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Abstract—Gradual patterns have been studied for many years as 

they contain precious information. They have been integrated in 
many expert systems and rule-based systems, for instance to reason 
on knowledge such as “the greater the number of turns, the greater 
the number of car crashes”. In many cases, this knowledge has been 
considered as a rule “the greater the number of turns → the greater 
the number of car crashes” Historically, works have thus been 
focused on the representation of such rules, studying how implication 
could be defined, especially fuzzy implication. These rules were 
defined by experts who were in charge to describe the systems they 
were working on in order to turn them to operate automatically. More 
recently, approaches have been proposed in order to mine databases 
for automatically discovering such knowledge. Several approaches 
have been studied, the main scientific topics being: how to determine 
what is an relevant gradual pattern, and how to discover them as 
efficiently as possible (in terms of both memory and CPU usage). 
However, in some cases, end-users are not interested in raw level 
knowledge, and are rather interested in trends. Moreover, it may be 
the case that no relevant pattern can be discovered at a low level of 
granularity (e.g. city), whereas some can be discovered at a higher 
level (e.g. county). In this paper, we thus extend gradual pattern 
approaches in order to consider multiple level gradual patterns. For 
this purpose, we consider two aggregation policies, namely 
horizontal and vertical. 

 
Keywords—Gradual Pattern. 

I. INTRODUCTION 
RADUAL pattern mining has been recently introduced as 
the topic addressing the automatic discovery of gradual 

patterns from large databases. Such databases are structured 
over several attributes which domains are totally ordered, 
considering a relation ≤. Example 1 reports an example of 
such a database. 

Example 1: We consider the database containing sales 
(number of kg) from a shop selling fruits. Each tuple from the 
database corresponds to a cashier ticket. 
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TABLE I 
FRUIT SALES DATABASE 

Id Pineapples RedApples Cherries Durian 
T1 0 3 0 0 
T2 2 1 1 0 
T3 4 4 2 3 
T4 2 1 1 1 
T5 7 0 3 0

 
Several approaches have been defined in order to extract 

patterns like “The greater the Pineapple, the greater the 
Cherries” (denoted by {(Pineapples, ↑), (Cherries, ↑)}), these 
work focusing on two main points pointed below. 

The first point is to study how to define the support of such 
a pattern, i.e. the extend to which this pattern is true. In our 
example, the support is associated with the proportion of 
tickets matching some properties. Then, only frequent 
patterns, i.e. patterns which support is greater than a given 
threshold, will be considered as being relevant. In the 
literature, several propositions have been done. Reference [15] 
considers statistical methods (linear regression). [10] 
considers a heuristic. [9] considers an exhaustive counting of 
the support based on precedence graphs, while [16] considers 
a counting based on rank correlation. Fuzzy approaches have 
been considered in [1], [18] in order to soften the approach. 

For instance, it can be noticed that pineapples and cherries 
sold on Tickets 1, 2, 3 and 5 can be seen as increasing 
together. We thus have 4 tickets out of 5 on which we can 
claim that when the sale of pineapples grows, then the sale of 
cherries grows, and conversely. It is very important to note 
that we consider patterns and not rules, which is the reason 
why we consider a reversible definition.  

The second point is to study how to automatically extract 
such patterns from large databases. Approaches can be com- 
pared regarding their efficiency. Methods have been 
developed by adopting pattern mining algorithms. The 
efficiency thus relies on the anti-monocity property which 
states that no frequent pattern containing n attributes can be 
built over a pattern containing a subset of these n attributes. 
For instance, if the pattern “The greater the Pineapples, the 
greater the RedApples” is not relevant, then there no way that 
the pattern “The greater the Pineapples, the greater the 
RedApples, the greater the Cherries” is relevant. This property 
allows to scan the search space in a very efficient manner, by 
pruning subspaces as they do not have any chance to contain 
relevant patterns. In [9], binary matrices are defined in order 
to speed up the calculation, while parallel approaches have 
been considered in [12], [17]. 
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These approaches are of great interest, they have been 
successfully applied on several application domains, such as 
psychology and biology, where discovering co-variation of 
gene expressions is very important, and can hardly be 
performed using traditional statistical methods. The number of 
attributes (genes) does indeed not allow to test all the 
possibilities. Moreover, the interesting co-variations stand 
among several attributes and many methods stop searching 
after the test of 2 attributes together (e.g., statistical 
correlation). 

