
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1910

Abstract—A new paradigm for software design and development

models software by its business process, translates the model into a
process execution language, and has it run by a supporting execution
engine. This process-oriented paradigm promotes modeling of
software by less technical users or business analysts as well as rapid
development. Since business process models may be shared by
different organizations and sometimes even by different business
domains, it is interesting to apply a technique used in traditional
software component technology to design reusable business
processes. This paper discusses an approach to apply a technique for
software component fabrication to the design of process-oriented
software units, called process components. These process
components result from decomposing a business process of a
particular application domain into subprocesses with an aim that the
process components can be reusable in different process-based
software models. The approach is quantitative because the quality of
process component design is measured from technical features of the
process components. The approach is also strategic because the
measured quality is determined against business-oriented component
management goals. A software tool has been developed to measure
how good a process component design is, according to the required
managerial goals and comparing to other designs. We also discuss
how we benefit from reusable process components.

Keywords—Business Process Model, Process Component,
Component Management Goals, Measurement

I. INTRODUCTION
ROCESS-ORIENTED software development is a new
software development paradigm in which the application
domain is modeled as a business process model (BPM)

[1]. A BPM describes the control flow of the operational
process of the business with business rules incorporated.
Users or business analysts who are familiar with the nature of
the business can easily model their business with BPMs. This
is opposed to modeling with software models such as UML
[2] which requires expertise of software designers. Since
BPMs correspond to process flow, software designers can
rapidly develop applications by mapping BPMs to a workflow
execution language and have them run with a supporting
execution engine. The building blocks of this paradigm are

E. Atiptamvaree is with the Information Systems Engineering Laboratory,

Department of Computer Engineering, Chulalongkorn University, Bangkok
10330 Thailand (phone: +66 2 2186991; fax: +66 2 2186955; e-mail:
Eakong.A@student.chula.ac.th).

T. Senivongse is with the Information Systems Engineering Laboratory,
Department of Computer Engineering, Chulalongkorn University, Bangkok
10330 Thailand (phone: +66 2 2186996; fax: +66 2 2186955; e-mail:
twittie.s@chula.ac.th; corresponding author).

software units that are composed together to work according
to the BPM. Current software technology such as Web
Services technology [3] realizes this paradigm with software
building blocks called Web Services that can be composed by
using a process execution language called BPEL [4].

By promoting reuse of software units across the design and
development of different application domains, process-
oriented paradigm is analogous to building applications with
traditional software component technology [5]. We therefore
see a potential to apply a traditional software component
technique to process-oriented software development.

In this paper, we look from the component supplier’s point
of view and focus on a software component fabrication
technique (i.e., how to develop components). Traditionally,
component-based software is modeled by using UML class
diagram and the model is decomposed into small units in
order to implement them as reusable software components.
Analogously in process-oriented paradigm, an application
domain is modeled by a BPM which can be decomposed into
subprocesses called process components [6]. These process
components can be reused in the design of the BPMs of other
businesses or application domains, and can also be
implemented into reusable software units. This idea
corresponds to the concept of process patterns [7].

This paper applies a software component fabrication
technique presented in [8] to fabricate process components.
The technique in [8] starts by modeling an application domain
with a UML class diagram and dividing the classes within the
diagram into groups, each group referring to a software
component (to be implemented). Such grouping can be seen as
one way to design software components for the application
domain. Technical features are measured from the design,
namely intercomponent coupling, intracomponent cohesion,
number of components, component size, and complexity. The
resulting measurement values are applied onto a mathematical
model, called the Business Strategy-Based Component Design
(BusCod) model, to determine how well such a software
component design can achieve predefined managerial goals
(i.e., cost effectiveness, ease of assembly, customization,
reusability, and maintainability). We are particularly interested
in this technique because it can give quantitative measurement
that reflects quality of the design while also considering
business strategies.

In this paper, we will model a particular application domain
with a BPM and decompose the BPM into process
components so that the technique in [8] can be applied.
Software designers can try to design process components for a
particular domain in different ways (i.e., with different

A Quantitative Approach to Strategic Design of
Component-Based Business Process Models

Eakong Atiptamvaree and Twittie Senivongse

P

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1911

grouping) and compare the measurement values given by the
BusCod model to determine which design (i.e., which
grouping) better suits the component management goals that
have been set.

