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Abstract—If a possibility distribution and a probability distribu-
tion are describing values x  of one and the same system or proc-
ess ( )tx , can they relate to each other? Though in general the possi-
bility and probability distributions might be not connected at all, we 
can assume that in some particular cases there is an association linked 
them. 

In the presented paper, we consider distributions of bloodstream 
concentrations of physiologically active substances and propose that 
the probability to observe a concentration x  of a substance X can be 
produced from the possibility of the event xX = . 

The proposed assumptions and resulted theoretical distributions 
are tested against the data obtained from various panel studies of the 
bloodstream concentrations of the different physiologically active 
substances in patients and healthy adults as well. 

 
Keywords—Possibility distributions, possibility-probability rela-

tionship.  

I. INTRODUCTION 

OR many years, the modeling of uncertainty in life sci-
ences has been totally dominated by probabilistic meth-

ods. Now, following major criticism of the principal limitation 
of probability theory, other approaches to dealing with uncer-
tainty are being explored [1, 10]. 

The principal limitation we are talking about consists in the 
probability theory’s inability to address the reality of partiality 
– partial truth, partial precision, and partial possibility. There-
fore, standard probabilistic methods cannot reflect one of the 
main features of the life sciences systems [12]. 

Let us take a few simple examples showing off this fact. 

1. Imagine we are asked the question: What is the probability 
that a given newborn will have anemia? The difficulty of us-
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ing probability theory here is rooted in the basic property of 
conditional probabilities: given ( )XP  all that can be said 
about ( )YXP  is that its value is between zero and one. Ac-
cordingly, if we were told that 28% of Jewish babies born to 
families settled in the Negev had anemia, it would tell nothing 
about the probability that the given baby would have anemia. 
The same holds true even if we got more information about 
this particular newborn. Say this baby is Jewish born in the 
Negev, then all that we would be able to know is the fraction 
(i.e. 0.28) of babies having anemia in the particular category, 
but all that can be said about the probability that this baby will 
have anemia is that it is between 0 and 1. 

2. Suppose we have a group of N adults and we are asked: 
What is the fraction NK  of them that have the systolic blood 
pressure lying in the interval 115±2 (mmHg)? Obviously, all 
we can say is that this fraction NK  is somewhere between 
zero and one. Next, assume we are told that M individuals of 
those N are young men, and we are asked again: What is the 
fraction ML  of these men that have the systolic blood pres-
sure lying in the interval 115±2? Would be this fraction ML  
higher than the fraction NK ? Again, we cannot answer these 
questions. All we can say is that the value ML  is between 0 
and 1. As in the previous example, additional information does 
not improve our ability to estimate the probability of the sys-
tolic blood pressure equal to 115±2. 

It is worth to mention here, that unlike probability theory, in 
possibility theory, learning more about the process ( )tx  means 
restricting the range of possible values for x . (In fact, possi-
bility distributions hold negative information: they do not sup-
port but exclude facts [5, 11].) This means in particular, that 
additional information does improve our ability to estimate the 
possibility distribution: for example, the possibility of the sys-

The Possibility-Probability Relationship 
for Bloodstream Concentrations of Physiologi-

cally Active Substances 
Arkady Bolotin 

F 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:3, No:9, 2009

221

 

 

tolic blood pressure equal to 115±2 should be higher in the 
group of M young men than in the general group of N indi-
viduals. 

Consequently, possibility theory seems to be one of the 
most promising mathematical concepts in life sciences, espe-
cially for modeling complex biological or medical processes. 

On the other hand, in modeling uncertainty with possibility 
theory the foundational question is how to obtain a possibility 
distribution for a given system/process. The obvious way – to 
extract a possibility distribution from the experiment by meas-
urements – needs for the analysis of the relation between pos-
sibility and probability distributions. Such analysis is essential 
because unlike probability distributions possibility distribu-
tions cannot be directly measured [9]. 

