
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:2, No:11, 2008

774

The Game of Col on Complete K-ary Trees
Alessandro Cincotti and Timothée Bossart

Abstract—Col is a classic combinatorial game played on graphs
and to solve a general instance is a PSPACE-complete problem.
However, winning strategies can be found for some specific graph
instances. In this paper, the solution of Col on complete k-ary trees
is presented.
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I. INTRODUCTION

C
OL is a map-coloring games invented by Colin Vout

[1], [2]. Every instance of these games is defined as an

undirected graph G = (V, E) where every vertex is uncolored,

black or white. The two players, First and Second, play in turn

and First starts the game. In the beginning, all the vertices

are uncolored. First has to paint an uncolored vertex using

the color black, and Second has to paint an uncolored vertex

using the color white. There exists only one restriction: two

adjacent vertices cannot be painted with the same color. The

first player unable to paint an uncolored vertex is the loser.

The values of some Col positions and the description of

some general rule for simplifying larger positions is presented

in [1], [2]. Moreover, Col is proved to be a PSPACE-

complete problem on a general graph [3].

Here, the game is analyzed on complete k-ary trees where

k ≥ 2 and d ≥ 1 is the depth of the tree.

II. SOLVING COL ON COMPLETE k-ARY TREES

Lemma 1: Let G be a complete k-ary tree of depth 1 with

k ≥ 2.

1) If k is even, then Second has a winning strategy without

to be forced to paint the root.

2) If k is odd, then First has a winning strategy without to

be forced to paint the root.

Proof: Trivial.

Theorem 1: Let G be the graph obtained by the union of n
complete k-ary trees of depth 1 where k ≥ 2 is equal for all

the trees.

1) If k is even, then Second has a winning strategy in G
without to be forced to paint any root.

2) If k is odd and n is odd, then First has a winning strategy

in G without to be forced to paint any root.

3) If k is odd and n is even, then Second has a winning

strategy in G without to be forced to paint any root.

Proof:

1) In the beginning, First will play in one of the n trees and

Second will play in the same tree because by Lemma
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1 he/she has a winning strategy without to be forced

to paint the root. If First decides to play in one of the

remaining n − 1 trees, then Second will do the same

because, by induction hypothesis, he/she has a winning

strategy in the remaining n−1 trees without to be forced

to paint any root. An example is shown in Fig. 1.

Fig. 1. An example with three complete binary trees where Second has a
winning strategy.

2) By Lemma 1 First has a winning strategy without to be

forced to paint the root if he/she play in any of the n
trees. If Second decide to play in one of the remaining

n − 1 trees then First will do the same because, by

induction hypothesis, he/she has a winning strategy in

the remaining n − 1 tree without to be forced to paint

any root. An example is shown in Fig. 2.

Fig. 2. An example with three complete ternary trees where First has a
winning strategy.

3) Similar to the previous case.

Theorem 2: Let G = (V, E) be the graph obtained by the

union of n complete k-ary trees of depth 1 where k ≥ 2 is

equal for all the trees.

1) If k is even, then First has a winning strategy in G′ =
(V ∪ {a}, E) without to be forced to paint any root

except a.

2) If k is odd and n is odd, then Second has a winning

strategy in G′ = (V ∪ {a}, E) without to be forced to

paint any root except a.

3) If k is odd and n is even, then First has a winning

strategy in G′ = (V ∪ {a}, E) without to be forced to

paint any root except a.

Proof:

1) If First plays in a then by Theorem 1 he/she has a

winning strategy in G. An example is shown in Fig. 3.

2) If First plays in a, then Second has a winning strategy

by Theorem 1. If First plays in one of the n trees then

Second has a winning strategy in the remaining n − 1
trees and a by induction hypothesis. If First continues

to move in the same tree where he/she played the first
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a

Fig. 3. An example with three complete binary trees and an extra vertex
where First has a winning strategy.

time then Second has a winning strategy by Lemma 1.

An example is shown in Fig. 4.

a

Fig. 4. An example with three complete ternary trees and an extra vertex
where Second has a winning strategy.

3) Similar to the first case.

Definition 1: Let G be a complete k-ary tree where k ≥ 2
and d ≥ 1 is the depth of the tree. We define σ(G) as follows:

1) If d is odd, then σ(G) is the graph obtained by G
deleting all the edges which connects a vertex at depth

s to a vertex at depth s + 1 where s is odd. As a result,

σ(G) is the union of k-ary trees of depth 1. If k is odd

and d ≡ 1 (mod 4), then the number of trees is odd

else if k is odd and d ≡ 3 (mod 4), then the number

of trees is even. Fig. 5 shows an example of σ(G) where

G is a complete binary tree of depth 3.

σ

Fig. 5. An example of σ(G) where G is a complete binary tree of depth 3.

2) If d is even, then σ(G) is the graph obtained by G
deleting all the edges which connects a vertex at depth

s to a vertex at depth s + 1 where s is even or 0. As a

result, σ(G) is the union of k-ary trees of depth 1 and

a single vertex. If k is odd and d ≡ 0 (mod 4), then

the number of trees is even else if k is odd and d ≡ 2
(mod 4), then the number of trees is odd. Fig. 6 shows

an example of σ(G) where G is a complete ternary tree

of depth 2.

σ

Fig. 6. An example of σ(G) where G is a complete ternary tree of depth 2.

Theorem 3: Let G be a complete k-ary tree where k ≥ 2
and d ≥ 1 is the depth of the tree. First (Second) has a winning

strategy in G if and only if he/she has a winning strategy in

σ(G).
Proof: If First (Second) has a winning strategy on σ(G),

then he/she can use exactly the same strategy in G because by

Theorem 1 and Theorem 2 he/she will paint only the leaves

of the trees (and the single vertex when d is even) in σ(G)
and these vertices are not connected each other in G.

Conversely, if First (Second) has a winning strategy in G
and Second (First) has a winning strategy in σ(G), then it is

a contradiction because even Second (First), by the first part

of this theorem, should have a winning strategy in G.

Corollary 1: Let G be a k-ary tree where k ≥ 2 and d ≥ 1
is the depth of the tree.

1) If k is even and d is odd, then Second has a winning

strategy.

2) If k is even and d is even, then First has a winning

strategy.

3) if k is odd and d ≡ 1 (mod 4), then First has a

winning strategy.

4) if k is odd and d ≡ 3 (mod 4), then Second has a

winning strategy.

5) if k is odd and d ≡ 0 (mod 4), then First has a

winning strategy.

6) if k is odd and d ≡ 2 (mod 4), then Second has a

winning strategy.

Proof:
1) It follows by Theorem 1 (case 1) and Theorem 3.
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2) It follows by Theorem 2 (case 1) and Theorem 3.

3) It follows by Theorem 1 (case 2) and Theorem 3.

4) It follows by Theorem 1 (case 3) and Theorem 3.

5) It follows by Theorem 2 (case 3) and Theorem 3.

6) It follows by Theorem 2 (case 2) and Theorem 3.
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