subjname STAFF.stafname
q3: SUBJECT STAFF.stafname
q4: STAFF.stafID=’e0001’AND SUBJECT.subjcrhr>2

Furthermore, the language also allows a union or a set

difference query to be implemented by including the
respective operator once, anywhere in the query. However,
the position of the set operator determines the components of
the query which needs to be manipulated. For example, a
query, q5, requests for students to be combined with staff who
teaches third year students. On the other hand, a query, q6,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2546

requests for third year students to be combined with staff.

q5: STUDENT.studname U STUDENT.studyear=3
 STAFF.stafname
q6: STUDENT.studname STUDENT.studyear=3 U
 STAFF.stafname

Besides the basic operations described above, the free-form

language can also be used to formulate complex operations
such as joining the results of a previous union operation with a
new relation. This is done by keeping the result of the
previous operation in a temporary relation, i.e., denoted as
TempRelation in Fig. 1. The stored relation can then be used
in a successive operation. Below is an example of such
operation where the name of all third year students and all
staff are combined and saved in a temporary relation called
TEMP1. Later, the content of TEMP1 is joined with the
SUBJECT relation to display the subject(s) that each
individual takes.

q7: STUDENT.studname STUDENT.studyear=3 U

 STAFF.stafname TEMP1
q8: TEMP1 SUBJECT

Hence, using the free-form language, any relational query

can be formulated without the need to provide precise inputs
and consequently, can minimize the number of query terms
required. Especially for queries which involve two distantly
related relations, no intermediate links shall be needed by the
free-form language. It is enough to provide a term for the
needed information only. For example, to query the venues in
which a staff gives lectures, it is sufficient to mention only
STAFF and VENUE in the free-form query; even though in
actual fact, the relations STAFF and VENUE might be related
via relations of SUBJECT and SESSION. Furthermore, there is
also no need for users to mention the conditions that hold any
relationship between any two relations. These relationships
are automatically determined by the system based on the
path(s) that connects them. Making intermediate links
transparent to users would greatly benefit users, since, as
stated earlier in the results from the initial data collection
exercise, the majority of queries posted by the participants are
of the join type.

Since queries in the free-form language are rather vague in
terms of specifying the attributes to be presented as outputs, a
survey was conducted to capture user expectation of different
types of query term when they are used on their own or
together with other terms. 13 different queries were presented
to 96 survey respondents who were asked to choose the output
that they expect from the queries. Table 1 shows the results of
the first five questions in the survey which were related to a
standalone term.

TABLE I

SINGLE TERM QUERIES AND THE OUTPUT SELECTED

Single term
query

Output selected % respondents
selecting

(1) Relation All attributes of
each record in the
relation

64.6

(2) Attribute The stated attribute
of each record in the
relation

90.6

(3) Condition
(primary key)

All attributes for all
matched records in
the tested relation

63.5

(4) Condition
(non-key)

All attributes for all
matched records in
the tested relation

57.3

(5) Condition
(string
matching)

All attributes, for all
records that contain
the string in the
attribute tested
(inexact match)

65.6

 As for multiple terms, Table II shows the output selected
by respondents.

TABLE II
MULTIPLE TERMS QUERIES AND THE OUTPUT SELECTED

Multiple terms
query

Output selected % respondents
selecting

(6) Relations Natural join of
all attributes of
all relations
according to
order in query

85.40%

(7) Relations +
attributes

Natural join of
all attributes if
term is a
relation, or the
stated attribute
if term is
attribute
according to
order in query

89.60%

(8) Relations +
conditions

Natural join of
all attributes of
all relations that
satisfy
conditions

53.10%

(9) Attributes +
conditions

All stated
attributes for
which natural
join of relations
satisfy
conditions

51.00%

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2547

(10) Conditions All attributes of
the relation in
the first
condition whose
records satisfy
all conditions