However, it may be the case that considering data at a low 
level of granularity does not convey sense in terms of trend 
analysis. For instance, it may be the case that the sales within 
one day cannot be regarded as containing any gradually, while 
the same data aggregated over days (all sales from the same 
day are summed) may contain gradual trends. The database 
being considered is thus transformed in order to merge lines. 
An aggregation function is considered in order to fusion the 
values, thus leading to the same discussions that the ones from 
the data warehouse framework: the data being considered 
(sales here) may be additive, semi-additive or non additive. 

In our example, Sales are additive over all attributes and 
over lines (tickets). 

Example 2: We consider the database from Example 1, 
where T1, T2 and T3 are from Monday and T4 and T5 are 
from Tuesday. 

TABLE II 
VERTICAL AGGREGATION 

Id Pineapples RedApples Cherries Durian 

Monday 
(T1-3) 

0 3 0 0 

Tuesday 
(T4-5) 

7 0 3 0

 
Conversely, it may also be the case that regarding the data 

attribute per attribute does not convey information, while it 
can be the case by aggregating columns from the database. 

Example 3: For instance, the first two columns may be 
merged. 

TABLE III 
HORIZONTAL AGGREGATION 

Id WithoutKernel 
Pineapples + RedApples Cherries 

T1 3 0 
T2 3 1 
T3 8 2 
T4 3 1 
T5 7 3 

 
In this paper, we thus consider these two ways of building 

multiple level gradual patterns. This work can be linked to 
data warehouses and OLAP mining as we consider data 
mining over several attributes (dimensions) described over 
several levels of granularities. However our framework is not 
exactly the same, especially because aggregations can be 
performed on some attributes and not for some other ones, 
meaning that two attributes may be merged, while other ones 

are not. This kind of operation is considered as being possible 
from the semantic point of view because we consider ordinal 
scales where the value itself does not impact. It is thus 
possible to compare large values over one high level attribute 
(e.g., RedFruits) and small ones over another low level 
attribute (Pineapple). 

The paper is organized as follows. Section II details the 
preliminary definitions. Section III reports existing work on 
gradual pattern mining and Section IV states the problem we 
address, while Sections V and VI introduce our contribution, 
namely the definitions of what Multiple Level Gradual 
Patterns are and how they can be extracted. 

II.  PRELIMINARY DEFINITION 
We introduce below the definitions taken from the literature 

in order to define gradual pattern mining. Unfortunately, no 
unique notation is available in the papers, we thus propose to 
consider the ones given below. 

Definition 1: Gradual-Attribute. A gradual attribute I is 
defined over a domain dom(Ij) on which an order ≤j (or simply 
≤) is defined. 

Definition 2: Gradual-DB. A gradual database is a set of 
tuples T defined over the schema S = {Id,I1,...,In} of n gradual 
attributes where Id is an identifier (primary key). 

Example 1 shows an example of a database which schema 
is S = {Pineapples, RedApples, Cherries} containing 5 tuples 
defined over three attributes which domains are IN. 

Definition 3: Gradual item. A gradual item is a pair (i, v) 
where i is an item and v is variation v א {↑, ↓}. ↑ stands for an 
increasing variation while ↓ stands for a decreasing variation. 
For example, (Pineapples, ↑) is a gradual item. 

Definition 4: Gradual Pattern (also known as Gradual 
Itemset). A gradual pattern is a set of gradual items, denoted 
by GP = {(i1, v1), . . ., (in, vn)}. The set of all gradual patterns 
that can be defined is denoted by GP. 

For example, {(Pineapples,↑),(RedApples,↑)} is a gradual 
itemset. 

Definition 5: Tuple Ordering Over a Set of Attributes A. 
The tuples from a gradual database are ordered by defining an 
order ط with respect to a gradual pattern GP {(i1, v1), . . . , (in, 
vn)}. Two tuples t and t′ can be ordered with respect to GP , 
denoted by t א GP t′ if all the values of the corresponding 
items can be ordered with respect to the variations: for every 
ik(k א [1,n]), t.ik ≤′t .ik if vl =↑ and t′.ik ≤ t.ik if vl =↓. 

The support of a gradual pattern indicated to which extend 
it can be found in the database. 

Definition 6: Gradual Support. The support of a gradual 
pattern over a gradual database GDB is a function sup from 
GP to [0,1] that holds the following property: for all GP1, GP2 
 .supp(GP1) ≥ supp(GP2) א GP2 א GP, GP1 א

III. RELATED WORK 
A. Gradual Patten Mining 
In the 70s, gradual patterns were used to model system 

behaviors. Patterns were designed by experts. A complete 
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theoretical framework of gradual rules into the fuzzy context 
is given in [11], with a comparison of fuzzy implication for 
gradual dependencies. Among them the most used is 
RescherGaines (RG) implication. 

