
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

342

Abstract—Gradual patterns have been studied for many years as

they contain precious information. They have been integrated in
many expert systems and rule-based systems, for instance to reason
on knowledge such as “the greater the number of turns, the greater
the number of car crashes”. In many cases, this knowledge has been
considered as a rule “the greater the number of turns → the greater
the number of car crashes” Historically, works have thus been
focused on the representation of such rules, studying how implication
could be defined, especially fuzzy implication. These rules were
defined by experts who were in charge to describe the systems they
were working on in order to turn them to operate automatically. More
recently, approaches have been proposed in order to mine databases
for automatically discovering such knowledge. Several approaches
have been studied, the main scientific topics being: how to determine
what is an relevant gradual pattern, and how to discover them as
efficiently as possible (in terms of both memory and CPU usage).
However, in some cases, end-users are not interested in raw level
knowledge, and are rather interested in trends. Moreover, it may be
the case that no relevant pattern can be discovered at a low level of
granularity (e.g. city), whereas some can be discovered at a higher
level (e.g. county). In this paper, we thus extend gradual pattern
approaches in order to consider multiple level gradual patterns. For
this purpose, we consider two aggregation policies, namely
horizontal and vertical.

Keywords—Gradual Pattern.

I. INTRODUCTION
RADUAL pattern mining has been recently introduced as
the topic addressing the automatic discovery of gradual

patterns from large databases. Such databases are structured
over several attributes which domains are totally ordered,
considering a relation ≤. Example 1 reports an example of
such a database.

Example 1: We consider the database containing sales
(number of kg) from a shop selling fruits. Each tuple from the
database corresponds to a cashier ticket.

Yogi Satrya Aryadinata, Anne Laurent, and Michel Sala are with the

Montpellier Laboratory of Informatics, Robotics, and Microelectronics
(LIRMM in French), Montpellier, France (e-mail: aryadinata@lirmm.fr,
laurent@lirmm.fr, michel.sala@lirmm.fr).

TABLE I
FRUIT SALES DATABASE

Id Pineapples RedApples Cherries Durian
T1 0 3 0 0
T2 2 1 1 0
T3 4 4 2 3
T4 2 1 1 1
T5 7 0 3 0

Several approaches have been defined in order to extract

patterns like “The greater the Pineapple, the greater the
Cherries” (denoted by {(Pineapples, ↑), (Cherries, ↑)}), these
work focusing on two main points pointed below.

The first point is to study how to define the support of such
a pattern, i.e. the extend to which this pattern is true. In our
example, the support is associated with the proportion of
tickets matching some properties. Then, only frequent
patterns, i.e. patterns which support is greater than a given
threshold, will be considered as being relevant. In the
literature, several propositions have been done. Reference [15]
considers statistical methods (linear regression). [10]
considers a heuristic. [9] considers an exhaustive counting of
the support based on precedence graphs, while [16] considers
a counting based on rank correlation. Fuzzy approaches have
been considered in [1], [18] in order to soften the approach.

For instance, it can be noticed that pineapples and cherries
sold on Tickets 1, 2, 3 and 5 can be seen as increasing
together. We thus have 4 tickets out of 5 on which we can
claim that when the sale of pineapples grows, then the sale of
cherries grows, and conversely. It is very important to note
that we consider patterns and not rules, which is the reason
why we consider a reversible definition.

The second point is to study how to automatically extract
such patterns from large databases. Approaches can be com-
pared regarding their efficiency. Methods have been
developed by adopting pattern mining algorithms. The
efficiency thus relies on the anti-monocity property which
states that no frequent pattern containing n attributes can be
built over a pattern containing a subset of these n attributes.
For instance, if the pattern “The greater the Pineapples, the
greater the RedApples” is not relevant, then there no way that
the pattern “The greater the Pineapples, the greater the
RedApples, the greater the Cherries” is relevant. This property
allows to scan the search space in a very efficient manner, by
pruning subspaces as they do not have any chance to contain
relevant patterns. In [9], binary matrices are defined in order
to speed up the calculation, while parallel approaches have
been considered in [12], [17].

G

M2LGP: Mining Multiple Level Gradual
Patterns

Yogi Satrya Aryadinata, Anne Laurent, and Michel Sala

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

343

These approaches are of great interest, they have been
successfully applied on several application domains, such as
psychology and biology, where discovering co-variation of
gene expressions is very important, and can hardly be
performed using traditional statistical methods. The number of
attributes (genes) does indeed not allow to test all the
possibilities. Moreover, the interesting co-variations stand
among several attributes and many methods stop searching
after the test of 2 attributes together (e.g., statistical
correlation).

