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Compression and Filtering of Random Signals
under Constraint of Variable Memory

Anatoli Torokhti and Stan Miklavcic

Abstract—We study a new technique for optimal data compression
subject to conditions of causality and different types of memory. The
technique is based on the assumption that some information about
compressed data can be obtained from a solution of the associated
problem without constraints of causality and memory. This allows
us to consider two separate problem related to compression and de-
compression subject to those constraints. Their solutions are given
and the analysis of the associated errors is provided.

Keywords—stochastic signals, optimization problems in signal
processing.

I. INTRODUCTION

AStudy of data compression methods is motivated by
the necessity to reduce expenditures incurred with the

transmission, processing and storage of large data arrays.
Such methods have also been applied successfully to the
solution of problems related to clustering, feature selection and
forecasting. While the topics have been intensively studied (see
e.g. [1]-[10]), a number of related fundamental questions are
still open. One of them concerns specific restrictions associated
with different types of causality and memory.

A. First motivation: causality and memory

Data compression techniques mainly consist of two oper-
ations, compression itself and decompression (or reconstruc-
tion). In reality, both operations are subject to the conditions
of causality and memory.

By the heuristic definition of causality, the present value
of the output of a filter is not affected by future values of
the input [11]. To determine the output signal at time t0, the
causal filter should “remember” the input signal up to time
t0.

A filter with finite memory Δ is “able” to determine the
output signal at time t0 from a fragment of the input signal
on the segment [t0 − Δ, t0] only. In other words, the filter
with finite memory Δ should “remember” the input signal on
the segment of length Δ [5].

A broader notion of a filter with variable finite memory [5]
means that such a filter should remember segments of the input
signal on time segments of different length [5].

A formalization of these concepts are given in Section III-A
below.

Our first motivation comes from the observation that the fil-
ters we propose should be causal with variable finite memory.
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B. Second motivation: reformulation of the problem

Let (Ω, Σ, μ) be a probability space, where Ω = {ω} is the
set of outcomes, Σ a σ–field of measurable subsets in Ω and
μ : Σ → [0, 1] an associated probability measure on Σ with
μ(Ω) = 1.

Below, in Sections I-B1–I-B3, we consider some possible
statements of the problem and discuss associated assumptions.
An alternative new statement of the problem developed in this
paper is formulated in Section II.

1) Informal statement of the problem: In an informal way,
the data compression problem we consider can be expressed
as follows.

Let y ∈ L2(Ω, Rn) be observable data and x ∈ L2(Ω, Rm)
be a reference signal that is to be estimated from y in such
a way that, (a) the data y should be compressed to a shorter
vector z ∈ L2(Ω, Rr)1 with r < min{m,n} and (b) z should
be decompressed (reconstructed) to a signal x̃ ∈ L2(Ω, Rm)
that is ‘close’ to x in some appropriate sense. Both operations
should be causal and have variable finite memory. In this
paper, the term ‘close’ is used with respect to the minimum
of the norm (2) of the difference between x and x̃.

2) Some possible formalizations of the problem: The prob-
lem can be formulated in several alternate ways. Here, we
consider two of them.

The first way is as follows. Let B : L2(Ω, Rn) →
L2(Ω, Rr) signify compression so that z = B(y) and let
A : L2(Ω, Rr) → L2(Ω, Rm) designate data decompression,
i.e., x̃ = A(z). We suppose that B and A are linear operators
defined by the relationships

[B(y)](ω) = B[y(ω)] and [A(z)](ω) = A[z(ω)] (1)

where B ∈ R
n×r and A ∈ R

r×m. In the remainder of this
paper we shall use the same symbol to represent both the linear
operator acting on a random vector and its associated matrix.

We define the norm to be

‖x‖2
Ω =

∫
Ω

‖x(ω)‖2
2dμ(ω) (2)

where ‖x(ω)‖2 is the Euclidean norm of x(ω). Let us denote
by J(A, B), the norm of the difference between x and x̃,
constructed by A and B:

J(A,B) = ‖x − (A ◦ B)(y)‖2
Ω. (3)

The problem is to find B0 : L2(Ω, Rn) → L2(Ω, Rr) and
A0 : L2(Ω, Rr) → L2(Ω, Rm) such that

J(A0, B0) = min
A,B

J(A,B) (4)

1Components of z are often called principal components [1].
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subject to conditions of causality and variable finite memory
for A and B.