51.00%

(11) First term set
operator

Output of the
first term minus
output from
combination of
the rest of the
terms

78.10%

(12) Last term set
operator

Output of the
first term minus
output from
combination of
the rest of the
terms

70.80%

(13) Intermediate
term set operator

Output from
combination of
terms before
operator minus
output from
combination of
terms after
operator

79.20%

In summary, both of the above tables say that a relation

name in a query denotes that all attributes of the relation are to
be displayed as output unless an attribute of the relation also
exists in the query, in which case, only the specified attribute
will be displayed. Conditions alone in a query will display all
attributes of the relation mentioned in the first condition. This
relation is the one stated on the left hand side of the
comparison operator. For example, STUDENT.year=3
SUBJECT.name=’TAB1033’ will display all particulars of the
third year students who take TAB1033. This rule will be
overwritten if there are other query terms which are relation
name or attribute name exist in the same query. As for set
operation queries, all query terms on the left of the set
operator (U or -) will be considered as one query, and all
query terms on the right hand side will be another query.
However, if the set operator is the first or the last character in
the query composed by users, then, the first term will make up
the first query and the rests compose the second query.

IV. TRANSLATION TO SQL STATEMENTS
As the free-form language can be considered as high level,

an approach needs to be developed for converting or
translating the free-from queries into SQL statements. For
this, two database relations are used. One of these relations,
named as system$paths, stores five shortest-most paths
between every two relations in the database. Every time a
query that involves more than one relation is issued,
system$paths will be consulted for finding the in-between
relations of every adjacent pair of the relations mentioned in
the query. These in-between relations together with the query

relations are used as items to be included in the FROM clause
of the SQL query. The other system relation,
system$metainfo, contains information on each attribute of
each relation in the database. It is referred to when
formulating the WHERE clause of a join query. Tuple that
contains the primary keys of every pair of adjacent relations
identified in the FROM clause is searched in the
system$metainfo relation. The tuple found provides the
necessary attributes that linked the two relations and therefore
used for formulating a condition in the WHERE clause. Below
is the relation scheme of the system$paths relation and Table
III shows a sample content.

 system$paths(relation1, relation2, path)

TABLE III

SAMPLE CONTENT OF SYSTEM$PATHS RELATION
Relation1 Relation2 Path

9 4 3$8$4$

Each relation is given a number to identify them. The 9 in

the sample content above denotes relation number 9, the 4
denotes relation number 4, and 3$8$4$ denotes the path
between the two relations are relation number 3 followed by
relation number 8.

As for the system$metainfo relation, below is its relation
scheme followed by Table IV with some sample contents.

system$metainfo(columnName, columnType,

 primaryKey, foreignKey, relationName,
 baseRelationName, baseAttributeName)

TABLE IV
SAMPLE CONTENTS OF SYSTEM$METAINFO RELATION

Col.
name

Col.
type

P.K. F.K. Rel.
name

Base
rel.

name

Base
attr.

name
Code char(7) Y NUL

L
subjec
t

NUL
L

NUL
L

lecture
r

char(5) NUL
L

Y subjec
t

staff ID

Name char(30
)

NUL
L

NUL
L

subjec
t

NUL
L

NUL
L

The first sample says that the attribute code is a primary

key of the SUBJECT relation. The second sample denotes that
lecturer is a foreign key attribute in the SUBJECT relation. It
refers to the ID attribute in the STAFF relation. The third
sample on the other hand, is showing that name is an attribute
in the SUBJECT relation. It is neither a primary key nor a
foreign key attribute.

Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6 are flowcharts that
describe the translation process of a free form query to its
SQL statement. To demonstrate how the process works, let’s
translate the query below:

STAFF.name STUDENT.name SUBJECT

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2548

The query will be first checked for set operator as shown

in the flowchart of Fig. 2. Since it does not have any set
operator, the Evaluate expression module will be invoked.

Has set op?
Get left

expression
Evaluate

expression
Get right

expression
Evaluate

expression

union
compatible?