However, it may be the case that considering data at a low
level of granularity does not convey sense in terms of trend
analysis. For instance, it may be the case that the sales within
one day cannot be regarded as containing any gradually, while
the same data aggregated over days (all sales from the same
day are summed) may contain gradual trends. The database
being considered is thus transformed in order to merge lines.
An aggregation function is considered in order to fusion the
values, thus leading to the same discussions that the ones from
the data warehouse framework: the data being considered
(sales here) may be additive, semi-additive or non additive.

In our example, Sales are additive over all attributes and
over lines (tickets).

Example 2: We consider the database from Example 1,
where T1, T2 and T3 are from Monday and T4 and T5 are
from Tuesday.

TABLE II
VERTICAL AGGREGATION

Id Pineapples RedApples Cherries Durian

Monday
(T1-3)

0 3 0 0

Tuesday
(T4-5)

7 0 3 0

Conversely, it may also be the case that regarding the data

attribute per attribute does not convey information, while it
can be the case by aggregating columns from the database.

Example 3: For instance, the first two columns may be
merged.

TABLE III
HORIZONTAL AGGREGATION

Id WithoutKernel
Pineapples + RedApples Cherries

T1 3 0
T2 3 1
T3 8 2
T4 3 1
T5 7 3

In this paper, we thus consider these two ways of building

multiple level gradual patterns. This work can be linked to
data warehouses and OLAP mining as we consider data
mining over several attributes (dimensions) described over
several levels of granularities. However our framework is not
exactly the same, especially because aggregations can be
performed on some attributes and not for some other ones,
meaning that two attributes may be merged, while other ones

are not. This kind of operation is considered as being possible
from the semantic point of view because we consider ordinal
scales where the value itself does not impact. It is thus
possible to compare large values over one high level attribute
(e.g., RedFruits) and small ones over another low level
attribute (Pineapple).

The paper is organized as follows. Section II details the
preliminary definitions. Section III reports existing work on
gradual pattern mining and Section IV states the problem we
address, while Sections V and VI introduce our contribution,
namely the definitions of what Multiple Level Gradual
Patterns are and how they can be extracted.

II. PRELIMINARY DEFINITION
We introduce below the definitions taken from the literature

in order to define gradual pattern mining. Unfortunately, no
unique notation is available in the papers, we thus propose to
consider the ones given below.

Definition 1: Gradual-Attribute. A gradual attribute I is
defined over a domain dom(Ij) on which an order ≤j (or simply
≤) is defined.

Definition 2: Gradual-DB. A gradual database is a set of
tuples T defined over the schema S = {Id,I1,...,In} of n gradual
attributes where Id is an identifier (primary key).

Example 1 shows an example of a database which schema
is S = {Pineapples, RedApples, Cherries} containing 5 tuples
defined over three attributes which domains are IN.

Definition 3: Gradual item. A gradual item is a pair (i, v)
where i is an item and v is variation v א {↑, ↓}. ↑ stands for an
increasing variation while ↓ stands for a decreasing variation.
For example, (Pineapples, ↑) is a gradual item.

Definition 4: Gradual Pattern (also known as Gradual
Itemset). A gradual pattern is a set of gradual items, denoted
by GP = {(i1, v1), . . ., (in, vn)}. The set of all gradual patterns
that can be defined is denoted by GP.

For example, {(Pineapples,↑),(RedApples,↑)} is a gradual
itemset.

Definition 5: Tuple Ordering Over a Set of Attributes A.
The tuples from a gradual database are ordered by defining an
order ط with respect to a gradual pattern GP {(i1, v1), . . . , (in,
vn)}. Two tuples t and t′ can be ordered with respect to GP ,
denoted by t א GP t′ if all the values of the corresponding
items can be ordered with respect to the variations: for every
ik(k א [1,n]), t.ik ≤′t .ik if vl =↑ and t′.ik ≤ t.ik if vl =↓.

The support of a gradual pattern indicated to which extend
it can be found in the database.

Definition 6: Gradual Support. The support of a gradual
pattern over a gradual database GDB is a function sup from
GP to [0,1] that holds the following property: for all GP1, GP2
 .supp(GP1) ≥ supp(GP2) א GP2 א GP, GP1 א

III. RELATED WORK
A. Gradual Patten Mining
In the 70s, gradual patterns were used to model system

behaviors. Patterns were designed by experts. A complete

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

344

theoretical framework of gradual rules into the fuzzy context
is given in [11], with a comparison of fuzzy implication for
gradual dependencies. Among them the most used is
RescherGaines (RG) implication.

Regarding crisp data mining approaches, the authors agree
on the definition of gradual item (which couples a classical
item and a variation) and gradual itemsets (set of gradual
items), but have proposed several ways of defining the
support.

[15] considers a regression-based definition. [9] the authors
consider another definition of the support based on the
maximum proportion of tuples that can be ordered according
to the gradual itemset. While [3] and [16] consider the number
of tuples that are concordant and discordant, in the idea of
exploiting the Kendall’s tau ranking correlation coefficient
[14].