Regarding crisp data mining approaches, the authors agree 
on the definition of gradual item (which couples a classical 
item and a variation) and gradual itemsets (set of gradual 
items), but have proposed several ways of defining the 
support. 

[15] considers a regression-based definition. [9] the authors 
consider another definition of the support based on the 
maximum proportion of tuples that can be ordered according 
to the gradual itemset. While [3] and [16] consider the number 
of tuples that are concordant and discordant, in the idea of 
exploiting the Kendall’s tau ranking correlation coefficient 
[14]. 

[15] defines gradually as a co-variation of gradual 
dependency, where A gradual dependency such as the more 
A, the more B holds if an increase in A comes along with an 
increase in B. In order to identify such relationships, it 
proposes to perform a linear regression analysis between the 
two attributes. The validity of the gradual tendency is 
evaluated from the quality of the regression. This definition 
and this extraction method apply to pairs of attributes. The 
extension proposed by [15] to longer itemsets considers the 
case of fuzzy data, for which attributes contain the 
membership degrees of the data to modalities. It exploits this 
fuzzy logic framework and the fact that itemsets are 
interpreted as conjunction of the items they contain: a 
membership degree to the itemset can be computed using a t-
norm, applied to the membership degrees to the items of the 
considered itemset. The gradual tendency is then understood 
as a covariance constraint between the aggregated 
membership degrees. Thus itemsets of length higher than 2 
can be handled as itemsets of length 2. 

Other works take a different point of view and interpret 
gradual dependencies as constraints imposed to the order 
induced by the attributes, and not to their numerical values: in 
[3] gradual dependencies are considered as generalizations of 
functional dependencies that replace the equality conditions 
by variation conditions on the values. This definition takes 
into account a causality relationship between the itemsets. It 
states that the ordering induced by attribute A must be 
identical to that derived from attribute B. In the case of 
dependencies such as the more A, the less B, the constraint 
imposes that the orders must be reversed. 

[10] proposes an approach based on conflict sets. The 
authors propose a heuristic to compute the support for gradual 
itemsets, in a level-wise process that considers itemsets of 
increasing lengths. It consists in discarding, at each level, the 
rows whose so-called conflict set is maximal, i.e. the rows that 
prevent the maximal number of rows to be sorted. The 
selection is made by random in case of several conflict sets 
having same size. Note that this heuristic may lead to loose 
some loss. Indeed, it may be the case that a raw seam to create 
a lot of conflicts compared to another one, but that this 

number of conflicts is still lower than the conflicts generated 
at the next level. 

Example 4: The table below reports the conflicts regarding 
the pattern {(Pineapples, ↑), (RedApples, ↓)}. Note that the 
lines have been reordered to facilitate the reading by 
considering the ranking on the values over the attribute 
Pineapples. In the Table IV, the conflict set reports the Tickets 
that are in conflict with the one being considered. 
 

TABLE IV 
CONFLICT SETS 

Id Pineapples RedApples Cherries Conflict Set 
T1 0 3 0 {T2,T3} 
T2 2 1 1 {T1,T3} 
T4 2 1 1 {T3} 
T3 4 4 1 {T1,T2,T3,T4} 
T5 7 0 3 Ø

  
In [9], the support is defined as being the longest path of 

the precedence graph of tuples regarding a gradual pattern. 
For instance, we can design the graph of Tickets regarding the 
ordering on the gradual pattern {(Pineapples, ↑), (RedApples, 
↓)} as displayed on Fig. 1. It can for example be seen that T3 
is only linked with T5. T3 precedes T5 as T3.Pineapples ≤ 
T5.Pineapples and T3.RedApples ≥ T5.RedApples. 
 