A second way to formulate the problem is as follows. Let
F : L2(Ω, Rn) → L2(Ω, Rm) be a linear operator defined by

[F(y)](ω) = F [y(ω)] (5)

where F ∈ R
n×m. Let rank F = r and

J(F ) = ‖x −F(y)‖2
Ω.

Find F0 : L2(Ω, Rn) → L2(Ω, Rm) such that

J(F 0) = min
F

J(F ) (6)

subject to
rank F ≤ min{m,n} (7)

and conditions of causality and variable finite memory for F .
3) Inherent assumptions and possible solution approaches:

If there are no constraints associated with causality and
variable finite memory, then solutions of problems (4) and
(6)-(7) are based on the assumptions that certain covariance
matrices are known. In this regard, see, for example, [2]–
[5]. In particular, the solution of problem (4) provided in [2]
(with no constraints of causality and variable finite memory)
follows from an iterative scheme that requires a knowledge of
two covariance matrices at each step of the scheme. Thus, if
the method proposed in [2] requires p iterative steps, then it
requires a knowledge of 2p covariance matrices.

In the case of no constraints of causality and variable
finite memory, the known solution of problem (6)-(7) requires
knowledge of two covariance matrices only [3], [4], [5].

4) Difficulties associated with problems (4) and (6)-(7) : A
special difficulty with solving problem (4) is that it involves
two unknowns, A and B, but only one functional to minimize.
An iterative approach to its approximate solution based on the
method presented in [2] requires knowledge of a number of
covariance matrices. Another difficulty is that A and B must
keep their special form associated with causality and variable
finite memory. Related definitions are given in Section I-B2.

Unlike (4), the problem (6)–(7) has only one unknown.
Nevertheless, the main difficulty associated with problem (6)-
(7) is similar: an implementation of the conditions of causality
and variable finite memory into a structure of F implies a
representation of F as a product of two factors, each with a
specific shape related to causality and memory. An approach to
its exact solution based on the methodology presented in [3],
[4], [5] would require knowledge of two covariance matrices
only, but implies constraints related to a special shape of each
factor in a decomposition of F as a product of two factors.
Therefore, as with problem (4), the difficulty again relates
to dealing with two unknowns with only one functional to
minimize.

II. STATEMENT OF THE PROBLEM

A. Basic idea

To avoid the difficulties discussed above, we propose a new
approach to the solution of the data compression problem. The
basic idea is as follows.

Let x ∈ L2(Ω, Rm), y ∈ L2(Ω, Rn) and z ∈ L2(Ω, Rr),
and let A and B be defined as in Section I-B2. Let M(r, n, ηB )
and M(m, r, ηA

) be sets of causal matrices, B ∈ R
r×n

and A ∈ R
m×r, with variable finite memories, η

B
and η

A
,

respectively, defined as in Section III-A below. We assume
that information about vector z in the form of associated
covariance matrices can be obtained, in particular, from the
known solution [5] of problem (6)-(7) with no constraints
associated with causality and memory.

Therefore, in this paper, the data compression problem
subject to B ∈ M(r, n, ηB

) and A ∈ M(m, r, η
A
) is proposed

to state in the form of two separate problems (8) and (9)
formulated below.

It is shown in Section III-A that operators B and A satis-
fying conditions of causality and variable finite memory must
have special forms. In Section III-A this issue is discussed in
detail.

B. The problem

Consider
J1(B) = ‖z − B(y)‖2

Ω.

Let B0 be such that

J1(B0) = min
B

J1(B) subject to B ∈ M(r, n, η
B
). (8)

Definitions of the set M(r, n, η
B
) and the set M(m, r, η

A
)

used in (9) are given in Section III-A below. We write z0 =
B0(y).

Next, let
J2(A) = ‖x − A(z0)‖2

Ω

and let A0 be such that

J2(A0) = min
A

J2(A) subject to A ∈ M(m, r, η
A
). (9)

We denote x0 = A0(z0).
The problem considered in this paper is to find operators

B0 and A0 that satisfy minimization criteria (8) and (9),
respectively.