[15] defines gradually as a co-variation of gradual
dependency, where A gradual dependency such as the more
A, the more B holds if an increase in A comes along with an
increase in B. In order to identify such relationships, it
proposes to perform a linear regression analysis between the
two attributes. The validity of the gradual tendency is
evaluated from the quality of the regression. This definition
and this extraction method apply to pairs of attributes. The
extension proposed by [15] to longer itemsets considers the
case of fuzzy data, for which attributes contain the
membership degrees of the data to modalities. It exploits this
fuzzy logic framework and the fact that itemsets are
interpreted as conjunction of the items they contain: a
membership degree to the itemset can be computed using a t-
norm, applied to the membership degrees to the items of the
considered itemset. The gradual tendency is then understood
as a covariance constraint between the aggregated
membership degrees. Thus itemsets of length higher than 2
can be handled as itemsets of length 2.

Other works take a different point of view and interpret
gradual dependencies as constraints imposed to the order
induced by the attributes, and not to their numerical values: in
[3] gradual dependencies are considered as generalizations of
functional dependencies that replace the equality conditions
by variation conditions on the values. This definition takes
into account a causality relationship between the itemsets. It
states that the ordering induced by attribute A must be
identical to that derived from attribute B. In the case of
dependencies such as the more A, the less B, the constraint
imposes that the orders must be reversed.

[10] proposes an approach based on conflict sets. The
authors propose a heuristic to compute the support for gradual
itemsets, in a level-wise process that considers itemsets of
increasing lengths. It consists in discarding, at each level, the
rows whose so-called conflict set is maximal, i.e. the rows that
prevent the maximal number of rows to be sorted. The
selection is made by random in case of several conflict sets
having same size. Note that this heuristic may lead to loose
some loss. Indeed, it may be the case that a raw seam to create
a lot of conflicts compared to another one, but that this

number of conflicts is still lower than the conflicts generated
at the next level.

Example 4: The table below reports the conflicts regarding
the pattern {(Pineapples, ↑), (RedApples, ↓)}. Note that the
lines have been reordered to facilitate the reading by
considering the ranking on the values over the attribute
Pineapples. In the Table IV, the conflict set reports the Tickets
that are in conflict with the one being considered.

TABLE IV
CONFLICT SETS

Id Pineapples RedApples Cherries Conflict Set
T1 0 3 0 {T2,T3}
T2 2 1 1 {T1,T3}
T4 2 1 1 {T3}
T3 4 4 1 {T1,T2,T3,T4}
T5 7 0 3 Ø

In [9], the support is defined as being the longest path of

the precedence graph of tuples regarding a gradual pattern.
For instance, we can design the graph of Tickets regarding the
ordering on the gradual pattern {(Pineapples, ↑), (RedApples,
↓)} as displayed on Fig. 1. It can for example be seen that T3
is only linked with T5. T3 precedes T5 as T3.Pineapples ≤
T5.Pineapples and T3.RedApples ≥ T5.RedApples.

Fig. 1 Precedence Graph for {(Pineapples, ↑), (RedApples, ↓)}

The GRAANK approach from [16] interprets gradual pat-
terns in terms of ranking correlation. Binary matrices from [9]
can then be considered in order to speed up the algorithms.
The problem of rank correlation has been extensively studied
by statisticians, and several measures have been proposed,
distinguishing between two ranks and multiple rank
comparison. Regarding ranking pairs, the most used measures
are the Spearman correlation and the Kendall’s tau. The
Kendall’s tau is defined as follows: given n objects to be
ranked, and σk, k = 1,2 two rankings where σk(x) gives the
rank of object x in σk ranking, the Kendall’s tau relies on the
definition of concordant and discordant pairs: concordant
pairs (i,j) are pairs for which the rankings agree, i.e. either
σ1(i) ≤ σ1(j) and σ2(i) ≤ σ2(j), or σ1(i) ≥ σ1(j) and σ2(i) ≥ σ2(j).
Non concordant pairs are called discordant pairs. The

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

345

Kendall’s tau is then defined as the proportion of discordant
pairs, i.e. the frequency of pair-wise inversions.

Example 5: For instance, from Example 1, when consider-
ing the gradual pattern {(Pineapples, ↑), (RedApples, ↓)}.
− T1 and T2 are concordant
− T1 and T3 are discordant
− T1 and T4 are concordant
− T1 and T5 are concordant
− T2 and T3 are discordant
− T2 and T4 are concordant
− T2 and T5 are concordant
− T3 and T4 are concordant
− T3 and T5 are concordant
− T4 and T5 are concordant

Fuzzy extensions have been defined in order to deal with
real life applications where data and knowledge are often not
crisp. [1], [2] study the possibility that the graduality is not
over all the attribute but may be hidden somewhere in the
domain of values. For instance, when mining gene expression,
it may be the case that there is no pattern such as “The
more/less the expression of gene Gi, the more the expression
of gene Gj” but that it is rather the case that the pattern “The
more/less the expression of gene Gi is almost 0.2, the more the
expression of gene Gj is almost 0.8”. The proposal proposes a
definition of such fuzzy patterns and algorithms based on
genetic programming in order to discover the most relevant
parts of the universe (e.g. almost 0.2 and almost 0.8 in the
above example).