This paper has the following organization. Section II
discusses some related work. Section III presents our
approach to apply the technique in [8] to a BPM of a
particular application domain. A flight reservation system is
the case study in Section IV and we give two designs of
process components for this domain as an example. A
discussion about the benefit of reusable process components is
in Section V. Section VI presents the supporting tool for
component measurement. The paper concludes and discusses
future research directions in Section VII.

II. RELATED WORK

Process-oriented software development tends to focus on
the approaches to map BPMs to a process execution language
for a particular software technology. Reference [1] addresses a
correspondence between BPM and Web Services technology.
The work in [9] realizes this approach by modeling a BPM
with ADF or UML activity diagrams and transforming them to
BPEL for execution. However such an approach attacks the
implementation issue of the BPM, not the design and reuse
issue.

A number of researches have addressed the concept of
reusable business processes. In [6], a model for reusable
business processes is proposed. A business process will be
associated with information such as process function, process
interface, and quality of service. Such information is for
component cataloging and assembly purposes. In [7], a
process pattern is used in the design of a software application
but the work does not address how the pattern is designed.

For software component fabrication, the technique in [10] is
close to the one in [8] which we will adopt. Software in [10] is
also modeled using a UML class diagram and the model is
decomposed according to different criteria such as data usage
and business functions. Metrics based on cohesion and
coupling of software components are proposed to measure the
quality of the decomposition. However, the technique does not
take managerial goals into account and consider less technical
features than [8].

III. MEASURING PROCESS COMPONENT DESIGN
We apply the technique in [8] to a BPM of an application

domain as follows.

A. Design of Process Components
In [8], an application domain is modeled with a UML class

diagram. The classes link with each other by association lines
which represent relationships or connectivity that a class has
with other classes. We can design software components by
grouping together the classes that exhibit high degree of
relationship or association with each other (e.g., Fig. 1).
Analogously for a BPM such as a UML activity diagram in
Fig. 2, the actions link with each other by control flow arrows.
The arrows represent relationships or association between

actions in terms of data coupling (i.e., data that are passed
through) or time requirement (i.e., actions occur at the same
instant of time) [10]. Therefore we may design process
components by grouping together the actions that exhibit high
degree of relationship with each other. Table I summarizes the
correspondence between class diagram structure and BPM
structure.

Fig. 1 Class model designed with three software components

Fig. 2 Business process designed with three process components

TABLE I
CORRESPONDENCE BETWEEN STRUCTURES OF CLASS DIAGRAM AND BPM

CLASS DIAGRAM BPM (ACTIVITY DIAGRAM)
Class Action
Link (inheritance or association) Arrow (control flow)
Package Subactivity

To design process components, a software designer will

identify which part of the business process should be together
as a process component for the domain. In Fig. 2, a software
designer divides the actions in the activity diagram of the
business process into three groups; each group is referred as a
subactivity or a process component. Note that this is only one
design for process components; the software designer can
group the actions differently to create other designs.

B. Component Management Goals
Five component management goals for the design of

software components [8] can be adopted for the design of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1912

process components:

1) Cost Effectiveness (COST)
Cost effectiveness encompasses minimal component

development cost and reduction in design and development
time. This goal is important for achieving low cost business
strategy. In component fabrication, costs depend on the
actions included in the process component and the
relationships among these actions.

2) Ease of Assembly (ASBL)
Ease of assembly refers to the ease with which components

can be assembled. Reduction in the number of components
required to assemble an application can enhance the assembly
process since larger components will incorporate more
functionality while complexities remain internal to the
components. This goal is important for serving application
developers who do not expect technical complexity at
assembly.

3) Customization (CUST)
Customization is the ability to allow the application

developers or assemblers to fit and alter solutions for a large
variety of business applications using the components. This
goal is important if the business competes in the market of
customizable applications.

4) Reusability (REUS)
Reusability is the ability to reuse a component as is, without

modification, in the development of various applications.
Reusability also implies quality (i.e., conformance to
requirements) and reliability (i.e., the ability to be depended
on to correctly perform the function). The goal is important if
the application developers are to be provided with components
that can be used in many applications.

5) Maintainability (MNTN)
Maintainability is the ease with which the components can

be added, deleted, or modified. This goal is important to low
cost business strategy as maintenance may represent a long-
term cost.