 

Fig. 1 Precedence Graph for {(Pineapples, ↑), (RedApples, ↓)} 
  

The GRAANK approach from [16] interprets gradual pat- 
terns in terms of ranking correlation. Binary matrices from [9] 
can then be considered in order to speed up the algorithms. 
The problem of rank correlation has been extensively studied 
by statisticians, and several measures have been proposed, 
distinguishing between two ranks and multiple rank 
comparison. Regarding ranking pairs, the most used measures 
are the Spearman correlation and the Kendall’s tau. The 
Kendall’s tau is defined as follows: given n objects to be 
ranked, and σk, k = 1,2 two rankings where σk(x) gives the 
rank of object x in σk ranking, the Kendall’s tau relies on the 
definition of concordant and discordant pairs: concordant 
pairs (i,j) are pairs for which the rankings agree, i.e. either 
σ1(i) ≤ σ1(j) and σ2(i) ≤ σ2(j), or σ1(i) ≥ σ1(j) and σ2(i) ≥ σ2(j). 
Non concordant pairs are called discordant pairs. The 
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Kendall’s tau is then defined as the proportion of discordant 
pairs, i.e. the frequency of pair-wise inversions. 

Example 5: For instance, from Example 1, when consider- 
ing the gradual pattern {(Pineapples, ↑), (RedApples, ↓)}. 
− T1 and T2 are concordant 
− T1 and T3 are discordant 
− T1 and T4 are concordant 
− T1 and T5 are concordant 
− T2 and T3 are discordant 
− T2 and T4 are concordant 
− T2 and T5 are concordant 
− T3 and T4 are concordant 
− T3 and T5 are concordant 
− T4 and T5 are concordant 

Fuzzy extensions have been defined in order to deal with 
real life applications where data and knowledge are often not 
crisp. [1], [2] study the possibility that the graduality is not 
over all the attribute but may be hidden somewhere in the 
domain of values. For instance, when mining gene expression, 
it may be the case that there is no pattern such as “The 
more/less the expression of gene Gi, the more the expression 
of gene Gj” but that it is rather the case that the pattern “The 
more/less the expression of gene Gi is almost 0.2, the more the 
expression of gene Gj is almost 0.8”. The proposal proposes a 
definition of such fuzzy patterns and algorithms based on 
genetic programming in order to discover the most relevant 
parts of the universe (e.g. almost 0.2 and almost 0.8 in the 
above example). 

 [17], [18] propose to consider fuzzy orders instead of crisp 
orders so as to tackle the problem of data where differences 
between values may not always convey a crisp decision. For 
instance, it may be the case that an expression of gene of 
0.1887 may not be that lower than an expression of gene of 
0.1888. The work is based on the definitions given by [4]–[6]. 

B. OLAP Mining and Hierarchical Data Mining 
When dealing with hierarchies in databases, the main works 

have been done in the framework on data warehouses and 
OLAP (On-Line Analytical Processing). Data warehousing 
refers to the process of constructing and exploiting of the data 
warehouse. Data warehousing thus includes the integration of 
the data from multiple sources into a unified schema at a 
single location to facilitate data analysis for decision making. 
Thus, the construction of a data warehouse includes data 
integration, data cleansing, data consolidation and OLAP [7], 
[8]. OLAP systems are constructed in a data warehouse 
environment that serves as a repository of the data to be 
processed. Data are organized over measures (e.g., number of 
sales) studied with respect to dimensions (e.g., product, 
month, city) which can be organized with hierarchies (e.g., 
month-quarter-year). OLAP operations are defined to help 
end-users to navigate through the data. Some of the operations 
are dedicated to the management of hierarchies: roll-up allows 
to go from data described at a low level of granularity (e.g., 
month) to data given at a higher level of granularity (e.g., 
quarter). 

OLAP Mining has been first introduced in 1997 by Jiawei 
Han as a mechanism which integrates OLAP with data min- 
ing so that mining can be performed in different portions of 
databases or data warehouses and at different levels of 
abstraction at users finger tips. 

However, authors have considered multiple level data 
mining before studying intensively data warehouses. In [20], 
the beginnings of the hierarchy management in the extraction 
of association rules and sequential patterns are proposed. The 
authors suppose that the hierarchical relations between the 
items are represented by a set of taxonomies. They make it 
possible to extract association rules or sequential reasons 
according to several levels of hierarchy. They modify the 
transactions by adding for each item all of its ancestors in 
associated taxonomy. Then, they generate the frequent 
sequences while trying to filter with the maximum redundant 
information and by optimizing the process using several 
properties. However, this approach cannot be scalable in a 
multidimensional context. Indeed, to add on each dimension 
the list of the ancestors of one item in taxonomy, for each 
transaction, is unthinkable. 

That would be equivalent, in the worst case, to multiply the 
size of the database by the maximum depth of a hierarchy and 
this for each dimension of analysis, scan of this basis would 
be then too much expensive. 