 [17], [18] propose to consider fuzzy orders instead of crisp
orders so as to tackle the problem of data where differences
between values may not always convey a crisp decision. For
instance, it may be the case that an expression of gene of
0.1887 may not be that lower than an expression of gene of
0.1888. The work is based on the definitions given by [4]–[6].

B. OLAP Mining and Hierarchical Data Mining
When dealing with hierarchies in databases, the main works

have been done in the framework on data warehouses and
OLAP (On-Line Analytical Processing). Data warehousing
refers to the process of constructing and exploiting of the data
warehouse. Data warehousing thus includes the integration of
the data from multiple sources into a unified schema at a
single location to facilitate data analysis for decision making.
Thus, the construction of a data warehouse includes data
integration, data cleansing, data consolidation and OLAP [7],
[8]. OLAP systems are constructed in a data warehouse
environment that serves as a repository of the data to be
processed. Data are organized over measures (e.g., number of
sales) studied with respect to dimensions (e.g., product,
month, city) which can be organized with hierarchies (e.g.,
month-quarter-year). OLAP operations are defined to help
end-users to navigate through the data. Some of the operations
are dedicated to the management of hierarchies: roll-up allows
to go from data described at a low level of granularity (e.g.,
month) to data given at a higher level of granularity (e.g.,
quarter).

OLAP Mining has been first introduced in 1997 by Jiawei
Han as a mechanism which integrates OLAP with data min-
ing so that mining can be performed in different portions of
databases or data warehouses and at different levels of
abstraction at users finger tips.

However, authors have considered multiple level data
mining before studying intensively data warehouses. In [20],
the beginnings of the hierarchy management in the extraction
of association rules and sequential patterns are proposed. The
authors suppose that the hierarchical relations between the
items are represented by a set of taxonomies. They make it
possible to extract association rules or sequential reasons
according to several levels of hierarchy. They modify the
transactions by adding for each item all of its ancestors in
associated taxonomy. Then, they generate the frequent
sequences while trying to filter with the maximum redundant
information and by optimizing the process using several
properties. However, this approach cannot be scalable in a
multidimensional context. Indeed, to add on each dimension
the list of the ancestors of one item in taxonomy, for each
transaction, is unthinkable.

That would be equivalent, in the worst case, to multiply the
size of the database by the maximum depth of a hierarchy and
this for each dimension of analysis, scan of this basis would
be then too much expensive.

The approach of J. Han et al. [13] is quite different. The
authors tackle the association rule extraction problem, but this
approach can be adapted to sequential pattern extraction.
Starting at the highest level of the hierarchy, they extract the
rules on each level while lowering the support when going
down in the hierarchy. The process is reiterated until no rules
can be extracted or until the lowest level of the hierarchy.
However, this method does not make it possible to extract
rules containing items of different levels. For example wine
and drinks cannot cohabit in such a rule. This method thus
proposes the extraction of intra level of hierarchy association
rules. It thus does not make it possible to answer the general
problems of extraction of the sequences on various levels of
hierarchy. Furthermore, the implementation of this approach
in a multidimensional context can be discussed. If several
taxonomies exist (one by dimension), does one have to move
on the same levels of hierarchy on various taxonomies or to
combine these levels? This type of extraction can be
expensive in time, because the mechanism of extraction of
knowledge can be reiterated several times (depth of
taxonomy), which is not inconsiderable.

[19] introduces multiple level sequential patterns. As it is
proven that finding out all sequential patterns from a database
is an np-complete problem, the authors propose to consider
convergent and divergent sequential patterns. When
considering convergent patterns, the levels of granularity of
the patterns along the sequence decreases (e.g. from county to
city). When considering divergent patterns, the levels of
granularity of the patterns along the sequence increases (e.g.
from city to county). Such patterns are of the form < (coke,
Paris)(soda, Paris) > meaning that in many cases, there has

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

346

been coke sold in Paris and then soda (higher level compared
to coke) sold in Paris. The authors highlight the interest of
extracting the “most specific” patterns, i.e. the patterns such as
there does not exist any pattern included within it (either
because some items can be deleted, or because some items can
be expressed at a lower level of granularity) which is frequent.
Looking for search patterns is interesting as patterns at high
level of granularity are often already known and do not
convey relevant knowledge for the end-users.

In this section, we have presented the works related to our
proposal. In the next session, we introduce our contribution
M2LGP standing for Mining Multiple Level Gradual Patterns.

