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Interaction of electroosmotic flow on
isotachophoretic transport of ions

S. Bhattacharyya∗, Partha P. Gopmandal

Abstract—A numerical study on the influence of electroosmotic
flow on analyte preconcentration by isotachophoresis ( ITP) is made.
We consider that the double layer induced electroosmotic flow (
EOF) counterbalance the electrophoretic velocity and a stationary ITP
stacked zones results. We solve the Navier-Stokes equations coupled
with the Nernst-Planck equations to determine the local convective
velocity and the preconcentration dynamics of ions. Our numerical
algorithm is based on a finite volume method along with a second-
order upwind scheme. The present numerical algorithm can capture
the the sharp boundaries of step-changes ( plateau mode) or zones
of steep gradients ( peak mode) accurately. The convection of ions
due to EOF reduces the resolution of the ITP transition zones and
produces a dispersion in analyte zones. The role of the electrokinetic
parameters which induces dispersion is analyzed. A one-dimensional
model for the area-averaged concentrations based on the Taylor-Aris-
type effective diffusivity is found to be in good agreement with the
computed solutions.

Keywords: Interfaces, Electroosmotic flow, QUICK Scheme,
Dispersion, Effective Diffusivity.

I. INTRODUCTION

ISOTACHOPHOREIS ( ITP) is an electrophoretic separa-
tion technique which is based on the difference of mi-

gration speed of ionic species under the same electric field.
In isotachophoretic separation, the analytes which is to be
separated is placed between two electrolytes, namely, the
leading electrolyte ( LE) and the trailing electrolyte (TE).
The LE has the highest mobility and TE is of lowest mobility
among the ionic species which are to be separated. When an
electric field is applied, the ions of the analytes are arranged
in order of their mobilities between the LE and the TE. This
consecutive stacking of ions in order of their mobilities is
referred as isotachophoresis ( ITP). A unique characteristic of
ITP is that all species move at the same speed once steady-state
has been reached. The cationic or anionic ITP corresponds to
stacking of cations or anions, respectively.

In ITP, the electric field adjusts in such a way that each
stack of ions with constant electrophoretic mobility migrate
at constant speed U ITP towards the highest mobility zone.
The electric field in each stack is constant. This leads to the
formation of a plateau shape with sharp interface between the
adjacent stacks in which step jumps in ionic concentration and
electric field develop. Kohlrausch [1] proposed a relation based
on the conservation of charge with electroneutrality, through
which the concentration and electric field in the adjacent zones
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can be related. The width of the stacked zone and the final
concentration of the stacked zone depend on the efficiency of
the ITP preconcentration.

ITP is a powerful electrokinetic technique for the concen-
tration, separation, purification and quantification of ionic ana-
lytes. In recent years, this technique has been miniaturized and
find important applications in the Lab-on-a-Chip technology
( Chen et al.[2]). In a recent review article by Gebauer et
al. [3] discussions have been made about several potential
applications of ITP.

Depending on the amount of the sample present in the
system, we can have two modes of ITP namely, peak mode and
plateau mode (Garcia-Schwartz et al. [4]). The peak mode ITP
arises if the sample zone width is of the order of the interface
widths of the adjacent electrolytes, whereas in the plateau
mode ITP, the interface widths are negligible compared to the
sample zone width. Unlike plateau mode ITP, the sample ionic
concentration in a peak mode ITP may vary with the axial
position and the sample zone appears a sharp peak between
two adjacent electrolytes i.e., LE and TE.

The step changes in electric field and concentration of
ions within the interface zones lead to a strong hyperbolic
characteristic of the advection-diffusion equations for ion
transport. Several authors e.g., Bercovici et al. [5] described
the ITP transport as a similar phenomena as shock wave
propagation in gas dynamics. In recent years, various high-
resolution simulators for one-dimensional computation of ITP
have been presented for analyzing electrophoresis separation
problems, including SIMUL5, developed by Hruska et al. [6].
Yu et al. [7] applied the space-time Conservation Element
and Solution Element (CESE) method to solve 1-D transport
equations to accurately resolve the sharp gradients in ITP. In
the CESE method, like finite volume method, equations are
cast into conservation law form and integrated over a space-
time region. Chou and Yang [8] have provided a detailed
discussion on several numerical schemes for simulating ITP
and provided the ITP simulation based on flux conservative
finite volume scheme in an adaptive grid system. Bercovici et
al. (5, 9) developed an efficient numerical solver to resolve
the sharp ITP transition zones correctly by using a sixth
order compact difference scheme on an adaptive-grid system.
Recently, in a review article, Thormann et al. [10] provided
a state-of-art on the available computer simulation softwares
for ITP separation. However these numerical methods based
on 1-D analysis may not be suitable to analyze the peak mode
ITP (Khurana and Santiago,[11]).