C. Technical Features
Five technical features for the design of software

components [8] can be adapted for the design of process
components:

1) Intercomponent Coupling (COUPL)
Intercomponent coupling is the strength of relationship

between different components and low coupling is desired. In
[8] where the application is designed with a UML class model,
coupling is defined as the extent to which classes within a
component relate in any way to other classes that are not in
that component (e.g., by method invocation or by having the
other classes as data types for attributes or method parameters
of the class). For process components, actions in the activity
diagram corresponds to classes in [8], and therefore coupling
is defined as data coupling in terms of a control flow that
carries data from one action in one component to the other

action in the other component [11], or as time coupling by
which two actions will occur together at an instant of time
[10]. The measure for intercomponent coupling is as follows:

∑∑∑
= =

≠
=

−=
y

k

n

i

n

ji
j

ijjkik cxxCOUPL
1 1 1

)*)1(*((1)

where
y number of process components for the domain;
n total number of actions in the domain model;
xik 1 if action i is placed in process component k;

0 if action i is not placed in process component k;
cij coupling between action i and j, (i,j ≥ 0; i ≠ j).

Coupling between two actions can be measured from the
number of control flow between them.

2) Intracomponent Cohesion (COHES)
Intracomponent cohesion is the strength of relationship

within the component and high cohesion is desired. In [8],
cohesion is defined as the extent to which classes within a
component relate in any way to other classes within that
component. For process components, cohesion is defined in
terms of the control flow between actions of the same
component. The measure for intracomponent cohesion is as
follows:

∑∑∑
= =

≠
=

=
y

k

n

i

n

ji
j

ijjkik cxxCOHES
1 1 1

)*)*(((2)

where
y number of process components for the domain;
n total number of actions in the domain model;
xik 1 if action i is placed in process component k;

0 if action i is not placed in process component k;
cij coupling between action i and j, (i,j ≥ 0; i ≠ j).

3) Number of Components (NCOMP)
Number of components represents the number of interface

between components and complexity of that design, but a
large number of components also give the application
developers more choices in selecting the component that will
closely satisfy the user requirement. The measure for number
of components is as follows:

yNCOMP = (3)
where
y number of process components for the domain.

4) Component Size (CSIZE)
Component size represents the granularity of the

component set of the design. In [8], the measure for
component size uses statistical standard deviation, instead of
average size, to take into account the variability in the number
of classes in different components. For process components, a
similar normalized measure can be adopted as follows:

yxCSIZE
y

j

n

i
ij /

1

2

1
∑ ∑

= =

⎟
⎠

⎞
⎜
⎝

⎛
= (4)

where
y number of process components, y > 0;
n total number of actions, n ≥ 0;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1913

xij 1 if action i is placed in process component j;
0 if action i is not placed in process component j.

5) Complexity (COMPL)
The number of actions in a process component can provide

a coarse-level complexity measure. In [8], complexity of a
component is determined by the number of public methods
and method parameters of classes within the component.
Instead of a simple addition of the number of methods and
parameter complexities across all components, the measure
takes into account the variability of complexity between
different designs by which the classes are distributed
differently among the components. For process components,
we may also adopt similar measurement. Since an action in
the activity diagram corresponds to a UML class (c.f., Table
I), we may look at each action as corresponding to a class with
a single abstract operation which may take some input
parameter data from the previous action in the process flow
and produce some output parameter data to be passed onto the
next action in the flow. This agrees with standard UML which
allows a class method to associate with an action in an activity
diagram [2]. However, the software designer will have to
provide the details of such abstract operations for the business
process. It is seen that the software designer can analyze the
business process and can identify details (e.g., data that flow
between actions). The measure is as follows:

()∑ ∑ ∑∑
= = = = ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

y

j

n

i
ij

m

k

p

l
iklpcximcx xpwmwCOMPL

i ik

1

2

1 1 1
*** (5)

where
y number of process components, y > 0;
n total number of actions, n ≥ 0;
xij 1 if action i is placed in process component j;
 0 if action i is not placed in process component j;
wmcx relative importance of operation complexity,
 (0 ≥ wmcx ≤ 1);
mi number of operation in action i, (mi = 1);
wpcx relative importance of parameter complexity,

 (0 ≥ wpcx ≤ 1);
pik number of parameters in operation k in action i,
 (pik ≥ 0);
pikl relative complexity of the parameter l in operation k

in action i, (0 ≥ pikl ≤ 1).
The values for wmcx, wpcx, and pikl are subjective and

assigned by the software designer during the design process.
wmcx and wpcx can be assigned based on the complexity the
software designer expects for the operations and parameters
respectively. If the computation of the operations is likely to
be complex in order to serve purpose of the actions, wmcx may
have high value. If it is necessary that the operations need a
lot of complex parameters (e.g., those of complex data types)
for their computation, then wpcx may have high value. pikl is
the degree of complexity of a parameter of an operation
compared to that of other parameters of the same operation. A
parameter is complex if, for example, it is of a complex data
type.