IV. M2LGP: PROBLEM STATEMENTS
Starting from the definitions from Section II consolidated

from the existing works, we state an original framework. We
claim that many data are equipped with hierarchies, and we
want to define:
– how multiple level gradual databases can be defined;
– how multiple level gradual patterns can be defined;
– how the support on multiple level gradual patterns can be

defined;
– how multiple level gradual patterns can be extracted.

For this purpose, we rely on the existing work for defining
two main ways of considering multiple level data. Indeed, data
can be aggregated over lines (horizontal aggregation) or
columns (vertical aggregation).

Considering the first case, when lines are aggregated, the
problem is to define how the values are aggregated over every
attribute. It should be noted that lines can be aggregated over
one or several attributes, but that it may be the case that some
attributes are not aggregated. In this case, all the lines remain
in the database but some values change in order to represent
data at a higher level of granularity.

Example 6: For instance, data from Example 1 can be
merged as shown above, where the 5 lines are merged into 2
lines (Monday and Tuesday). They may also be merged for
certain attributes but not for all. For instance, below is the
dataset transformed by aggregating over lines for attribute
Pineapples.

This kind of operation may be interesting when some
attributes are not relevant at a low granularity level while
some other ones are. It could thus be compared to a kind of
semantic normalization. Such a partial aggregation is noted
with parenthesis on the values of aggregated attributes
(Pineapples here).

TABLE V
AGGREGATION ATTRIBUTES

Id (Pineapples) RedApples Cherries
T1 (6) 3 0
T2 (6) 1 1
T3 (6) 4 2
T4 (9) 1 1
T5 (9) 0 3

Considering the case where columns are merged, the main
issue to address is the definition of the hierarchies. In the case
of complex hierarchies, it may indeed be the case that some
values can be grouped into different super-partitions.

Example 7: For instance, PineApples and RedApples are
considered as being WithoutKernel and thus grouped, but we
may also consider that RedApples and Cherries can be
grouped in order to build the “RedFruit” group.

TABLE VI

RED FRUIT AGGREGATION

Id NotRed Red
(RedApples + Cherries)

T1 0 3
T2 2 2
T3 4 6
T4 2 2
T5 7 3

V. M2LGP: DEFINITIONS
A multiple level attribute MLA is an attribute equipped

with a hierarchy. This hierarchy is defined as a set of levels
where every level is represented as a partition, all the
partitions being embedded.

Definition 7: Level of Granularity. Given a domain D of an
attribute. A level of Granularity Li(D) is defined as a partition
Pi(D) of D and a set of labels describing every element of the
partition, this set of label being the domain dom(Li) of the
level.

Example 8: We consider the Date attribute with dom(Date)
={01JAN2012−8:00,02JAN2012−11:00, 05AUG2012−07:00,
27SEP2013−09:00, 30SEP2013−05:00, 30SEP2013−08:30}.
We may define three levels: L0 = DateDay, L1 = DateMonth,
L2 = DateYear, where :

– dom (DateDay) = dom (Date), dom (DateMonth) =
{JAN2012, AUG2012, SEP2013}, dom (DateYear) = {2012,
2013}

– Date Month = {{01JAN2012 − 8:00, 02JAN2012 −
11:00}, {05AUG2012 − 07:00, {27SEP2013 −09:00},
30SEP2013− 05:00, 30SEP2013− 08:30}

Definition 8: Embedded Levels of Granularity. Two levels
of granularity Li and Lj are said to be embedded (Li א Lj) if Lj
defines a partition of Li.

Definition 9: ML-Attribute. An ML-Attribute MLA is de-
fined by:

-a label,
-a domain dom (MLA),
-a set of embedded levels of granularity L =

L0(MLA),...,Lg(MLA) such as every domain dom(Li) is
ordered with a relation ≤Li .

Example 9: Temporal attributes are a particular case of
attributes. Although not being numeric, dates can be
aggregated when lines are merged in an adequate manner. For
instance, days can be regrouped into months. The attribute
Date with domain dom(Date) and levels .given above
dom(DateDay) is ordered as: 01JAN2012 − 8 : 00 ≤
02JAN2012 − 11 : 00 ≤ 05AUG2012−07 : 00 ≤ 27SEP2013 −

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

347

09 : 00 ≤ 30SEP2013 − 05 : 00 ≤ 30SEP2013 − 08 : 30. Dom
(DateMonth) is ordered as JAN2012 ≤ AUG2012 ≤ SEP
2013. Dom (DateYear) is ordered as 2012 ≤ 2013.

Remark 1: This definition does not allow complex
hierarchies as they can be found in data warehouses, although
such complex hierarchies could allow to manage the example
shown above where there are two incompatible levels of
granularity (With/Without kernel and NotRed/Red).