Though in general the possibility and probability distribu-
tions describing the same system/process might be not con-
nected at all, we can assume that in some particular cases there 
is an association linked them. 

In our previous paper [4], we build the possibility distribu-
tions for the controlled bloodstream concentrations x  of some 
physiologically active substances through few approximate 
considerations. These possibility distributions were then tested 
against the empirical histograms obtained from the panel study 
of the eight different physiologically active substances in 417 
individuals. 

In that paper, we did not analyze the exact relation between 
the resulted possibility distributions ( )xμ  and probability dis-
tributions ( )xp  but merely put forward the simple hypothesis 
that the possibility distribution ( )xμ  can predict with fair cer-
tainty the trend for the probability distribution: ( ) ( )p x xμ� . 

Now, in the present paper, we intend to analyze this relation 
in detail. 

II. BUILDING THE POSSIBILITY DISTRIBUTION THROUGH 
APPROXIMATE CONSIDERATIONS 

It is known that the bloodstream concentration of every 
physiologically active substance (such as a hormone, a pro-
tein, a steroid, a triglyceride, a mineral or a trace mineral) is 
controlled by at least two processes: secretion and utilization. 
The process of secretion is responsible for production of the 
substance and its release into the blood stream, while the utili-

zation process removes the substance from the blood through 
consumption or degradation [7, 8]. 

Let the continuous and finite function ( )xμ  (together with 
its derivatives of at least the first and second orders) be the 
possibility distribution of a given substance X taking 
concentrations x  in bloodstream. 

Considering the assumption that the interval )[ ∞;0  contains 
all possible concentrations x , there must be at least one 
impossible concentration )[ ∞∈′ ;0x  such that ( ) 0=′xμ  and 
one possible without any restriction concentration )[ ∞∈′′ ;0x  
such that ( ) 1=′′xμ ; thus, the following expression must be 
true: ( ) [ ]1,0

0
∈

∞<≤x
xμ . 

Though for different substances the processes of secretion 
and utilization may vary in their particular realization, we 
believe that the following three general assumptions hold for 
all of them: 

Assumption 1. If the substance X is controlled by the 
secretion-utilization processes, its bloodstream level x  can 
never drop to zero. In other words, zero concentration 0=x  
of the controlled physiologically active substance X is 
impossible: 

( )0 0Xμ =     . (1) 

Assumption 2. A very high level of the substance X controlled 
by the secretion-utilization processes is impossible too, but not 
quite much as zero level. It is so because the precise highest 
limit maxx  for bloodstream concentrations x  of a given 
substance does not exist. Therefore, the possibility of high 
concentrations x  must vanish only asymptotically: 

( ) 0X x
xμ

→∞
=     . (2) 

Assumption 3. For each substance X controlled by the 
secretion-utilization processes, it must be the level of 
equilibrium 0x  between these processes, that the 
concentration 0x  of the substance X is possible without any 
restriction. The further from the equilibrium 0x  in either side, 
the less the concentration x  is possible: 

( ) ( ){ }0 0
max 1X X x

x xμ μ
≤ <∞

= =     . (3) 
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Since the function ( )X xμ  must be continuous, from the As-
sumption 1 it follows that ( )X xμ  must be defined at every 
point near zero: 

( ) ( )0 0 0X Xμ μ= = +     . (4)

Hence, near zero the function ( )X xμ  should take the form: 

( )
0

0 , 0m
X x

x mμ
→

>�     . (5)

The only function that can vanish asymptotically while be 
finite at zero is an exponential function of a negative 
argument; so the Assumption 2 can be written down as 
follows: 

( ) ( )exp , 0, 0s
X x

x x sμ α α
→∞

− > >�     . (6)

Thus, the function ( )X xμ  describing the possibility 
distribution of the concentrations x  must take the form 

( ) ( )expm s
X x Cx xμ α= −     . (7)

We have postulated that the function ( )X xμ  is finite together 
with its derivatives of the first and the second orders; this 
postulate can fit the conjecture (7) if only we have 