In order to understand the deformation of interfaces in ITP
due to an imposed convection, the variables can not be approx-
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imated to vary only along the direction of the imposed electric
field. A two-dimensional transient behavior of ITP within a
channel has been studied numerically by Shim et al. [12].
Their numerical method is based on the first order upwind,
hybrid, and power-law finite volume schemes. The effects of
cross-sectional change on ITP were studied by Choi et al.
[13] through a finite volume method. A finite volume scheme
to discretize the spatial derivatives will produce oscillation
near the step-jumps in solution. The non-dissipative centered
schemes with adaptive grids require a large number of grid
points to reduce the spurious oscillation near the step-jump in
solutions.

The impact of EOF on isotachphoretic transport of ions was
addressed by several authors namely, Saville [14], Schönfeld
et al. [15], Bercovici et al. (5, 9), Baier et al. [16], Garcia-
Schwarz et al. [4], and the references there-in. The experi-
mental study of Schönfeld et al. [15] shows that sufficiently
far away from the ITP transition zones, the velocity of the
electrolytes can be considered to be the superposition of EO
velocity with a pressure-driven flow arises due to mismatch
of EO velocity of electrolytes. Garcia-Schwartz et al. [4]
studied the dispersion of transition zones due to the EOF.
The deformation of the transition zones in ITP is due to the
convection of eectrolytes depends on the the local pressure
gradient.

In this paper we have computed the two-dimensional model
of ITP within a rectangular channel. The transport of ions is
governed by the Nernst-Planck equations. We have considered
the effect of wall ζ-potential induced electroosmosis of ions
which counterbalance the ITP velocity in anionic ITP. The
resolution of the narrow zones involving steep gradients in the
electric field and the concentration is a challenge in numeri-
cal computation of ITP. The transport of ions are governed
by the Nernest-Planck equations coupled with the Navier-
Stokes equations for fluid flow and an equation for electric
field. The governing equations are disretized through a finite
volume method. The advective and electro-migration terms
are discretized through an upwind algorithm. Our numerical
algorithm can efficiently resolve the sharp ITP interfaces. The
present algorithm is tested for accuracy by comparing it with
the steady-state analytical solution for ideal ITP transport.
We have measured the dispersion through the second-order
moment analysis of the ionic species. The area averaged ionic
distribution of our computed solution is found to agree well
with the Taylor-Aris dispersion model for lower values of the
convection speed.

II. MATHEMATICAL MODEL
We assume the electrolytes to consists of monovalent trail-

ing electrolyte (TE) of anionic concentration C+ , monovalent
leading electrolyte ( TE) of anionic concentration C−, the
anionic concentration of sample species is Cs and a common
cation of concentration C0. The migration of charged species
in an electrolyte under an external electric field are governed
by diffusion and electromigration. We consider x-axis along
the channel and y-axis perpendicular to it. The mass conserva-
tion of the ionic species leads to the following Nernst-Planck
equation.

∂Ci

∂t
+ ∇.Ni = 0 (1)

where i = +, s or−. Here subscript + refer the TE anions,
− for the LE anions and s for the sample anions. The
concentration of common ion C0 is obtained through electro-
neutrality assumption i.e., C0 =

∑
i Ci. The molar flux of ith

species is

Ni = −Di∇Ci + Ci(q + ziμi E) (2)

where valance zi = −1 for anions and z0 = +1 for common
cation. The mobility and diffusivity are related via Nernst-
Einstein relation μi = DiF/RT , where F is Faraday constant,
R is gas constant and T is absolute temperature. The convec-
tive speed is q and E = −∇φ is the electric field. The electric
current density and charge density are defined respectively, as
j = F

∑
i ziNi and ρe = F

∑
i ziCi. Conservation of electric

charge leads to
∂ρe

∂t
+ ∇.j = 0 (3)

Under electro-neutrality condition (ρe = 0), the unsteady term
and convective terms in (3) vanishes. The electric field E can
be obtained from the charge conservation equation as

∇.(νE) = ∇.(F
∑

i

Dizi∇Ci) (4)

where ionic conductivity is given by ν = (F
∑

i μiz
2
i Ci).

