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A New Method for Computing the Inverse Ideal in a
Coordinate Ring

Abdolali Basiri

Abstract—In this paper we present an efficient method for invert-
ing an ideal in the ideal class group of a Cab curve by extending
the method which is presented in [3]. More precisely we introduce a
useful generator for the inverse ideal as a K[X]-module.
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I. INTRODUCTION

THE first ideal class groups encountered in mathematics
were part of the theory of quadratic forms: in the case of

binary integral quadratic forms, as put into something like a
final form by Gauss, a composition law was defined on certain
equivalence classes of forms. This gave a finite abelian group,
as was recognized at the time. Later Kummer was working
towards a theory of cyclotomic fields. It had been realised
(probably by several people) that failure to complete proofs
in the general case of Fermat’s last theorem by factorization
using the roots of unity was for a very good reason: a failure
of the fundamental theorem of arithmetic to hold, in the rings
generated by those roots of unity, was a major obstacle. Out
of Kummer’s work for the first time came a study of the
obstruction to the factorization. We now recognize this as
part of the ideal class group: in fact Kummer had isolated
the p-torsion in that group for the field of p-roots of unity,
for any prime number p, as the reason for the failure of
the standard method of attack on the Fermat problem (see
regular prime). Somewhat later again Dedekind formulated
the concept of ideal, Kummer having worked in a different
way. At this point the existing examples could be unified.
It was shown that while rings of algebraic integers do not
always have unique factorization into primes (because they
need not be principal ideal domains), they do have the property
that every proper ideal admits a unique factorization as a
product of prime ideals (that is, every ring of algebraic integers
is a Dedekind domain). The ideal class group gives some
answer to the question: which ideals are principal ideals?
The answer comes in the form all of them, if and only if
the ideal class group (which is a finite group) has just one
element. Nowadays, an application of ideal class group is
in cryptography. The success of elliptic curves in public key
cryptography has created new interest in the arithmetic of more
general algebraic curves such as hyperelliptic, superelliptic
[4], Cab [1] or CA [2] curves. Unfortunately there is a heavy
computational amount of addition in the Jacobian of such non-
elliptic curves. The core of their arithmetic often consists of the
reduction process, which is: transforming any group element
into a reduced representative. But to compute such a reduced
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ideal, we need first to compute an inverse for the present ideal.
In this paper, we give a useful generator as a K[X]-module
for the inverse ideal of a typical ideal [3].

II. DEFINITIONS AND NOTATIONS

We begin with a basic definition and some notations.
Definition 1: For coprime positive integers a and b, coprime

to the characteristic of the ground field K, a Cab curve ([5],
[6]) C is defined by a non-singular plan curve defined by the
following form of polynomial F

F (X, Y ) = Y a +
∑

ia+jb<ab

cijX
iY j + Xb.

Let K[F ] = K[X, Y ]/〈F 〉 be a coordinate ring of a Cab

curve C which is defined by F and K(F ) be its function field
(the field of fractions of K[F ]). We will use three different
representations of ideals:

• The notation id(f1(X, Y ), · · · , fm(X, Y )) will represent
the ideal
{f1(X, Y )g1(X, Y ) + · · · + fm(X, Y )gm(X, Y ) :
g1(X, Y ), · · · , gm(X, Y ) ∈ K[F ]}.

• The notation [f1(X, Y ), · · · , fm(X, Y )]K[X] will
represent the K[X] module
{f1(X, Y )g1(X) + · · · + fm(X, Y )gm(X) :
g1(X), · · · , gm(X) ∈ K[X]}.
Every ideal may be written in this form. However, it is
not true that every such module is an ideal.

• The notation [I : J ] will represent the ideal
{h ∈ R : hg ∈ I ∀g ∈ J}
where R is a ring and I and J two ideals of R. Specially
[f : J ] denotes [id(f) : J ] for every f in R.

III. MAIN THEOREM

We begin this section with two lemma and end it with the
main theorem of this paper.

Lemma 2: Let F (X, Y ) be a monic polynomial w.r.t Y in
K[X, Y ] and v(X) a polynomial in K[X], then Y −v divides
F (X, Y ) − F (X, v).

Proof: There are F0, · · · , Fa−1 in K[X] such that

F (X, Y ) = Y a +
a−1∑

j=0

Fj(X)Y j . (1)

Set

H =
a−1∑

j=0

Y a−1−jvj +
a−1∑

l=1

Fl

l−1∑

k=0

Y l−1−kvk,
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we have then:

H(Y − v) = (Y a − va) +
a−1∑

j=1

Fj(Y j − vj)

which is equal to F (X, Y ) − F (X, v).
With above notations, H can be written as:

H =
a−1∑

i=0

(va−1−i +
a−2∑

k=i

Fk+1v
k−i)Y i. (2)

A generator set for the ideal [u : A] mod F , can be
computed as follows:

Lemma 3: Let A = id(u(X), Y −v(X)) be a typical ideal,
F a polynomial of the form (1) in A and u divide F (X, v),
then

[u : A] = id(u, H) mod F .
Proof: There is a polynomial w ∈ K[X] such that

F (X, v) = wu. (3)

Define
B := [u : A] mod F
then

B = {μ ∈ K[X, Y ] | μ(Y − v) ∈ id(u) mod F}. (4)

But by Lemma 2 and equation (3) we have

H(Y − v) = −wu ∈ id(u) mod F,

hence
id(u, H) ⊆ B mod F.