The approach of J. Han et al. [13] is quite different. The 
authors tackle the association rule extraction problem, but this 
approach can be adapted to sequential pattern extraction. 
Starting at the highest level of the hierarchy, they extract the 
rules on each level while lowering the support when going 
down in the hierarchy. The process is reiterated until no rules 
can be extracted or until the lowest level of the hierarchy. 
However, this method does not make it possible to extract 
rules containing items of different levels. For example wine 
and drinks cannot cohabit in such a rule. This method thus 
proposes the extraction of intra level of hierarchy association 
rules. It thus does not make it possible to answer the general 
problems of extraction of the sequences on various levels of 
hierarchy. Furthermore, the implementation of this approach 
in a multidimensional context can be discussed. If several 
taxonomies exist (one by dimension), does one have to move 
on the same levels of hierarchy on various taxonomies or to 
combine these levels? This type of extraction can be 
expensive in time, because the mechanism of extraction of 
knowledge can be reiterated several times (depth of 
taxonomy), which is not inconsiderable. 

[19] introduces multiple level sequential patterns. As it is 
proven that finding out all sequential patterns from a database 
is an np-complete problem, the authors propose to consider 
convergent and divergent sequential patterns. When 
considering convergent patterns, the levels of granularity of 
the patterns along the sequence decreases (e.g. from county to 
city). When considering divergent patterns, the levels of 
granularity of the patterns along the sequence increases (e.g. 
from city to county). Such patterns are of the form < (coke, 
Paris)(soda, Paris) > meaning that in many cases, there has 
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been coke sold in Paris and then soda (higher level compared 
to coke) sold in Paris. The authors highlight the interest of 
extracting the “most specific” patterns, i.e. the patterns such as 
there does not exist any pattern included within it (either 
because some items can be deleted, or because some items can 
be expressed at a lower level of granularity) which is frequent. 
Looking for search patterns is interesting as patterns at high 
level of granularity are often already known and do not 
convey relevant knowledge for the end-users. 

In this section, we have presented the works related to our 
proposal. In the next session, we introduce our contribution 
M2LGP standing for Mining Multiple Level Gradual Patterns. 

IV.  M2LGP: PROBLEM STATEMENTS 
Starting from the definitions from Section II consolidated 

from the existing works, we state an original framework. We 
claim that many data are equipped with hierarchies, and we 
want to define: 
– how multiple level gradual databases can be defined; 
– how multiple level gradual patterns can be defined; 
– how the support on multiple level gradual patterns can be 

defined; 
– how multiple level gradual patterns can be extracted. 

For this purpose, we rely on the existing work for defining 
two main ways of considering multiple level data. Indeed, data 
can be aggregated over lines (horizontal aggregation) or 
columns (vertical aggregation). 

Considering the first case, when lines are aggregated, the 
problem is to define how the values are aggregated over every 
attribute. It should be noted that lines can be aggregated over 
one or several attributes, but that it may be the case that some 
attributes are not aggregated. In this case, all the lines remain 
in the database but some values change in order to represent 
data at a higher level of granularity. 

Example 6: For instance, data from Example 1 can be 
merged as shown above, where the 5 lines are merged into 2 
lines (Monday and Tuesday). They may also be merged for 
certain attributes but not for all. For instance, below is the 
dataset transformed by aggregating over lines for attribute 
Pineapples. 

This kind of operation may be interesting when some 
attributes are not relevant at a low granularity level while 
some other ones are. It could thus be compared to a kind of 
semantic normalization. Such a partial aggregation is noted 
with parenthesis on the values of aggregated attributes 
(Pineapples here). 
 

TABLE V 
AGGREGATION ATTRIBUTES 

Id (Pineapples) RedApples Cherries 
T1 (6) 3 0 
T2 (6) 1 1 
T3 (6) 4 2 
T4 (9) 1 1 
T5 (9) 0 3 

  

Considering the case where columns are merged, the main 
issue to address is the definition of the hierarchies. In the case 
of complex hierarchies, it may indeed be the case that some 
values can be grouped into different super-partitions. 

Example 7: For instance, PineApples and RedApples are 
considered as being WithoutKernel and thus grouped, but we 
may also consider that RedApples and Cherries can be 
grouped in order to build the “RedFruit” group. 

 
TABLE VI 

RED FRUIT AGGREGATION 

Id NotRed Red 
(RedApples + Cherries) 

T1 0 3 
T2 2 2 
T3 4 6 
T4 2 2 
T5 7 3 

V. M2LGP: DEFINITIONS 
A multiple level attribute MLA is an attribute equipped 

with a hierarchy. This hierarchy is defined as a set of levels 
where every level is represented as a partition, all the 
partitions being embedded. 