Given an ML-attribute MLA, an aggregation function Agg
is defined over the values taken by this attribute that allows to
compute the aggregated value when going from one level of
granularity up to another one. The attribute is said to be
additive if values can be summed up.

Definition 10: ML-DB. A multiple level gradual database is
a set of tuples T defined over the schema S = {Id,A1,...,An} of
n+1 multiple level gradual attributes (ML-Attributes).

Remark 2: Note that the identifier attribute Id is an ML-
attribute. This allows to manage vertical aggregation.

A gradual database can be displayed at several levels of
granularity. It is said to be additive if all attributes are
additive, semi-additive if at least one but not all attributes are
additive, and non-additive if none of the attributes is additive.

Definition 11: ML-DB-Disp. A gradual database displayed
is given by an ML-DB and a set of levels {L1,...,Ln}
associated with every attribute from the schema.

For instance, the information is displayed at different levels
of granularity in the previous tables.

Remark 3: It should be noted that based on this definition,
the number of items can change when the display is changed.

Definition 12: ML-Item. Given an ML-DB, an ML-Item is
a pair (I, variation) where I א UAאS ULIאLA domA(Li), and
variation is ↑ or ↓.

Example 10: For instance, (RedFruit, ↓), (Pineapples, ↑) are
ML-Items.

Definition 13: Compatible ML-Item. Two ML-Items are
said to be compatible if none of their first part I is the value
taken from an upper hierarchy level.

Example 11: For instance, (RedFruit, ↓) and (Pineapples, ↑)
are compatible, while (RedFruit, ↓) and (Cherries, ↑) are
not.

Definition 14: ML-Pattern. An ML-Pattern is a set of
compatible ML-items.

Definition 15: ML-Pattern Inclusion. A pattern P1 is said to
be “ML-included” in another pattern P2 (P1 א MLP2). if for
every ML-Item Ik

1 of P1, there exists an item Il
2 from P2 such

as either Ik
1 = Il

2 or Il
2 is an item from an upper level and the

variation is the same.
Example 12: For instance P = {(Date, DateDay, ↑), (Fruit,

RawFruit, ↓)} is P′ = {(Date,DateDay,↑),(Fruit,ColorFruit,↓)}.
Definition 16: Multiple Level Gradual Support. Given an

ML-DB-Disp MLDBD and an ML-Pattern P, the support of P
over MLDBD is a function sup from GP to [0,1] that holds the
following property: for all P1, P2 א GP, P1 א MLP2 א supp(P1)
≥ supp(P2).

On the basis of the two support definitions, the main point
to observe is that they are strongly related to the number of
lines from the database.

When performing a horizontal aggregation (merging
columns), the number of lines does not change, although it is
changed when lines are merged. However, the gradual pattern
being considered has changed (as the columns changed).

When performing a vertical aggregation (merging lines),
the number of lines may change, either for one or for all the
attributes.

Whatever the aggregation, the support can still be computed
using either the longest path or the rank correlation.

VI. M2LGP: EFFICIENT MINING
Although aggregating the columns and/or lines may be seen

as a reduction, it is not the case that it simplifies the
complexity of the algorithm. Indeed, the reduction is true only
at one level of granularity while all levels may be considered.

In order to address the problem of navigating through this
huge search space, we define the following strategies and
discuss their pros and cons.

A. Building the Search Space: MLGP Operators and MLGP
Lattice

The navigation through candidate patterns is performed via
operators that allow to apply horizontal and vertical
(dis)aggregation. These operators are connected to the OLAP
roll-up and drill-down operators, although not being exactly
identical.

B. Navigating through the Search Space: Defining
Strategies

Considering these operations and the resulting lattice rep-
resenting the search space, we consider several strategies.

Given an ML-DB-Disp D, we can aggregate or
disaggregate this database over lines or columns.

Definition 17: ML-HAgg. An H-Aggregation consists in
merging several lines with respect with a line hierarchy (given
a source level and a target level), regarding one or several
attributes. The value taken on these attributes are aggregated.
Such an aggregation is denoted by ()

Example 13: For instance, lines of Ticket1 to Ticket3 one
the one hand, and of Ticket4 and Ticket5 on the other hand
have been merged over the Pineapples attribute, which is then
denoted by (Pineapples), the values being themselves enclosed
within parenthesis.

Remark 4: Although having been merged, the lines may
remain separated if some attributes are not concerned with the
ML-HAgg operation, which is a major difference with OLAP
roll-up. The aggregated value is repeated on all the lines,
which is not problematic as we consider equal values as being
comparable in both ways (≤).

Example 14: In our example, the lines are merged over the
Pineapples attribute but not over the other attributes.

Definition 18: ML-HDisagg. An ML-HDisagg with respect
with a hierarchy (given a source level and a target level),

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

348

regarding one or several attributes, consists in drilling down
by generating several lines from one line and by recomposing
(from the raw data) the unmerged values. The value taken on
these attributes are aggregated.