Now we show

B ⊆ id(u, H) mod F.

For this purpose let θ ∈ B, it suffices to treat the special case:

θ =
a−1∑

j=0

θjY
j , (5)

for some θ0, ..., θa−1 in K[X], because from equation (1) we
have Y a + B = (

∑a−1

j=0
FjY

j) + B. By equation (4),

θ(Y − v) ∈ id(u) mod F.

There are so ηa−1, ..., η0, s ∈ K[X] such that

θ(Y − v) = (
a−1∑

j=0

ηjY
j)u + sF.

So from the equations (1) and (5) we have
θa−1Y

a +
∑a−1

j=1
(θj−1 − vθj)Y j − vθ0 =

sY a +
∑a−1

j=1
(uηj + sFj)Y j + uη0 + sF0.

We have then θa−1 = s and for 0 ≤ j ≤ a − 2,

θj = vθj+1 + uηj+1 + sFj+1

= (va−j−1 +
a−1∑

l=j+1

vl−j−1Fl)s

+ (
a−1∑

l=j+1

vl−j−1ηl)u

The later equations with (5) and (2) imply that:

θ = s(H −
a−2∑

i=0

(va−1−i +
a−2∑

k=i

Fk+1v
k−i)Y i)

+
a−2∑

j=0

((va−j−1 +
a−1∑

l=j+1

vl−j−1Fl)s

+ (
a−1∑

l=j+1

vl−j−1ηl)u)Y j

= sH − s
a−2∑

j=0

(va−1−j +
a−2∑

l=j

Fl+1v
l−j)Y j

+
a−2∑

j=0

(va−j−1 +
a−2∑

l=j

vl−jFl+1)sY j

+
a−2∑

j=0

a−1∑

l=j+1

vl−j−1ηluY j

= sH + (
a−2∑

j=0

a−1∑

l=j+1

vl−j−1ηlY
j)u,

which is an element of the ideal id(u, H) mod F , conse-
quently

B = id(u, H) mod F.

We now have all the ingredients needs to state and prove
the main theorem which computes a generator set for the ideal

[u : A] mod F,

as a K[X]-module.
Theorem 4: Let A = id(u(X), Y −v(X)) be a typical ideal,

F a polynomial of the form 1 in A, u divide F (X, v) and
B = [u : A] mod F , then

B = [u, uY, ..., uY a−2, H]K[X] mod F, (6)

i.e.,

B = {λF +
a−2∑

i=0

θiuY i +θa−1H|λ ∈ K[X, Y ], θi ∈ K[X] }.

Proof: Let

C := [u, uY, ..., uY a−2, H] mod F,

by Lemma 2 and equation (3) we have Y H = F − uw + vH
which is an element of C, also

Y 2H = Y F + v(F + vH − uw) − wuY ∈ C,

and by the same reason Y iH ∈ C for i = 1, ..., a − 1. Now
from equation (1) for all i ≥ a, there are Hi0 , Hi1 , ..., Hia−1 ∈
K[X] and Hi ∈ K[X, Y ] such that

Y i = HiF +
a−1∑

j=0

Hij
Y j (7)
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hence Y iH = (HiF +
∑a−1

j=0
Hij

Y j)H ∈ C. On the other
hand by equation 2 we have

Y a−1u = (H −
a−2∑

i=0

(va−1−i +
a−2∑

k=i

Fk+1v
k−i)Y i)u

= uH −
a−2∑

i=0

(va−1−i +
a−2∑

k=i

Fk+1v
k−i)uY i,

belongs to C. Also by equation (7), for all i ≥ a we result that
Y iu = (HiF +

∑a−1

j=0
Hij Y

j)u belongs to C. Consequently
B ⊆ C, moreover, by the lemma 3 it is clear that C ⊆ B, and
thus B = C.

IV. AN EXAMPLE

In this section we give an example to explain how our
theorem work.

Let C be a C35 curve in ZZ97[x, y], defined by F = y3 +
F1y + F0 where

F0 = 24+89 x+51x2+96x3+x5, F1 = 62x3+88x2+27x+26.

Consider the ideal A = (u, y − v) where

u = 19+56x+23x3+24x2+92x5+3x4+x8+87x7+33x6,

v = 28x7 +13x6 +86x5 +12x4 +25x3 +57x2 +27x+53.

By applying explained procedure in previous section we can
obtain that inverse ideal of A modulo F is equal to:

id(u, H) = [u, uy, H],

where
H = y2 + yH1 + H0,
H1 = 28x7+13x6+86x5+12x4+25x3+57x2+27x+53,
H0 = 22 + 76x + 87x10 + 38x12 + 95x11 + 86x9 + 51x4 +
67 x3 + 69x2 + 4 x5

+61x6 + 49x13 + 66x8 + 9 x7 + 8 x14.

V. CONCLUSION

We presented an efficient method for inverting an ideal in
the ideal class group of a Cab curve which can be applied
in cases of hyperelliptic and superelliptic curves and also can
be used for computing the addition in the Jacobian of such
non-elliptic curves.
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