By looking at an action as a class with an abstract
operation, complexity measurement is refined. However, in

most cases, an action in the activity diagram is modeled at
high level and the software designer may find it inconvenient
to analyze the details of the abstract operation and the
complexity weights. In such cases, we propose a simplified
formula for complexity based on the number of actions. This
is analogous to the coarse-grained complexity measurement
mentioned in [8] which is based on the number of classes in
the class diagram. The simplified measure is as follows:

∑ ∑
= =

⎟
⎠

⎞
⎜
⎝

⎛
=

y

j

n

i
ijxCOMPL

1

2

1

 (6)

where
y number of process components, y > 0;
n total number of actions, n ≥ 0;
xij 1 if action i is placed in process component j;

0 if action i is not placed in process component j.

Table II is a summary of a literature survey on the impact
that all the technical features may have on the component
management goals [8]. Positive impact (+) means the higher
the technical feature value is, the better the goal is achieved.
Negative impact (-) means the lower the technical feature is,
the better the goal is achieved. No impact (0) means the
technical feature has no relation to achieving the goal.

TABLE II

IMPACT OF TECHNICAL FEATURES ON COMPONENT MANAGEMENT GOALS
 COUPL COHES NCOMP CSIZE COMPL

COST 0 - - - -
ASBL - 0 0 + 0
CUST - + + - 0
REUS - + + - 0
MNTN - - - - -

D. Applying BusCod Model
We can adopt the BusCod model in [8]:

DWR **' (7)
 Each part of the model is as follows.

1) []' COST ASBL CUST REUS MNTNR R R R R R=

This is a vector representing relative importance of all
component management goals for the design where

RCOST relative importance of cost effectiveness;
RASBL relative importance of ease of assembly;
RCUST relative importance of customization;
RREUS relative importance of reusability;
RMNTN relative importance of maintainability;

and RCOST + RASBL + RCUST + RREUS + RMNTN = 1.

2)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

5554535251

4544434241

3534333231

2524232221

1514131211

wwwww
wwwww
wwwww
wwwww
wwwww

W

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1914

This is a relation matrix representing the strength of
association between managerial goals and technical features
where

wij strength of the association between ith managerial
goal and jth technical feature in W. The value is
either 0 or 1-10 with the sign (+ or -) as in Table II.

3)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

COMPL

CSIZE

NCOMP

COHES

COUPL

D
D

D
D
D

D

This is a vector representing measurement of various
technical features of the design where

DCOUPL intercomponent coupling;
DCOHES intracomponent cohesion;
DNCOMP number of components;
DCSIZE component size;
DCOMPL complexity.

E. Design Process

Fig. 3 Process for designing process components

Fig. 3 describes the process taken to design process

components. This process will be supported by a software tool
(see Section VI). The software designer obtains a BPM from a
business analyst and defines relative importance of each
managerial goal for the design. If the refined complexity
formula is used, the software designer will also define details
of abstract operations and complexity weights. Then, the BPM
– a UML activity diagram in this case – will be decomposed
into groups of actions; each group corresponds to a package.
The packages will be processed by the tool to apply the
BusCod model. The software designer can repeat this process
with different designs and compare their measurement values
from the BusCod model. The design with maximum
measurement value will best achieve the managerial goals that
have been set and can be chosen for implementation.

IV. CASE STUDY
An example business process model used to demonstrate

the design of process components is of the flight reservation
domain, involving an airline (Fig. 4). We define this model by
adapting from the Open Travel Alliance (OTA) specification
[12] and the case study of [13]. The flow begins with
checking a flight for a particular trip. Other details (i.e.,
schedule, arrival time, seat availability, and price) are checked
subsequently. If seats are available and price is in budget, the
flight is booked, the seat numbers are confirmed, and the
itinerary is produced. In the case that no seats are available,
this failed booking can be recorded for administrative purpose
(e.g., to increase the number of flights during some period of
the year).

Fig. 4 Business process of flight reservation domain

According to the BusCod model, a software designer may

want to design process components for this process flow with
an emphasis on reusability. The component management goals
may be set as

[]' 0.05 0.05 0.05 0.8 0.05R =
For this example, we use the matrix W below:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−
−++−
−++−
+−

−−−−

=

86567
07688
05556
08005
78680

W

This matrix is derived from a survey on the strength of
relationship between the managerial goals and the technical
features, conducted on industry experts [8].