Operator B0 provides a compression of the signal y to
the form z0. It is shown in Section III-B that the solution
requires knowledge of four covariance matrices formed from
the vectors z and y. Further, A0 reconstructs the compressed
signal z0 to the form x0 so that x0 is an optimal representation
of x in the sense of the constrained minimization problem
(9). This stage implies knowledge of four covariance matrices
formed from x and z0.

C. Differences of our statement of the problem

The major differences between the above statement of the
problem and the earlier statements found in [2]–[5] are as
follows. Firstly, A and B should be causal with variable finite
memory. Secondly, we represent the initial problem considered
in Section I-B1 in the form of a concatenation of two new
separate problems (8) and (9).

The crucial assumption we make is that information about
vector z can be obtained from the known solution [5] of
problem (6)-(7) with no constraints associated with causality
and memory.
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III. MAIN RESULTS

A. Formalization of concept of variable memory

Let τ1 < τ2 < · · · < τn be time instants and α, β, ϑ : R →
L2(Ω, R) be continuous functions. Suppose αk = α(τk),
βk = β(τk) and ϑk = ϑ(τk) are real valued random variables
having finite second moments. We write

x = [α1,α2, . . . ,αm]T y = [β1, β2, . . . ,βn]T

and
z = [ϑ1, . . . ,ϑr]T .

Let z̃ be a compressed form of data y defined by z̃ = B(y)
with z̃ = [ϑ̃1, . . . , ϑ̃r]T , and x̃ be a de-compression of z̃
defined by x̃ = A(z̃) with x̃ = [α̃1, . . . , α̃m]T .

In many applications2, to obtain ϑ̃k for k = 1, . . . , r, it is
necessary for the compressor B to use only a limited number
of input components, η

Bk
= 1, . . . , r. A number of such input

components η
Bk

is here called a kth local memory for B.
To define a notation of memory for the compressor B, we

use parameters p and g which are positive integers such that

1 ≤ p ≤ n and n − r + 2 ≤ g ≤ n.

Definition 1: The vector ηB
= [η

B1
, . . . , η

Br
] is called a

variable memory of the compressor B. In particular, ηB is
called a complete variable memory if ηB1

= g and ηBk
= n

when k = n − g + 1, . . . , n. Vector η
B

is called a truncated
variable memory of B if, for r ≤ p ≤ n, η

B1
= p− r +1 and

η
Br

= p. Here, p relates to the last possible nonzero entry in
the bottom row of B and g relates to the last possible nonzero
entry in the first row.

The notation ηA
= [η

A1
, . . . , η

Am
] has a similar meaning

for the de-compressor A. Here, ηAj
is the jth local memory

of A. In other words, η
Aj

is the number of input components
used by the de-compressor A to obtain the estimate α̃j with
j = 1, . . . , m.

The parameters q and s which are positive integers such
that

1 ≤ q ≤ r and 2 ≤ s ≤ m

are used below to define two types of memory for A.
Definition 2: Vector ηA is called a complete variable mem-

ory of the de-compressor A if η
A1

= q and η
Aj

= r when
j = s+r−1, . . . , m. Vector η

A
is called a truncated variable

memory of A if ηAj
= 0 for j = 1, . . . , s − 1, η

As
= s and

ηAj
= r when j = s+r−1, . . . , m. Here, q relates to the first

possible nonzero entry in the last column of A and s relates
to the first possible nonzero entry in the first column.

The memory constraints described above imply that certain
elements of the matrices B = {bij}r,n

i,j=1 and A = {aij}m,r
i,j=1

must be set equal to zero. In this regard, for matrix B with
r ≤ p ≤ n, we require that

bi,j = 0 (10)

if j = p − r + i + 1, . . . , n, for

{
p = r, . . . , n − 1,
i = 1, . . . , r

(11)

2Examples include computer medical diagnostics [14] and problems of bio-
informatics [15].

and

{
p = n,
i = 1, . . . , r − 1,

(12)

and, for 1 ≤ p ≤ r − 1, it is required that

bi,j = 0 (13)

if

{
i = 1, . . . , r − p,
j = 1, . . . , n,

(14)

and if

{
i = r − p + 1, . . . , r,
j = i − r + p + 1, . . . , n.