The term in right-hand side of (4) is the diffusion current
and its contribution is insignificant at all locations, except at
the transition zones.

We imposed a fixed potential drop Φ = E0L along the
channel. Due to discontinuous conductivity of the electrolytes,
the electric field will vary. At steady state in ideal ITP ( without
an imposed convection), all the species will migrate at the
same ITP velocity U ITP . Due to the distinct electrophoretic
mobility of each ionic species, the electric field strength of
each zone will be different. The electric field in each zone is
adjusted so that the zones migrate at a constant speed, U ITP .
If Ei (i = +, s or−) are the strengths of electric field in each
separated zone occupied by only one species, then using the
relation U ITP = μiEi we get

Ei = E0
1/μi∑
j(lj/μj)

(5)

where the summation is taken over all the species and li =
Li/L is the portion of the length L which is filled by ith

species. We can also express E− and E+ in terms of the
applied current density j0 as follows

j0 = F (μ− + μ0)C∞
− E− = F (μs + μ0)C∞

s Es

= F (μ+ + μ0)C∞
+ E+ (6)

From the fact that at steady state all species moves at a
constant speed U ITP = μiEi, the above relation leads to the
relationships for the bulk concentration of TE, LE and all the
sample species as

C∞
−

C∞
+

=
μ+ + μ0

μ− + μ0

μ−
μ+

,
C∞

s

C∞
+

=
μ+ + μ0

μs + μ0

μs

μ+
(7)
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where suffix ∞ stands for the bulk value of the concentrations.
We consider the height H of the channel as the length

scale and U ITP as the scale for velocity. The concentration
of ionic species are scaled by the bulk concentration of LE
i.e., C∞

+ , potential by φ0(= RT/F ) and time is scaled
by τ = H/U ITP . The Nernst-Planck equations in non-
dimensionalized form can be written as

∂ci

∂t
+ (q.∇)ci − zi

Di

Ds

1
Pe

∇.(ci∇φ) =
Di

Ds

1
Pe

∇2ci (8)

where Di’s are the diffusivities of the respective ions and
Peclet number Pe = U ITP H/Ds.

The charge conservation equation in nondimensional form
is as follows

∇.

[(
c+ +

Ds + D0

D+ + D0
cs +

D− + D0

D+ + D0
c−

)
∇φ

]
= −

(
z+D+ + z0D0

D+ + D0

)
∇2

[
c+ +

zsDs + z0D0

z+D+ + z0D0
cs +

z−D− + z0D0

z+D+ + z0D0
c−

]
(9)

where the gradient operator is given by

∇ =
∂

∂x
êx +

∂

∂y
êy (10)

with êx and êy are the unit vectors along x and y directions.
We consider the average flow due to EO of electrolytes is

equal and opposite to the ITP velocity, U ITP . Both the left
and right boundaries of the computational domain is placed
sufficiently far away from the transition zones. The net flux
through the channel walls are set to be zero i.e., Ni.n̂ = 0
for i = −, s,+, where n̂ is unit outward normal. The electric
potential is subjected to insulating boundary conditions along
the wall (∇φ.n̂ = 0). The concentration at both the ends are
related by the Kohlrauch’s condition (7).

The impact of electroosmosis of electrolytes on ITP trans-
port is significant when the electroosmotic velocity of each
zones are different. The bulk concentration of LE is considered
to be C∞