Y

Evaluate
expression

N
Formulate

SQL

Indicate
error

Execute
SQL

Return resultReturn result

End

Y

N

Begin Translation

Note: op = operation

Fig. 2 Flowchart for translation to SQL statement

Evaluate expression module as presented in Fig. 3 will

evaluate the type of every query term in the query. Both
STAFF.name and STUDENT.name are attributes and
therefore, they will be kept in the col array. Their relations
will also be stored in the tab array as well. As for the
SUBJECT relation, it will be kept in the tab array without any
attribute in the col array. After all terms have been evaluated,
the Form SELECT clause module of Fig. 4 will be invoked.

22

Is attribute?

Get a term

Store in col
array

Store tab in
tab array

Y

N

Store in
cond array

Begin Evaluate Expression

Not in col
array?

Y
Not in tab

array?

Is
condition? Not in cond

array?

Not in tab
array?

Store tab in
tab array

Not in tab
array?

Store tab in
tab array

N

N

N

Y

N

N

N

YY

Y

Y

Form
SELECT
clause

More term?
Y

N

Note: col = column

tab = table

cond = condition

End

Fig. 3 Flowchart for Evaluate expression module

At the Form SELECT clause module as shown in Fig. 4,
each relation in the tab array will be checked to see if it has
any attribute in the col array. If there is none, the whole
attributes of the relation will be included in the SELECT
clause, otherwise, the attributes in the col array will be
appended to the SELECT clause. For the sample query, both
STAFF.name and STUDENT.name will be included in the
SELECT clause. However, for SUBJECT, all of its attributes
will be appended to the SELECT clause.

33

any col in col
array?

Get a table
in tab array

List all cols
Y

N

List all
attributes

Begin Form SELECT clause

any cond in cond
array?

col array
empty?

N N

YY

Form FROM &
WHERE clauses

List all
attributes

More table?
NY

End

Note: col = column

tab = table

cond = condition

Fig. 4 Flowchart for Form SELECT clause module

After the formulation of the SELECT clause, the Form

FROM & WHERE clauses module as in Fig. 5 will be next
executed. To make things simple, let’s assume there is only
one path between the relations STAFF and STUDENT and one
path between STUDENT and SUBJECT. Hence, the FROM
clause will include all relations involved, either direct or
indirect, and the WHERE clause will have all links between
these relations.

44

One table in
tab array?

List tab in
FROM clause

Y

N

Include all
new tables in
path to FROM

clause

Begin Form FROM & WHERE clauses

Take 2
adjacent

tables

Include all
new conds
to WHERE

clause

More table?

Y

N

Add all new
cond in cond

array to WHERE
clause

Form SQL query

If more than
one path,
more than
one FROM
& WHERE
clauses

End

Note: col = column

tab = table

cond = condition

Fig. 5 Flowchart for Form FROM & WHERE clauses module

After the FROM and WHERE clauses have been
formulated, the three clauses will then be passed to the Form
SQL query module for integration. Fig. 6 shows this last
process of formulating the SQL statement.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:3, No:11, 2009

2549

N

Combine with
SELECT
clause

Begin Form SQL query

Execute
SQL

More
clause?

Get one
FROM &
WHERE
clauses

Return result

Y

End

Fig. 6 Flowchart for Form SQL query module

The result of all the above processes ends with the
following SQL statement which is next passed to the database
server for execution.

SELECT STAFF.name STUDENT.name SUBJECT.code,
SUBJECT.name, SUBJECT.lecturer
FROM STAFF, STUDENT, SUBJECT, ENROLMENT
WHERE STAFF.ID=SUBJECT.lecturer AND
SUBJECT.code=ENROLMENT.subjCode AND
ENROLMENT.studentID=STUDENT.ID

V. CONCLUSION
As a conclusion, it is possible to develop a database query

formulation system for mobile phones which accepts
unplanned queries, by allowing free-form inputs. Since cell
phones are poor in terms of resources as compared to other
mobile devices, the successfulness of implementing such a
method on them would mean it is applicable to the other
devices. Imprecise query method in the form of free-form
language can provide a much simpler interface for users to
formulate queries. The method can also help in reducing the
number of query input especially in cases where joins of
relations are needed. Since the majority of queries which
might be issued are of this type (as seen by the queries given
by respondents), providing such a method would benefit users
of resource-poor devices. For the future work, more complex
queries such as those involving aggregate functions, grouping
etc. will be implemented and so are other types of database
transaction such as delete, insert and update.