Definition 7: Level of Granularity. Given a domain D of an 
attribute. A level of Granularity Li(D) is defined as a partition 
Pi(D) of D and a set of labels describing every element of the 
partition, this set of label being the domain dom(Li) of the 
level. 

Example 8: We consider the Date attribute with dom(Date) 
={01JAN2012−8:00,02JAN2012−11:00, 05AUG2012−07:00, 
27SEP2013−09:00, 30SEP2013−05:00, 30SEP2013−08:30}. 
We may define three levels: L0 = DateDay, L1 = DateMonth, 
L2 = DateYear, where : 

– dom (DateDay)  = dom (Date), dom (DateMonth)  = 
{JAN2012, AUG2012, SEP2013}, dom (DateYear) = {2012, 
2013} 

– Date Month = {{01JAN2012 − 8:00, 02JAN2012 − 
11:00}, {05AUG2012 − 07:00, {27SEP2013 −09:00}, 
30SEP2013− 05:00, 30SEP2013− 08:30} 

Definition 8: Embedded Levels of Granularity. Two levels 
of granularity Li and Lj are said to be embedded (Li א Lj) if Lj 
defines a partition of Li. 

Definition 9: ML-Attribute. An ML-Attribute MLA is de- 
fined by: 

-a label,  
-a domain dom (MLA),  
-a set of embedded levels of granularity L = 

L0(MLA),...,Lg(MLA) such as every domain dom(Li) is 
ordered with a relation ≤Li . 

Example 9: Temporal attributes are a particular case of 
attributes. Although not being numeric, dates can be 
aggregated when lines are merged in an adequate manner. For 
instance, days can be regrouped into months. The attribute 
Date with domain dom(Date) and levels .given above 
dom(DateDay) is ordered as: 01JAN2012 − 8 : 00 ≤ 
02JAN2012 − 11 : 00 ≤ 05AUG2012−07 : 00 ≤ 27SEP2013 − 
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09 : 00 ≤ 30SEP2013 − 05 : 00 ≤ 30SEP2013 − 08 : 30. Dom 
(DateMonth) is ordered as JAN2012 ≤ AUG2012 ≤ SEP 
2013. Dom (DateYear) is ordered as 2012 ≤ 2013. 

Remark 1: This definition does not allow complex 
hierarchies as they can be found in data warehouses, although 
such complex hierarchies could allow to manage the example 
shown above where there are two incompatible levels of 
granularity (With/Without kernel and NotRed/Red). 

Given an ML-attribute MLA, an aggregation function Agg 
is defined over the values taken by this attribute that allows to 
compute the aggregated value when going from one level of 
granularity up to another one. The attribute is said to be 
additive if values can be summed up. 

Definition 10: ML-DB. A multiple level gradual database is 
a set of tuples T defined over the schema S = {Id,A1,...,An} of 
n+1 multiple level gradual attributes (ML-Attributes). 

Remark 2: Note that the identifier attribute Id is an ML- 
attribute. This allows to manage vertical aggregation. 

A gradual database can be displayed at several levels of 
granularity. It is said to be additive if all attributes are 
additive, semi-additive if at least one but not all attributes are 
additive, and non-additive if none of the attributes is additive. 

Definition 11: ML-DB-Disp. A gradual database displayed 
is given by an ML-DB and a set of levels {L1,...,Ln} 
associated with every attribute from the schema. 

For instance, the information is displayed at different levels 
of granularity in the previous tables. 

Remark 3: It should be noted that based on this definition, 
the number of items can change when the display is changed. 

Definition 12: ML-Item. Given an ML-DB, an ML-Item is 
a pair (I, variation) where I א  UAאS ULIאLA domA(Li), and 
variation is ↑ or ↓. 

Example 10: For instance, (RedFruit, ↓), (Pineapples, ↑) are 
ML-Items. 

Definition 13: Compatible ML-Item. Two ML-Items are 
said to be compatible if none of their first part I is the value 
taken from an upper hierarchy level. 

Example 11: For instance, (RedFruit, ↓) and (Pineapples, ↑) 
are compatible, while (RedFruit, ↓) and (Cherries, ↑) are 
not. 

Definition 14: ML-Pattern. An ML-Pattern is a set of 
compatible ML-items. 