(15)

See Examples 1 and 2 below.
For matrix A with r ≤ p ≤ n, we require

ai,j = 0 (16)

if j = q + i, . . . , r for q = 1, . . . , r − 1, i = 1, . . . , r − q,

and, for 2 ≤ s ≤ m, it is required that

ai,j = 0 (17)

if j = s + i, . . . , r for s = 1, . . . , m, i = 1, . . . , s + r − 1,

See Examples 3 and 4 below.
The above conditions imply the following definitions.
Definition 3: A matrix B satisfying the constraint (10)–

(11) is said to be a causal operator with the truncated variable
memory ηB

= [p − r + 1, . . . , p]. The set of such matrices is
denoted by M

T
(r, n, η

B
).

Example 1: Let n = 8, r = 3 and p = 7. If the symbol •
denotes an entry that may be non-zero, then B of the form

B =

⎡⎣ • • • • • 0 0 0
• • • • • • 0 0
• • • • • • • 0

⎤⎦
is a causal operator with the truncated variable memory ηB

=
[5, 6, 7].

Definition 4: A matrix B satisfying the constraint (15)–
(14) is said to be a causal operator with the complete
variable memory η

B
= [g, g + 1, . . . , n]. Here, η

Bk
= n when

k = n− g + 1, . . . , n. The set of such matrices is denoted by
M

C
(r, n, η

B
).

Example 2: Let n = 6, r = 4 and g = 4. Then B such that

B =

⎡⎢⎢⎣
• • • • 0 0
• • • • • 0
• • • • • •
• • • • • •

⎤⎥⎥⎦
is the causal operator with the complete variable memory
η

B
= [4, 5, 6, 6].

Definition 5: A matrix A satisfying the constraint (16)–
(17) is said to be a causal operator with the complete
variable memory ηA = [r − q + 1, . . . , r]. Here, ηAj

= r
when j = q, . . . , m. The set of such matrices is denoted by
M

C
(m, r, η

A
).

Example 3: Let m = 5, r = 4 and q = 3. Then A of the
form
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A =

⎡⎢⎢⎢⎢⎣
• • 0 0
• • • 0
• • • •
• • • •
• • • •

⎤⎥⎥⎥⎥⎦
is a causal operator with the complete variable memory η

A
=

[2, 3, 4, 4, 4].
Definition 6: A matrix A satisfying the constraint (17)–

(18) is said to be a causal operator with the truncated variable
memory ηA

= [0, . . . , 0, 1, . . . , r]. Here, η
Aj

= 0 when
j = 1, . . . , s − 1, and η

Aj
= r when j = s + r − 1, . . . , m.

The set of such matrices is denoted by MT (m, r, ηA).
Example 4: Let m = 6, r = 4 and s = 3. Then matrix A

such that

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0
0 0 0 0
• 0 0 0
• • 0 0
• • • 0
• • • •

⎤⎥⎥⎥⎥⎥⎥⎦
is a causal operator with the truncated variable memory η

A
=

[0, 0, 1, 2, 3, 4].

B. Solution of problems (8) and (9)

To proceed any further we shall require some more notation.
Let

〈αi, βj〉 =
∫

Ω

αi(ω)βj(ω)dμ(ω) < ∞,

Exy = {〈αi, βj〉}m,n
i,j=1 ∈ R

m×n, (18)

y1 = [β1, . . . ,βg−1]
T , y2 = [βg, . . . ,βn]T , (19)

z1 = [ϑ1, . . . ,ϑg−1]T and z2 = [ϑg, . . . ,ϑn]T . (20)

The pseudo-inverse matrix [12] for any matrix M is denoted
by M †. The symbol O designates the zero matrix.

Definition 7: [5] Two random vectors u and w are said
to be mutually orthogonal if Euw = O.

Lemma 1: [5] If we define

w1 = y1 and w2 = y2 − Pyy1

where Py = Ey1y2E
†
y1y1

+ Dy(I − Ey1y1E
†
y1y1

) with Dy an
arbitrary matrix, then w1 and w2 are mutually orthogonal
random vectors.

1) Solution of problem (8). The case of complete variable
memory: Let us first consider problem (8) when B has
the complete variable memory ηB = [g, g + 1, . . . , n] (see
Definition 4).

Let us partition B in four matrices KB , LB , SB1 and SB2

so that

KB ∈ R
nb×(g−1)is a rectangular matrix with nb = n − g + 1,

LB ∈ R
nb×nb is a lower triangular matrix, and

SB1 ∈ R
(r−nb)×(g−1), SB2 ∈ R

(r−nb)×nb are rectangular matrices.