Definition 19: ML-VAgg. A vertical aggregation consists in
merging several columns with respect with a hierarchy (given
a source low level and a target high level).

Definition 20: ML-VDisagg. A vertical disaggregation
consists in splitting one column into several columns with
respect with a hierarchy (given a source high level and a target
low level).

Definition 21: Most Specific ML-Pattern. Given a mini-
mum support threshold minsup, an ML-pattern P1 is said to be
the “most specific” pattern if there does not exist any P2 such
as P2 א ML P1 and supp(P2) ≥ minsup.

Taking these operations into account, the lattice
representing the search space is based on the classical lattice
of all the parts of the n items and variations, which is enriched
by levels.

The first strategy is to explore all the search space. Instead
of having a lattice composed by 2n nodes in the case of n
attributes, the search space is then composed of 2l where l is
the sum of all numbers of levels. For instance, we may
consider the attribute Fruit with 2 levels (raw level, and Color
Level). Moreover, a strategy should be followed in order to
navigate through the levels. However, there is no useful
monotonicity between levels, which prevents from pruning the
space in an efficient way. It can thus be the case that exploring
this search space is not possible. This is the reason why other
methods can be considered.

Convergent and divergent patterns have been proposed in
the sequential pattern mining framework [19], where items are
naturally organized as they are ordered over time. In the
context of multiple level gradual patterns, it is unfortunately
not the case that we can go up or down while going through
attributes.

The last proposal is thus to use a heuristic. In our frame-
work, we propose to compute all the supports for all multiple
level gradual patterns of size 2 (containing 2 ML-items) and to
consider the levels that maximize the support at this step. Note
that this also holds for the horizontal aggregation in order to
decide to which extend lines must be merged.

Example 15: For instance, if considering the dataset
structured over the schema Date, Fruits, all the possibilities
of levels and crossing will be considered: (DateDay,
RawFruits),(DateMonth, RawFruits), (DateYear, RawFruits),
(DateDay, ColorFruits), DateMonth, ColorFruits) (DateYear,
ColorFruits) and the most successful regarding the support
will be chosen.

Note that pairs of such ML-items may be incompatible. For
instance, it may be the case that Fruits is considered at the
RawFruits level when being combined with Date but
considered at the ColorFruits level when combined with
another attribute. In this case, we propose to choose between
two strategies: keep all levels or choose the one optimizing the
support.

VII. M2LGP: ALGORITHMS AND EXPERIMENTS
Our algorithms are based on the decomposition of the

database in order to deal with all the hierarchies, as described
in the algorithms below. We then run experiments using
existing implementations of gradual pattern mining
algorithms.

ALGORITHM I
ALGOM2LFGP

Input : DB
Output : Set of GD

GD ← ٕ;
Transform DB (DB);
for each transformed database D do
 AlgoGP (D);
end

Experiments have been run on both synthetic and real data

reporting expressions of gene in the case of cancer. As can be
seen on Fig. 2, the presence of the hierarchies makes the
problem difficult to tackle as it exponentially increases the
search space. We thus aim at using parallel programming in
further work.

ALGORITHM 2
TRANSFORM DB

Input : DB
Output : Set of tranformed database(D)
D← ٕ;
GenerateHierarchy(nbColsDB,nbLignesDB);
for each h ٕ HH do
D ← D ٕ Htransform(DB, h);
end
D′ ← D;
freach (h,h′) ٕ HH2 do
D′ ← D′ ٕ HHtransform(DB, h, h′);
end
D′′ ← ٕ;
for each h ٕ HV do
D′′ ← D′′ ٕ Vtransform(DB, h);
end
D′′′ ← D′′;
for each h ٕ D′′ do
D′′′ ← D′′′ ٕ Htransform(DB, h);
end
return set of D(D, D′, D′′, D′′′);

ALGORITHM 3

GENERATE HIERARCHY
Input : nbColsDB,nbLignesDB
Output : Hierarchy(H)
HH ← ٕ;
HH2 ← ٕ;
VH ← ٕ;
H ← HH, HH2 , VH;
for each h ٕ H do
 if h=HH then
 h ← GenerateNodeEdges(nbColsDB,nbTopNode);
 else if h = HH2 then
 h← GenerateNodeEdges(nbLignesDB,nbTopNode);
 else
 h ← GenerateNodeEdges();
 end
 end
return H;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:3, 2013

349

Fig. 2 Runtime regarding the number of attributes

VIII. CONCLUSION AND FUTURE WORKS
In this paper, we propose the original method M2LGP for

mining multiple level gradual patterns. Such patterns allow to
take into account the natural structures of the information that
can often be considered at different levels of granularity. The
paper proposes a formal framework for redefining all the
concepts in this particular framework, including a discussion
on the computation of the support. The topic is of great
importance since data mining has been pointed as a key
challenge, especially when dealing with big data. The
problematic is not easy, since multiple level gradual patterns
are similar to existing frameworks (gradual patterns, multiple
level association rules, OLAP Mining) but are still an original
approach as they contain specificities that are difficult to
manage.