Definition 15: ML-Pattern Inclusion. A pattern P1 is said to 
be “ML-included” in another pattern P2 (P1 א MLP2). if for 
every ML-Item Ik

1 of P1, there exists an item Il
2 from P2 such 

as either Ik
1 = Il

2 or Il
2 is an item from an upper level and the 

variation is the same. 
Example 12: For instance P = {(Date, DateDay, ↑), (Fruit, 

RawFruit, ↓)} is P′ = {(Date,DateDay,↑),(Fruit,ColorFruit,↓)}. 
Definition 16: Multiple Level Gradual Support. Given an 

ML-DB-Disp MLDBD and an ML-Pattern P, the support of P 
over MLDBD is a function sup from GP to [0,1] that holds the 
following property: for all P1, P2 א GP, P1 א MLP2 א supp(P1) 
≥ supp(P2). 

On the basis of the two support definitions, the main point 
to observe is that they are strongly related to the number of 
lines from the database. 

When performing a horizontal aggregation (merging 
columns), the number of lines does not change, although it is 
changed when lines are merged. However, the gradual pattern 
being considered has changed (as the columns changed). 

When performing a vertical aggregation (merging lines), 
the number of lines may change, either for one or for all the 
attributes. 

Whatever the aggregation, the support can still be computed 
using either the longest path or the rank correlation. 

VI. M2LGP: EFFICIENT MINING 
Although aggregating the columns and/or lines may be seen 

as a reduction, it is not the case that it simplifies the 
complexity of the algorithm. Indeed, the reduction is true only 
at one level of granularity while all levels may be considered. 

In order to address the problem of navigating through this 
huge search space, we define the following strategies and 
discuss their pros and cons. 

A. Building the Search Space: MLGP Operators and MLGP 
Lattice 

The navigation through candidate patterns is performed via 
operators that allow to apply horizontal and vertical 
(dis)aggregation. These operators are connected to the OLAP 
roll-up and drill-down operators, although not being exactly 
identical. 

B. Navigating through the Search Space: Defining 
Strategies 

Considering these operations and the resulting lattice rep- 
resenting the search space, we consider several strategies. 

Given an ML-DB-Disp D, we can aggregate or 
disaggregate this database over lines or columns. 

Definition 17: ML-HAgg. An H-Aggregation consists in 
merging several lines with respect with a line hierarchy (given 
a source level and a target level), regarding one or several 
attributes. The value taken on these attributes are aggregated. 
Such an aggregation is denoted by () 

Example 13: For instance, lines of Ticket1 to Ticket3 one 
the one hand, and of Ticket4 and Ticket5 on the other hand 
have been merged over the Pineapples attribute, which is then 
denoted by (Pineapples), the values being themselves enclosed 
within parenthesis. 

Remark 4: Although having been merged, the lines may 
remain separated if some attributes are not concerned with the 
ML-HAgg operation, which is a major difference with OLAP 
roll-up. The aggregated value is repeated on all the lines, 
which is not problematic as we consider equal values as being 
comparable in both ways (≤). 

Example 14: In our example, the lines are merged over the 
Pineapples attribute but not over the other attributes. 

Definition 18: ML-HDisagg. An ML-HDisagg with respect 
with a hierarchy (given a source level and a target level), 
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regarding one or several attributes, consists in drilling down 
by generating several lines from one line and by recomposing 
(from the raw data) the unmerged values. The value taken on 
these attributes are aggregated. 

Definition 19: ML-VAgg. A vertical aggregation consists in 
merging several columns with respect with a hierarchy (given 
a source low level and a target high level). 

Definition 20: ML-VDisagg. A vertical disaggregation 
consists in splitting one column into several columns with 
respect with a hierarchy (given a source high level and a target 
low level). 

Definition 21: Most Specific ML-Pattern. Given a mini- 
mum support threshold minsup, an ML-pattern P1 is said to be 
the “most specific” pattern if there does not exist any P2 such 
as P2 א ML P1 and supp(P2) ≥ minsup. 

Taking these operations into account, the lattice 
representing the search space is based on the classical lattice 
of all the parts of the n items and variations, which is enriched 
by levels. 

The first strategy is to explore all the search space. Instead 
of having a lattice composed by 2n nodes in the case of n 
attributes, the search space is then composed of 2l where l is 
the sum of all numbers of levels. For instance, we may 
consider the attribute Fruit with 2 levels (raw level, and Color 
Level). Moreover, a strategy should be followed in order to 
navigate through the levels. However, there is no useful 
monotonicity between levels, which prevents from pruning the 
space in an efficient way. It can thus be the case that exploring 
this search space is not possible. This is the reason why other 
methods can be considered. 