Suppose the software designer decomposes the above
process flow into three process components (Fig. 5). We may
look at them as a flight inquiry component, a flight booking
component, and a failed booking component. For later
presentation purpose, we also annotate each action with a
symbol A1-A9. This design then has its technical features
calculated. We discuss the calculation of some values below.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1915

Fig. 5 A design with three process components

This design has 3 process components and 9 actions in

total.
For intercomponent coupling and intracomponent cohesion,

the value cij which is the coupling between any two actions in
the process model is summarized in Table III.

TABLE III
COUPLING BETWEEN EACH ACTION

 A1 A2 A3 A4 A5 A6 A7 A8 A9

A1 0

A2 1 0

A3 1 0 0

A4 0 1 1 0

A5 0 0 0 1 0

A6 0 0 0 0 1 0

A7 0 0 0 0 0 1 0

A8 0 0 0 0 0 0 1 0

A9 0 0 0 1 0 0 0 0 0

Suppose the refined formula for complexity is used, the

software designer specifies the operation detail for each action
(Table IV). As mentioned in Section III.C, we can see each
action as a single abstract operation. The design of the
operations here is based on the technique to design service
interfaces in [13] which considers elementary business
functions and applies data normalization to interface
parameters. This leads to minimization of coupling and
maximization of cohesion of the operations.

In this example, the software designer also assigns a value
0.5 for the relative importance of operation complexity wmcx
and a value 0.5 for the relative importance of parameter
complexity wpcx. For each parameter in each operation, a value
1 is assigned for the relative complexity pikl as the parameters
are equally complex (i.e., all are simple parameters).

The values of all technical features are:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

5.318
416.3
3
7
2

D

The calculation of the BusCod model DWR **' for this
three-component design gives the value -219.33. If we repeat
the design process to calculate the BusCod value for a one-
component design (i.e., the whole process flow is seen as one
component), the BusCod value is -544.05. Therefore, the
three-component design better achieves the component
management goals that have been set. With an emphasis on
the reusability goal, we may reason that the one-component
design is less appropriate for reuse because it carries too much
functionality.

TABLE IV

ACTIONS AS CLASSES WITH ABSTRACT OPERATIONS AND THEIR PARAMETERS
Abstract Operation of
Action
(No. of Parameters)

Input Parameters Output Parameters

CheckFlight
(4)

OriginalLocation
DestinationLocation
DepartureDate

FlightNumber

CheckSchedule
(5)

FlightNumber DepartureAirport
DepartureTime
ArrivalAirport
ArrivalTime

CheckArrival
(3)

FlightNumber
DepartureDate

ArrivalDate

CheckAvailability
(4)

FlightNumber
DepartureDate
CabinType

NoOfSeats

CheckPrice
(6)

FlightNumber
DepartureDate
CabinType
Budget

FareBasisCode
BaseFare

BookFlight
(5)

FlightNumber
DepartureDate
TravelerName
CabinType

BookingReferenceID

SeatingRequest
(3)

BookingReferenceID
SeatPreference

SeatNumber

GetItinerary
(12)

BookingReferenceID BookingReferenceID
FlightNumber
DapartureAirport
DepartureDate
DepartureTime
ArrivalAirport
ArrivalDate
ArrivalTime
CabinType
BookingStatus
JourneyDuration

RecordUnavailability
(3)

FlightNumber
DepartureDate
CabinType

For this example, if the simplified formula is used for

complexity, the calculation of the BusCod model for the three-
component design gives the value -6.706 while the one-
component design yields -58.05. The result still corresponds
to the case where the refined formula is used.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1916

V. PROCESS COMPONENT REUSE
The quantitative measurement above can help give the

software designer some confidence over the process
component design. Process components from one business
process model may be applied in the design of other business
processes. For example, the flight inquiry component (top
component) in Fig. 5 can be reused in the business process of
another organization (Fig. 6). The organization views the
reused flight inquiry process component as a single abstract
action and composes it with organization’s own process to
additionally set booking information, buy and print flight
tickets, and handle other unsuccessful booking incidents.
Unlike the process in Fig. 5, ticket budget, seat assignment at
the time of ticket purchase, and itinerary are not of concern to
this business process.