− so that the Debye layer thickness (O ∼ (10nm))
becomes much lower than the height of the channel considered
here (H ≥ 25μm). Thus, the slip velocity condition can be
assumed on the channel wall. We denote the electroosmotic
slip velocity along the wall for each of three zones are
uEOF

i (i=-,+ and s) respectively. The slip velocity uEOF
i

is determined by the Helmholtz- Smoluchowski’s equation
uEOF

i = εeζiEi/η = μEOF
i Ei, where εe dielectric permit-

tivity of the medium, ζi is the zeta potential and μEOF
i is the

electroosmotic mobility. The difference in EOF velocity of the
electrolytes induces a locally uniform, but not globally, axial
pressure gradient. Sufficiently far away from the transition
zones, the velocity of the of the electrolyte is considered to
be the superposition of EOF velocity and Poiseuille flow due
to a constant pressure gradient [15] as

ui(y) = uEOF
i + 6up,i

y(1 − y)
H2

(11)

where up,i is the average flow due to a constant pressure
gradient on the ith zone. If the net pressure drop across

the length L is zero, then
∑

i liup,i = 0 along with the
conservation of mass leads to

ui(y) = uEOF
i + 6(ū − uEOF

i )
y(1 − y)

H2
(12)

The average electroosmotic speed ū is assumed to counterbal-
ance the ITP velocity. Thus,

ū =
∑

i

liu
EOF
i = U ITP (13)

The slip velocity along the wall is

uEOF (x; y = 0, H) = μEOF (x)E(x; y = 0, H) (14)

where μEOF (x) and E(x; y = 0, H) are respectively, the
wall mobility and axial electric field on the wall at different
axial position x. The approximate wall mobility is given by
[16]

μEOF (x) =
∑

i μEOF
i Ci(x; y = 0, H)∑
i Ci(x; y = 0, H)

(15)

where Ci(x; y = 0, H) and μEOF
i are the concentration

values on the wall and electroosmotic mobilities of the ith

ionic species respectively.
The velocity field q due to the mismatch of EOF is governed

by the nondimensional Navier-Stokes equations as

∂q
∂t

+ (q.∇)q = − 1
Re

∇p +
1

Re
∇2q + B∇φ∇2φ (16)

and
∇.q = 0 (17)

where p, η and ρ are the fluid pressure, viscosity and density,
respectively . This electrical stress arises due to the spatial
variation of φ across the channel. The nondimensional quantity
B = (εeφ

2
0/ηΔX)/ReU ITP with Re = ρU ITP H/μ and

μU ITP /H is the pressure scale.
We solve the Navier-Stokes equations, which are coupled

with the ion concentration and electric field equations, sub-
jected to those prescribed boundary conditions to determine
the convective velocity of ions in the transition zone.

Here we have considered a 400μm long channel containing
40μmC∞

− H amount of sample sandwiched between LE and
TE. The TE and LE are taken to be symmetrically placed. To
make the quantitative mesurment using this model, the elec-
trophoretic mobilities of all species, concentration of the lead-
ing electrolyte, voltage drop across the channel and height of
the channel must be specified. We have taken φ0 = 0.02586V,
εe = 695.39 × 10−12C/V m, KB = 1.381 × 10−23J/K,
e = 1.602 × 10−19C, T = 300K, μ = 10−3Pa S and
ρ = 103kg/m3.

III. NUMERICAL METHODS

We have computed the equations for ion transport and
electric field in a coupled manner through the finite volume
method. The computational domain is subdivided into a num-
ber of control volumes. In this method, the equations cast into
conservative form, are integrated over each control volumes.
The variables, such as electric potential and ionic concentra-
tions are stored at the cell centers. This approach enables to
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compute the jump discontinuity as part of the solution. Due to
the hyperbolic nature of ion transport equations, discretization
of the convective flux and electromigration terms at the cell
interfaces through a linear interpolation of variable values
between two neighbors on the either side of the control volume
interfaces, may lead to a numerical instability. In order to
resolve the sharpness of the variables, which occurs in ITP
interface, we adopt the upwind scheme QUICK ( Quardratic
Upwind Interpolation Convection Kinematics) to discretize the
electromigration and convection terms in the ion transport
equations. The QUICK scheme uses a quadratic interpolation/
extrapolation between three nodal values to estimate the vari-
ables at the interfaces of each cell. The diffusion fluxes at the
control volume interfaces are estimated by linear interpolation
between two neighbors to the either side of the control volume
interfaces.

We use an implicit scheme to discretize the time deriva-
tives. At time level, we use an iterative procedure for the
computation of ion transport equations as these equations are
coupled with the charge conservation equation. The iteration
procedure starts with an assumption for potential at each
cell. At every iteration, the electric field is determined by
solving the reduced elliptic equation for charge conservation
equation, i.e., equation (9). The elliptic equation (9) is solved
by a line-by-line iterative method along with the successive-
over-relaxation (SOR) technique. The iterations are continued
until the absolute difference between two successive iterations
become smaller than the tolerance limit 10−6 for concentration
as well as potential distribution across the channel.