Convergent and divergent patterns have been proposed in 
the sequential pattern mining framework [19], where items are 
naturally organized as they are ordered over time. In the 
context of multiple level gradual patterns, it is unfortunately 
not the case that we can go up or down while going through 
attributes. 

The last proposal is thus to use a heuristic. In our frame- 
work, we propose to compute all the supports for all multiple 
level gradual patterns of size 2 (containing 2 ML-items) and to 
consider the levels that maximize the support at this step. Note 
that this also holds for the horizontal aggregation in order to 
decide to which extend lines must be merged. 

Example 15: For instance, if considering the dataset 
structured  over the schema  Date, Fruits, all the possibilities 
of levels and crossing will be considered: (DateDay, 
RawFruits),(DateMonth, RawFruits), (DateYear, RawFruits), 
(DateDay, ColorFruits), DateMonth, ColorFruits) (DateYear, 
ColorFruits) and the most successful regarding the support 
will be chosen. 

Note that pairs of such ML-items may be incompatible. For 
instance, it may be the case that Fruits is considered at the 
RawFruits level when being combined with Date but 
considered at the ColorFruits level when combined with 
another attribute. In this case, we propose to choose between 
two strategies: keep all levels or choose the one optimizing the 
support.  

VII. M2LGP: ALGORITHMS AND EXPERIMENTS  
Our algorithms are based on the decomposition of the 

database in order to deal with all the hierarchies, as described 
in the algorithms below. We then run experiments using 
existing implementations of gradual pattern mining 
algorithms. 

 
ALGORITHM I 
ALGOM2LFGP 

Input : DB  
Output : Set of GD 

GD ← ٕ; 
Transform DB (DB); 
for each transformed database D do 
 AlgoGP (D); 
end

  
Experiments have been run on both synthetic and real data 

reporting expressions of gene in the case of cancer. As can be 
seen on Fig. 2, the presence of the hierarchies makes the 
problem difficult to tackle as it exponentially increases the 
search space. We thus aim at using parallel programming in 
further work. 

 
ALGORITHM 2 
TRANSFORM DB 

Input : DB 
Output : Set of tranformed database(D) 
D← ٕ; 
GenerateHierarchy(nbColsDB,nbLignesDB); 
for each h ٕ HH do 
D ← D ٕ Htransform(DB, h); 
end 
D′ ← D; 
freach (h,h′) ٕ HH2 do 
D′ ← D′ ٕ HHtransform(DB, h, h′); 
end 
D′′ ← ٕ; 
for each h ٕ HV do 
D′′ ← D′′ ٕ Vtransform(DB, h); 
end 
D′′′ ← D′′; 
for each h ٕ D′′ do 
D′′′ ← D′′′ ٕ Htransform(DB, h); 
end 
return set of D(D, D′, D′′, D′′′);

 
ALGORITHM 3 

GENERATE HIERARCHY 
Input : nbColsDB,nbLignesDB 
Output : Hierarchy(H) 
HH ← ٕ; 
HH2 ← ٕ; 
VH ← ٕ; 
H ← HH, HH2 , VH; 
for each h ٕ H do 
 if h=HH then 
  h ← GenerateNodeEdges(nbColsDB,nbTopNode); 
 else if h = HH2 then 
  h← GenerateNodeEdges(nbLignesDB,nbTopNode); 
 else 
  h ← GenerateNodeEdges(); 
 end 
  end  
return H;
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Fig. 2 Runtime regarding the number of attributes 

VIII.  CONCLUSION AND FUTURE WORKS 
In this paper, we propose the original method M2LGP for 

mining multiple level gradual patterns. Such patterns allow to 
take into account the natural structures of the information that 
can often be considered at different levels of granularity. The 
paper proposes a formal framework for redefining all the 
concepts in this particular framework, including a discussion 
on the computation of the support. The topic is of great 
importance since data mining has been pointed as a key 
challenge, especially when dealing with big data. The 
problematic is not easy, since multiple level gradual patterns 
are similar to existing frameworks (gradual patterns, multiple 
level association rules, OLAP Mining) but are still an original 
approach as they contain specificities that are difficult to 
manage. 

Future work include the study of fuzzy partitions for 
defining fuzzy multiple level gradual patterns and their 
support. We will also further investigate the algorithms for 
extracting the multiple level gradual patterns. The efficient 
implementation of this proposal will be based on the existing 
parallel softwares such as [12]. 
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