Future work include the study of fuzzy partitions for
defining fuzzy multiple level gradual patterns and their
support. We will also further investigate the algorithms for
extracting the multiple level gradual patterns. The efficient
implementation of this proposal will be based on the existing
parallel softwares such as [12].

REFERENCES

[1] Ayouni S., Ben Yahia S., Laurent A., Poncelet P. Fuzzy Gradual
Patterns: What Fuzzy Modality For What Result?. In Proc. of the
International Conference on Soft Computing and Pattern Recognition
(SoCPaR’10). 2010.

[2] Ayouni S., Ben Yahia S., Laurent A., Poncelet P. Genetic Programming
for Optimizing Fuzzy Gradual Pattern Discovery.. In Proc. of the
Conference of the European Society for Fuzzy Logic and Technology
(EUSFLAT-2011). 2011.

[3] Berzal, F., Cubero, J.C., Sanchez, D., Vila, M.A., Serrano, J.M.: An
alternative approach to discover gradual dependencies. Int. Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems (IJUFKS). 15(5)
(2007) 559–570.

[4] Bodenhofer, U.: Orderings of Fuzzy Sets Based on Fuzzy Orderings Part
I: The Basic Approach. In Mathware & Soft Computing 15 (2008) 201-
218.

[5] Bodenhofer, U.: Orderings of Fuzzy Sets Based on Fuzzy Orderings Part
II: Generalizations. In Mathware & Soft Computing 15 (2008) 219-249.

[6] Bodenhofer, U., and Klawonn, F.: Towards Robust Rank Correlation
Measures for Numerical Observations on the Basis of Fuzzy Orderings.
In 5th Conference of the European Society for Fuzzy Logic and
Technology, septembre, 2007, pp. 321 – 327.

[7] Chaudhuri S. and Dayal U. An overview of data warehousing and OLAP
technology. ACM-SIGMOD Records, 26(1):65–74, 1997.

[8] Codd E.F., Codd S.B., and Salley C.T. Providing OLAP (OnLine
Analytical Processing) to user-analysts: An it mandate. In White Paper,
1993.

[9] Di Jorio L., Laurent A., Teisseire M. Mining Frequent Gradual Itemsets
From Large Databases. Intelligent Data Analysis (IDA09). 2009.

[10] DiJorio L.,Laurent A.,Teisseire M.Gradual Rules: AHeuristic Based
Method and Application to Outlier Extraction. International Journal of
Computer Information Systems and Industrial Management Applications
(IJCISIM). Vol.1, pp.145-154. 2009.

[11] Dubois, D., Prade, H.: Gradual inference rules in approximate reasoning.
Information Sciences 61(1-2) (1992) 103–122.

[12] Do T.D.T., Laurent, A., and Termier, A. PGLMC: Efficient Parallel
Mining of Closed Frequent Gradual Itemsets. In Proc. International
Conference on Data Mining (ICDM). 2010.

[13] Han J. and Fu Y. Mining multiple-level association rules in large
databases. IEEE Trans. Knowl. Data Eng., 11(5):798–804, 1999.

[14] Kendall M. and Babington Smith B., The problem of m rankings, The
annals of mathematical statistics, 1939, vol.10(3):275- 287.

[15] Koh, H-W., and Hullermeier, E.:Mining Gradual Dependencies Based
on Fuzzy Rank Correlation. In Combining Soft Computing and
Statistical Methods in Data Analysis. Springer, 2010.

[16] Laurent, A., Lesot, M.-J., and Rifqi, M.: GRAANK: Exploiting Rank
Correlations for Extracting Gradual Itemsets. In Proc. of the Eighth
International Conference on Flexible Query Answering Systems
(FQAS09). 2009.

[17] Quintero M., Del Razo F., Laurent A., Poncelet P. and Sicard N. Fuzzy
Orderings for Fuzzy Gradual Dependencies: Efficient Storage of
Concordance Degrees. In Proc. of the IEEE International Conference on
Fuzzy Systems. 2012.

[18] Quintero M., Laurent A. and Poncelet P. Fuzzy Orderings for Fuzzy
Gradual Patterns. In Proc. of the Int. Conference on Flexible Query
Answering Systems. 2011.

[19] Plantevit M.,Choong Y. W.,Laurent A.,Laurent D.,Teisseire M. Mining
Multidimensional and Multiple-Level Sequential Patterns. ACM
Transactions on Knowledge Discovery from Data (ACM TKDD). 2009.

[20] Srikant R. and Agrawal R. Mining sequential patterns: Generalizations
and performance improvements. In EDBT, pages 3–17, 1996.