( )
1 , 0 1

0 , 0n

m n n or n

s k k

= + = ≥⎧⎪
⎨

= + + ≥⎪⎩
    . (8)

According to the Assumption 3, the function ( )X xμ  has the 
maximum at 0x , this gives us the value of the parameter α  

1 1
0ms xα − −=      (9)

and the constant C 

0 expm mC x
s

− ⎛ ⎞= ⎜ ⎟
⎝ ⎠

    . (10)

Consequently, the function ( )X xμ  takes the form 

( )
( )

( )01 1; ; exp 1
0

n kn
X n

nz n k z z
k

μ + ++
⎧ ⎫

+⎪ ⎪⎡ ⎤= ⋅ ⋅ −⎨ ⎬⎢ ⎥⎣ ⎦+ +⎪ ⎪⎩ ⎭

    , (11)

where z  denotes dimensionless concentrations of the 
substance X 

0

xz
x

=     . (12)

As it can be readily seen from the Eq. (11), the only parameter 
of the function ( ); ;X z n kμ  that cannot be equal to zero is the 
equilibrium concentration 0x . Therefore, the “simplest” form 
of the Eq. (11) is the following one: 

( ) ( );0;0 exp 1X z z zμ = ⋅ − . (13)

We propose that the function (13) represents the possibility 
distribution of the bloodstream concentrations for each 
physiologically active substance controlled by the secretion-
utilization processes. 

III. RELATION BETWEEN THE POSSIBILITY AND PROBABILITY 
DISTRIBUTIONS 

Let the continuous and finite (together with its derivatives 
of at least the first and second orders) function ( )Xp x  be the 
probability distribution of the bloodstream concentrations x  
of a given substance X controlled by the secretion-utilization 
processes. 

Regarding the relationship between the distributions ( )X xμ  
and ( )Xp x  describing the same substance X, we put forward 
the following assumptions: 

Assumption 4. The probability distribution ( )Xp x  can be 
produced from the possibility distribution ( )X xμ . 

Assumption 5. If the concentration x  is impossible, it cannot 
be probable either. The opposite is not true: the concentration 
x  may not be probable but still possible. 

Assumption 6. If the concentration x  is possible without any 
restriction, it is also the most probable one. 

Mathematically, the Assumption 4 signifies this: 

( ) ( )X Xp z F zμ⎡ ⎤= ⎣ ⎦     . (14) 

From the Assumption 5 it follows 

( )
( )

0

0 X

X
z

F z

z

μ

μ
≤ <∞

⎡ ⎤⎣ ⎦≤ < ∞     , (15) 

and the Assumption 6 means that 

( )
( )

1

const 0X

X
z

F z

z

μ

μ
=

⎡ ⎤⎣ ⎦ = >     . (16) 

The Eq. (15) and (16) do take place if ( )[ ]XF zμ  is the 
exponential function of the ( )X zμ : 
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( ) ( )expm
Xp z Cz m mz= ⋅ −     , (17) 

where the exponent m is equal to or greater than 1, and C is a 
constant. 

Let us assume that this is really so and find out the m. 

IV. STATISTICAL ESTIMATION OF THE EXPONENT m 

To do this, we will try to estimate the best polynomial model 
of the kernel density ( )Xk z  − used as an approximation of the 
probability distribution ( )Xp z − among the following 13 
models of a given bloodstream substance X: 

( ) ( ) 1

2
const, 2, 1 , 1, , 4

n
X Xk z z nμ⎡ ⎤= + = − − −⎣ ⎦ K     . (18)

We will use the data obtained from various panel studies of 
the bloodstream concentrations of the different physiologically 
active substances in patients and healthy adults as well done 
by the scientists and health professionals of the Ben-Gurion 
University of the Negev in the period from 1997 to 2006 years 
[2, 3, 6]. 

The Table I shows the best power n among the 13 models 
defining by the Eq. (18) for each studied substance. 