REFERENCES
[1] R. Alonso, and H. F. Korth, “Database system issues in nomadic

computing”, in Proc. 1993 SIGMOD Conference, Washington D.C.,
1993, pp. 388-392.

[2] K. Hung, and Y-T. Zhang, “Implementation of a WAP-based
telemedicine system for patient monitoring,” IEEE Transactions on
Information Technology in Biomedicine, Vol. 7, No. 2, June 2003, pp.
101-107.

[3] A. Koyama, N. Takayama, L. Barolli, Z. Cheng, and N. Kamibayashi,
“An agent based campus information providing system for cellular
phone,” in Proc. 1st International Symposium on Cyber Worlds, Tokyo,
2002, pp. 339-345.

[4] P. Boonsrimuang, H. Kobayashi, and T. Paungma, “Mobile Internet
navigation system,” in Proc. 5th IEEE International Conference on High

Speed Networks and Multimedia Communications, Jeju Island, 2002, pp.
325-328.

[5] A. Bergstrom, P. Jaksetic, and P. Nordin, “Enhancing information
retrieval by automatic acquisition of textual relations using Genetic
programming,” in Proc IUI 2000, New Orlean, 2000, pp. 29-32.

[6] H-M. Lee, S-K. Lin, and C-W. Huang, “Interactive query expansion
based on fuzzy association thesaurus for web information retrieval, “ in
Proc. IEEE International Fuzzy Systems Conference, Melbourne, 2001,
pp. 724-727.

[7] S. Agrawal, S. Chaudhuri, and G. Das, “DBXplorer: A system for
keyword-based search over relational databases,” in Proc. IEEE 18th
International Conference on Data Engineering (ICDE’02), San Jose,
2002, pp. 5-16.

[8] P. Calado, A.S. da Silva, A.H.F. Laender, B.A. Ribeiro-Neto, and R.C.
Viera, “A Bayesian network approach to searching web databases
through keyword-based queries, “ Information Processing and
Management, Vol. 40, No. 5, September 2004, pp. 773-790.

[9] R. Ramakrishnan, J. Gehrke, Database Management Systems. McGraw-
Hill, New York, 2000.

[10] A. Chandra, “Theory of database queries,” in Proc. 7th ACM Symposium
on Principles of Database Systems, Texas, USA, 1988, pp. 1-9.

[11] S. Polyviou, G. Samaras, and P. Evripidou, “A relationally complete
visual query language for heterogeneous data sources and pervasive
querying,” in Proc. 21st International Conference on Data Engineering
(ICDE 2005), Tokyo, 2005, pp. 471-482.

[12] E. Chang, F. Seide, H.M. Meng, Z. Chen, Y. Shi, and Y.C. Li, “A
system for spoken query information retrieval on mobile devices,” IEEE
Transactions on Speech and Audio Processing, Vol. 10, No. 8,
November 2002, pp. 531-541.

[13] B. R. Bai, C.L. Chen, L.F. Chien, and L.S. Lee, “Intelligent retrieval of
dynamic networked information from mobile terminals using spoken
natural language queries,” IEEE Transactions on Consumer Electronics,
Vol. 44, No. 1, February 1998, pp. 62-72.

[14] R. Ahmad, S. Abdul-Kareem, “A free-form database query language for
mobile phones,” in Proc. International Conference on Communications
and Mobile Computing, Kunming, 2009, pp. 279-284.