We have

B(y) =
[

KB LB

SB1 SB2

] [
y1

y2

]
=
[

KB(y1) + LB(y2)
SB1(y1) + SB2(y2)

]
=

[
KB(w1) + LB(w2 + Py(w1))
SB1(w1) + SB2(w2 + Py(w1))

]
=

[
TB(w1) + LB(w2)
SB(w1) + SB2(w2)

]
,

where

TB = KB + LBPy and SB = SB1 + SB2Py. (21)

Then

J1(B) = ‖z − B(y)‖2
Ω

=
∥∥∥∥[ z1

z2

]
−
[

TB LB

SB SB2

] [
w1

w2

]∥∥∥∥2

Ω

= J (1)(TB , LB) + J (2)(SB , SB2), (22)

where

J (1)(T, L) = ‖z1 − [TB(w1) + LB(w2)]‖2
Ω

and

J (2)(SB , SB2) = ‖z2 − [SB(w1) + SB2(w2)]‖2
Ω.

By analogy with Lemma 37 in [5],

min
B∈M(r,n,η

B
)
J1(B) = min

TB ,LB

J (1)(TB , LB)

+ min
SB ,SB2

J (2)(SB , SB2). (23)

Therefore, problem (8) is reduced to finding matrices T 0
B , L0

B ,
S0

B and S0
B2 such that

J (1)(T 0
B , L0

B) = min
TB ,LB

J (1)(TB , LB) (24)

and
J (2)(S0

B , S0
B2) = min

SB ,SB2
J (2)(SB , SB2). (25)

Taking into account the orthogonality of vectors w1 and w2,
and working in analogy with the argument on pp. 348–352 in
[5], it follows that matrices S0

B and S0
B2 are given by

S0
B = Ez2w1E

†
w1w1

+ HB(I − Ew1w1E
†
w1w1

) (26)

and

S0
B2 = Ez2w2E

†
w2w2

+ HB2(I − Ew2w2E
†
w2w2

), (27)

where HB and HB2 are arbitrary matrices.
Next, to find T 0

B and L0
B we use the following notation.

For r = 1, 2, . . . , �, let ρ be the rank of the matrix Ew2w2 ∈
R

n2×n2 with nb = n − g + 1, and let

Ew2w2
1/2 = Qw,ρRw,ρ

be the QR-decomposition for Ew2w2
1/2 where Qw,ρ ∈ R

n2×ρ

and Qw,ρ
T Qw,ρ = I and Rw,ρ ∈ R

ρ×n2 is upper trapezoidal
with rank ρ. We write Gw,ρ = Rw,ρ

T and use the notation

Gw,ρ = [g1, . . . , gρ] ∈ R
n2×ρ
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where gj ∈ R
n2 denotes the j-th column of Gw,ρ. We also

write

Gw,s = [g1, . . . , gs] ∈ R
n2×s (28)

for s ≤ ρ to denote the matrix consisting of the first s columns
of Gw,ρ. For the sake of simplicity, let us set

Gs := Gw,s. (29)

Next,

e1
T = [1, 0, 0, 0, . . .], e2

T = [0, 1, 0, 0, . . .], etc.

denote the unit row vectors whatever the dimension of the
space.

Finally, any square matrix M can be written as M = MΔ+
M∇ where MΔ is lower triangular and M∇ is strictly upper
triangular. We write ‖ · ‖F for the Frobenius norm.

Lemma 2: If A = B + C and bijcij = 0 for all i, j then

‖A‖2
F = ‖B‖2

F + ‖C‖2
F .

Theorem 1: Let B have the complete variable memory
η

B
= [g, g + 1, . . . , n]. Then the solution to problem (8) is

provided by the matrix B0, which has the form

B0 =
[

K0
B L0

B

S0
B1 S0

B2

]
,

where the blocks K0
B ∈ R

nb×(g−1), S0
B1 ∈ R

(r−nb)×(g−1)

and S0
B2 ∈ R

(r−nb)×nb are rectangular, and the block L0
B ∈

R
nb×nb is lower triangular. These blocks are given as follows.

The block K0
B is given by

K0
B = T 0

B − L0
BPy (30)

with

T 0
B = Ez1w1E

†
w1w1

+ NB1(I − Ew1w1E
†
w1w1

) (31)

where NB1 is an arbitrary matrix. The block L0
B =

⎡⎢⎣ λ0
1
...