TABLE I 
THE BEST POLYNOMIAL MODEL OF THE KERNEL DENSITY ( )Xk z  ON THE 

POSSIBILITY DISTRIBUTION ( )X zμ  

Substance 
N of 

observation
s 

Mode concentration 
x0  

Best 
power n 

Serum ferritin 744 26.5±8.8 ng/mL 3.5 
Serum iron 1001 37.0±9.2 μg/dL 2 
Zinc 441 102.0±28.0 μmol/L 4 
Albumin 75 5.0±4.4 U/L 3 
Glucose 633 126.0±19.2 mg/dL 4 
Triglyceride 629 163.0±52.2 mg/dL 1.5 

 

The standard deviation of each mode concentration 0x  was 
calculated by using the 50 bootstrap replications of the 
given 0x . 

As it follows from this table, the average best power n 
across the analyzed substances is three. This gives us the 
reason to believe that the exponent m in the Eq. (17) is equal 
to three too. 

Consequentially, we get the formula for the probability 
distribution ( )Xp z . 

( ) 3 327
2

z
Xp z z e−= ⋅     . (19) 

 

In the following figures, we present the theoretical distribution 
(19) together with the observed histograms of the studied 
substances. 

V. TESTS OF THE EQUALITY OF THE EMPIRICAL AND 
THEORETICAL DISTRIBUTIONS 

According to the Eq. (19), the theoretical mean 
concentration theor.z  is equal to: 

4 3
theor.

0

27 4

2 3
1.3(3)zz z e dz

∞
−= = =∫  (20) 

and the theoretical standard deviation theor.σ  of the 
concentrations z is: 

( )2 3 32theor.
0

27 2

2 3
0.6(6)zz z z e dzσ

∞
−= − ⋅ = =∫  (21) 

 
As it follows from the data presented in the Tables II and 

III, the observed mean concentrations z  and their standard 
deviations σ  do not statistically differ from the corresponding 
theoretical values (20) and (21). 
 

TABLE II 
THE EMPIRICAL AND THEORETICAL MEANS 

Substance Observed 
means z  

95% CI 
for z  theor.z  

Probability 
that 

theor.z z=  

Serum ferritin 1.35 0.89÷1.78 > 0.05 
Serum iron 1.35 1.00÷1.66 > 0.05 
Zinc  1.33 0.97÷1.70 > 0.05 
Albumin 1.54 0.15÷2.51 > 0.05 
Glucose 1.28 1.13÷1.54 > 0.05 
Triglyceride 1.08 0.91÷1.76 

1.3(3) 

> 0.05 

TABLE III 
THE EMPIRICAL AND THEORETICAL STANDARD DEVIATIONS 

Substance Observed 
σ  

95% CI 
for σ  theor.σ  

Probability 
that  

theor.σ σ=  

Serum ferritin 0.86 0.45÷0.89 > 0.05 
Serum iron 0.69 0.50÷0.83 > 0.05 

Zinc  0.65 0.48÷0.85 > 0.05 
Albumin 1.20 0.08÷1.26 > 0.05 
Glucose 0.48 0.57÷0.77 > 0.05 

Triglyceride 0.61 0.45÷0.88 

0.6(6) 

> 0.05 
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Fig.  1 The histogram and the theoretical distributions for serum ferritin level 
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Fig.  2 The histogram and the theoretical distributions for serum iron 
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Fig.  3 The histogram and the theoretical distributions for zinc protoporphyrin 
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Fig.  4 The histogram and the theoretical distributions for albumin 
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Fig.  5 The histogram and the theoretical distributions for glucose 
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Fig.  6 The histogram and the theoretical distributions for triglyceride 

 
 
 

 



International Journal of Medical, Medicine and Health Sciences

ISSN: 2517-9969

Vol:3, No:9, 2009

227

 

 

These results unequivocally support the assumptions we 
made about the functional relationship between the possibility 
distribution ( )X zμ  and the probability distribution ( )Xp z  for 
the bloodstream concentrations z of physiologically active 
substances. 
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