For the case of EOF impact on ITP, the fluid flow equations
which are coupled with the mass transfer equation and the
equation for electric field, are computed by using a control
volume approach [17] over a staggered grid system. In the
staggered grid system the velocity components are stored at
the cell interface to which it is normal. Here we also used
the QUICK scheme to discretize the convective terms. The
governing discretized equations are solved through a pressure
correction algorithm, SIMPLE [17]. The pressure link between
the continuity and momentum equations is accomplished by
transforming the discretized continuity equation into a Poisson
equation for pressure correction.

At the end of every iteration, the velocity on the channel
wall is obtained by (14) using the updated values for con-
centration distribution and electric field. The iteration at each
time step is continued until the divergence-free velocity field
is obtained. However for this purpose, the divergence in each
cell is towed below a pre-assigned small quantity.

A steady state solution is achieved by taking sufficient
time steps until the concentrations and velocity field remains
unchanged with time. The initial condition for dispersed ITP
is governed by the solution of the corresponding ideal ITP
case. In order to test the accuracy of our algorithm, we have
compared the computed ideal ITP results with the analytical
solutions and found them in good agreement ( Fig. 1a, b).

IV. RESULTS AND DISCUSSIONS
In order to check the time dependency of concentration

profile for ideal ITP, computed result for the logarithmic

ratio of the concentrations of LE and TE is compared with
the analytical solution given by Goet et al.[18]. The results
show (Fig. 1a) that the concentration distribution becomes
steady after a short transition with respect to a coordinate co-
moving with the ITP interface. Here the solid line represent
the analytical solution and the dotted lines are the computed
solutions for different non-dimensional time.

We investigated the dependence of LE-TE transition zone
width on mobility ratio (D+/D−) is presented in Fig. 1b.
The transition zone is the over-lapped region in which the
concentration field of dissolved ions changes from their zone
characteristic value to zero. The overlapping can be minimized
by increasing the electric field (E0) and/or decreasing the
mobility ratio (D+/D−). Our computed values for transition
zone length are compared with the expression provided by
MacInnes and Longsworth [19], and found them to be in
good agreement. It may be noted that at high mobility ratio
at a fixed D+, the diffusion effect becomes stronger. In ITP,
electromigration leads to sample stacking and diffusion works
against it. The narrow width of the transition zone during
separation has a significant meaning in ITP separation.

The profile for ionic species concentration in steady-state
ITP in absence of an imposed convection ( ideal ITP) with
respect to a reference frame moving with the ITP velocity is
presented in Fig. 2a-c for different values of the elecrophoretic
mobility ratio of the sample ion. The penetration of sample
electrolyte into LE or TE zone strongly depends on its
mobility. Figs. 2 shows that as the mobility ratio between the
sample and LE increases and consequently, the mobility ratio
between TE and sample decreases, the sample penetrates more
into the LE zone and vice versa. The interface region between
the LE-sample ( or sample-TE) becomes sharp compared to
the TE-sample interface as the sample mobility becomes close
to the LE ( or TE). Consequently, the TE-sample( sample-LE)
interface becomes smaller compared to the width of the LE-
sample ( TE-sample) interface zone.

We now present results for steady-state isotachopresis of
analytes which is interacted with EOF. The average EOF of
analytes is assumed to be equal and opposite to the ITP
velocity. In this situation, a steady state is achieved in a
stationary frame of reference after a short transient stage. The
sample distribution in steady state is shown in Fig. 3a,b for
different values of the electroosmotic mobility of LE and TE.
The initial amount of sample and its electrokinetic properties
is considered to be same in all the cases. We have varied
the EO mobilities of LE and TE keeping the electrophoretic
mobility ratio of LE-to-TE i.e., k1 = μ−/μ+ = 3. It is evident
that the sample zone is dispersed due to the EO convection.
The sharpness in the ITP transition zones is smeared out due
to the imposed convection. The form of the transition zone
depends on the local axial pressure gradient. Depending on
the EO mobility of LE and TE, the pressure gradient in the
transition zones may become adverse or favorable. We have
measured the dispersion of the transition zone for wide range
of LE-to-TE electrophoretic mobility ratio. We find that the
dispersion in transition zone is highest for the cases in which
the electrophoretic mobility of the sample is either close to
LE or TE for a given value of EO mobility of electrolytes. It