λ0
nb

⎤⎥⎦ ,

for each s = 1, 2, . . . , n2, is defined by its rows

λ0
s = es

T Ez1w2Ew2w2
† GsGs

† + fs
T (I − GsGs

†) (32)

with fs
T ∈ R

1×n2 arbitrary. The blocks S0
B1 and S0

B2 are
given by

S0
B1 = S0

B − S0
B2Py (33)

and (27), respectively. In (33), S0
B is presented by (26).

The minimum error associated with the matrix B0 is given
by

‖z − B0y‖2
Ω =

ρ∑
s=1

n2∑
j=s+1

|es
T Ez1w2Ew2w2

†gj |2

+
2∑

j=1

‖Ezjzj

1/2‖2
F −

2∑
i=1

2∑
j=1

‖EziwiEwjwj

†1/2‖2
F .

2) Solution of problem (9). The case of complete variable
memory: Let us now consider problem (9) when A has the
complete variable memory ηA

= [r − q + 1, . . . , r] (see
Definition 5).

In analogy with our partitioning of matrix B, we partition
matrix A in four matrices KA, LA, SA1 and SA2 where

KA ∈ R
q×(r−q) is a rectangular matrix,

LA ∈ R
q×q is a lower triangular matrix, and

SA1∈ R
(m−q)×(r−q), SA2∈ R

(m−q)×q are rectangular matrices.

Let us partition z0 so that

z0 =
[

z0
1

z0
2

]
with z0

1 ∈ L2(Ω, Rr−q) and z0
2 ∈ L2(Ω, Rq). We also write

x1 = [α1 . . . ,αr−q]T and x2 = [αr−q+1, . . . ,αm]T ,

and denote by v1 ∈ L2(Ω, Rr−q) and v2 ∈ L2(Ω, Rq),
orthogonal vectors according to Lemma 1 as

v1 = z0
1 and v2 = z0

2 − Pzz0
1,

where Pz = Ez1z2E
†
z1z1

+ Dz(I − Ez1z1E
†
z1z1

) with Dz an
arbitrary matrix.

By analogy with (28)–(29), we write

Gv,s = [g1, . . . , gs] ∈ R
q×s

where Gv,s is constructed from a QR-decomposition of
Ev2v2

1/2, in a manner similar to the construction of matrix
Gw,s.

Furthermore, we shall define Gs := Gv,s.

Theorem 2: Let A have the complete variable memory
η

A
= [r − q + 1, . . . , r]. Then the solution to problem (9)

is provided by the matrix A0, which has the form

A0 =
[

K0
A L0

A

S0
A1 S0

A2

]
,

where the blocks K0
A ∈ R

q×(r−q), S0
A1 ∈ R

(m−q)×(r−q) and
S0

A2 ∈ R
(m−q)×q are rectangular, and the block L0

A ∈ R
q×q is

lower triangular. These blocks are given as follows. The block
K0

A is given by
K0

A = T 0
A − L0

AP (34)

with

T 0
A = Ex1v1E

†
v1v1

+ NA1(I − Ev1v1E
†
v1v1

) (35)

where NA1 is an arbitrary matrix. The block L0
A =⎡⎢⎣ λ0

1
...

λ0
q

⎤⎥⎦ ,for each s = 1, 2, . . . , q, is defined by its rows

λ0
s = es

T Ex1v2Ev2v2
† GsGs

† + fs
T (I − GsGs

†) (36)

with fs
T ∈ R

1×q arbitrary. The blocks S0
A1 and S0

A2 are given
by

S0
A1 = S0

A − S0
A2P
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and

S0
A2 = Ex2v2E

†
v2v2

+ HA2(I − Ev2v2E
†
v2v2

),

where

S0
A = Ex2v1E

†
v1v1

+ HA(I − Ev1v1E
†
v1v1

)

and HA2 and HA are arbitrary matrices.
The minimum error associated with the matrix A0 is given

by

‖x − A0z0‖2
Ω =

ρ∑
s=1

q∑
j=s+1

|es
T Ex1v2Ev2v2

†gj |2

+
2∑

j=1

‖Exjxj

1/2‖2
F −

2∑
i=1

2∑
j=1

‖Exivi
Evjvj

†1/2‖2
F .
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