Fig. 6 Reusable process component in another business process

VI. PROCESS COMPONENT MEASURING TOOL
A supporting tool has been developed to support the

software designer to measure the quality of process
components. According to Fig. 3, it is assumed that the
business analyst will first use a modeling tool to design the
activity diagram of the business process. The software
designer will also use a modeling tool to define groups of
subactivities. The result is an XMI-based file with packages of
subactivities; the file will be an input to the tool.

In Fig. 7, the software designer can specify the input
activity diagram file in the open file tab. Fig. 8 and Fig. 9
show respectively the managerial goals tab and the relation
matrix tab where the software designer can fill in appropriate
values. The measurement value tab in Fig. 10 calculates the
BusCod value of the three-component model in Fig. 5 where a
simplified complexity formula is used. The software designer
will use this value to compare with those of other designs to
determine the quality of the designs.

Fig. 7 Open file tab of the tool

Fig. 8 Managerial goals tab of the tool

Fig. 9 Relation matrix tab of the tool

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:7, 2007

1917

Fig. 10 Measurement value tab of the tool

VII. CONCLUSION
We discuss a possibility to apply a software component

fabrication technique to design process components for an
application domain which is modeled by a business process
model. The paper relies on the BusCod model, the efficiency
of which has been evaluated by industry experts as reported in
[8]. Once a satisfactory design is found, the software designer
can reuse each process component in the design of other
business processes, and can have it implemented into a
software unit. To implement a process component, we can
follow the process-oriented paradigm and map each process
component into BPEL [9], or we may follow the traditional
paradigm and map each process component into a UML class
diagram for component development [14].

This technique requires to a certain extent the skill of the
software designer to group process components and to assign
weight information for complexity. Other guidelines can help
the software designer to decide which actions should be in the
same process component (e.g., to reduce coupling and
increase cohesion) [10].

The current version of the supporting tool can only give a
BusCod value of a particular design. An enhancement is
expected such that the tool can give an optimal design for a
particular business process model.

ACKNOWLEDGMENT
The authors would like to thank Prof. Padmal Vitharana for

guidance on the use of the BusCod model.

REFERENCES
[1] BPMI.org. (2004, May, 3). Business Process Modeling Notation

(BPMN) Version 1.0. Availalble: http://www.bpmi.org
[2] G. Booch, J. Rumbaugh, and I Jacobson, The Unified Modeling

Language User Guide, Massachusetts: Addison-Wesley, 1999.
[3] E. Newcomer, Understanding Web Services. Indianapolis: Addison-

Wesley, 2002.
[4] IBM. (2003, May, 5) BPEL4WS Version 1.1 specification Available:

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
[5] C. Szyperski, Component Software: Beyond Object-Oriented

Programming, 2nd ed. New York: Addison-Wesley, 2002.
[6] Y. Mou, J. Cao, and S. Zhang, “A process component model for

enterprise business knowledge reuse,” in Proc. IEEE International
Conference on Services Computing (SCC04), 2004.

[7] O. H. Barros. (2004, September). Business Information System Design
Based on Process Pattern and Frameworks. Industrial Engineering
Department, University of Chile. Available: http://www.BPtrends.com

[8] P. Vitharana, H. Jain, and F. M. Zahedi, “Strategy-based design of
reusable business components,” IEEE Transactions on Systems, Man,
and Cybernetics–Part C: Applications and Reviews, vol. 34, No. 4, pp.
460-474, November 2004.

[9] J. Koehler, R. Hauser, S. Kapoor, F. Y. Wu, and S. Kumaran, “A model-
driven transformation method,” in Proc. 7th IEEE International
Enterprise Distributed Object Computing Conference, 16-19 September
2003, pp. 186-197.

[10] N. Tagoug, “Object-oriented system decomposition quality”, in Proc. 7th
International Symposium on High Assurance Systems Engineering
(HASE02), 2002.

[11] B. Husslage, E. van Dam, D. den Hertog, P. Stehouwer, and E. Stinstra,
Coordination of coupled black box simulations in the construction of
metamodels, Discussion Paper 2, Center for Economic Research, Tilburg
University, 2003.

[12] Open Travel Alliance (OTA). (2005, December, 05). OTA Specification
2005B. Available: http://www.opentravel.org

[13] G. Feuerlicht and S. Meesathit, “Design framework for interoperable
service interfaces,” in Proc. 2nd International Conference on Service
Oriented Computing (ICSOC’04), New York, 2004, pp. 299-307.

[14] W. Rungworawut and T. Senivongse, “A guideline to mapping business
process to UML class diagrams,” WSEAS Transactions on Computers,
vol. 4, November 2005.