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:6, No:9, 2012

1257

X (μm)

ln
(c

-/c
+
)

-10 -5 0 5 10

-40

-20

0

20

40

60

80 Analytical
t=1
t=5
t=10
t=20

(a)

D+/D-

Δ
X

(
xμ

m
)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1

2

3

4

5

Computed
Analytical

(b)

Fig. 1. (a) Comparison of logarithmic ratio of TE and LE concentrations with
analytical solution to show how the steady state achieved. The electrophoretic
diffusivity of TE is taken as D+ = 0.7D−; (b)Comparison of computed
solution for the width of the transition zone with the analytical results for a
plateau mode ITP. The electrophoretic diffusivity of LE is taken as D− =
7.0 × 10−10m2/V s with l− = l+ = 1/2, C∞

− = 0.01M and E0 =
105V/m.

may be noted that the EO mobility of electrolytes satisfy the
relation (13). The dispersion is measured through the second-
order moment analysis. For the sake of brevity we have not
presented the results for dispersion.

We have compared the area-averaged computed solution
of the analyte concentration with the 1-D model based on
the Taylor-Aris effective diffusion coefficient. The effective
diffusivity of each ionic species is obtained by

Deff,i = Di

[
1 + β

(
Hup

Di

)2
]

(18)

where i= +, s, or - and up =Max up,i. For a parallel
plates channel the value of the constant β is 1/210. The area
averaged concentration distribution of ions ( Ci) in the 1-D
Taylor-Aris dispersion model is governed by
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Fig. 2. Profiles of ionic concentration in peak mode ITP for fixed k1(=
μ−/μ+ = D−/D+) = 3 when (a)k2(= μ−/μs = D−/Ds) = 1.1; (b)
k2(= μ−/μs = D−/Ds) = 2.0; and (c) k2(= μ−/μs = D−/Ds) =
2.9. The results are for channel height H = 25μm. The electrophoretic
diffusivity of LE is taken as D− = 7.0×10−10m2/V s with C∞

− = 0.01M
and E0 = 105V/m.

∂Ci

∂t
+

∂

∂x

[(
ziμiEx Ci − Deff,i

∂Ci

∂x

)
− U ITP Ci

]
= 0

(19)
Our computed solutions for the 2-D dispersed ITP are found

to be in good agreement with this 1-D model ( Fig.4a,b). The
width of the sample zone is perfectly captured by the 1-D
model based on the Taylor-Aris effective diffusivity.
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(a)

(b)

Fig. 3. Concentration distribution of sample species for fixed k1(=
μ−/μ+ = D−/D+) = 3 and k2(= μ−/μs = D−/Ds) = 2. The
results are for channel height H = 25μm. The electrophoretic diffusivity
of LE is taken as D− = 7.0 × 10−10m2/V s with C∞

− = 0.01M and
E0 = 105V/m. The electroosmotic mobility of the ionic species are consid-
ered as (a) μEOF

− = 2.54 × 10−8m/V s, μEOF
s = 2.54 × 10−8m/V s,

μEOF
+ = 8.54 × 10−9m/V s; (b)μEOF

− = 2.94 × 10−8m/V s, μEOF
s =

7.36 × 10−8m/V s, μEOF
+ = 9.82 × 10−9m/V s.

V. CONCLUSIONS
We have investigated the situations in which electromi-

gration in isotachophoresis is balanced by the average elec-
troosmotic velocity of electrolytes. Our results show that a
stationary zone of ITP stack results. However, the EOF reduces
the resolution of ITP transition zones and produces strong
dispersion on the sample stack. The numerical algorithm
presented here can resolve accurately the transition zones
in peak mode as well as plateau mode for ideal ITP. The
deformation of the sample zone when ITP is interacted with
EOF depends on the local pressure gradient. The induced
pressure gradient develops due to mismatch of EO velocity
of electrolytes. Another key result of this study is that a 1-
D area-averaged model for the sample distribution based on
Taylor-Aris dispersion agrees well with the more detailed 2-D
model.
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