
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1582

Abstract—Both software applications and their development
environment are becoming more and more distributed. This trend
impacts not only the way software computes, but also how it looks.
This article proposes a Human Computer Interface (HCI) template
from three representative applications we have developed. These
applications include a Multi-Agent System based software, a 3D
Internet computer game with distributed game world logic, and a
programming language environment used in constructing distributed
neural network and its visualizations. HCI concepts that are common
to these applications are described in abstract terms in the template.
These include off-line presentation of global entities, entities inside a
hierarchical namespace, communication and languages,
reconfiguration of entity references in a graph, impersonation and
access right, etc. We believe the metaphor that underlies an HCI
concept as well as the relationships between a bunch of HCI concepts
are crucial to the design of software systems and vice versa.

Keywords—HCI, MAS, computer game, programming language

I. INTRODUCTION

OMPUTING, visualization and manipulation are closely
related to each other in the design of a software system. A

paradigm shift in one of them will raise new requirements in the
rest two. Historically, computing has been the driving force of
the other two HCI related techniques. For example, when
computing was single threaded and relied on I/O polling, we
had only text, buttons and bitmaps, etc to interact with; when it
became multi-threaded and event-driven, we had windows,
dialog boxes, menus, etc to access to a large group of
functionalities in a small flat screen; when it employed a
client/server architecture, we had HTML pages and server side
computing, etc to exchange information on the Internet.

In recent years, computing has become more and more
distributed, ubiquitous and intensive. As a result, distributed
computing paradigms and data presentation techniques have
been standardized, such as in web services, multi-agent system,
semantic web/grid, etc; and more interaction techniques and 3D
graphic rendering devices[6] are available to generate
immersion and networked virtual environment on the Internet.
However, HCI concepts used in their applications remain
mostly unchanged. The lack of distributed HCI concept has, to
some extent, limited the creativity of software developers and
increased the difficulty of distributed framework design.

This paper proposes an HCI template for distributed
applications. Three representative applications that we recently

Manuscript received October 22, 2004.
Xizhi Li is with Zhejiang University, college of computer science,

Hangzhou, China, 310027 (website: http://www.lixizhi.net/ e-mail:
lixizhi@zju.edu.cn).

developed have been used in exemplifying these HCI concepts
as well as explaining the metaphors that underlie them. It is
insufficient to describe HCI concepts without explaining the
computing paradigms that they represent. Therefore, we will
show how visualization (HCI) is elicited by the computing
framework and how computing will be stimulated or
reconfigured by HCI manipulations.

In section II, short introductions to the three representative
applications as well as related works will be given. In section
III, the HCI template is presented in abstract terms, and some
clues of applying them in our sample applications will be
provided. Section II is most important, since it covers not only
new HCI requirement, but also the relationships between
computing and visualization.

II. THREE REPRESENTATIVE APPLICATIONS

A. Web Agent Framework

Web agent framework [2] or WAF is a web-alike topology
[12] multi-agent system application. It aims to create a visible
virtual human relationship network on the Internet. Using agent
to represent human beings and provide information to other
visitors (including agent) is not a new idea. However, current
implementations lack a flexible user interface to convince users
that agents are active humanoid entities that exist on the
network with them. This is due to static user interfaces and
conventional object manipulation techniques adopted by these
agent applications.

Figure 1. Users leave an off-line tree graph of visited agents
and artifacts as they navigate through the agent network.
In WAF, user’s navigation path can be visualized in an

off-line tree graph (See Figure 1). The client explorer of WAF
will remember each visited agent as well as any downloaded

An HCI Template for Distributed Applications

Xizhi Li

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1583

artifacts such as a piece of news or a group of other related
agents (e.g. friend agents). It allows reconfiguration of the
topology of all these intelligent agents as well as data resources
on the client side and save them into local map files. Agents and
information in these map files can be updated automatically
when they are reactivated or re-opened from the history records
kept in the local memory pool(database); they can later be used
as the starting point of a new navigation or just provide a group
of related web services to its user. See Figure 2.

Figure 2. Several map files and user’s interaction with
agents or data in these graph files.

In WAF, although most computing occurs at the place where
agents are actually situated, users (including other agents) can
customize foreign agent references in different activation maps
on their local environment. In our everyday life, we accept the
existence of an object only through different perspectives and
from many situations in which it used to act. Likewise, in order
to let people accept the existence of an agent, we must allow the
user to create multiple situations in which the same agent can be
referenced. There is a set of client side HCI concepts defined in
our template to give software systems this ability. Please see
section III.

B. Parallel World: a 3D Internet game

While some current effort on Semantic Web/Grid tells a
computer program exactly what to compute and visualize on
the Internet, there still lacks formal approaches on telling it how
to compute or visualize. Web3D technology[3] such as X3D
language is exploiting a new possibility of expressing
networked virtual environment[4] that is as distributed as web
pages and more interactive than just hyperlinks. X3D code
generally describes a tree hierarchy of nodes with routes or
stimuli specified for their input fields. Nodes can be associated
with script files or other Internet assets. Script files contain
logics and hence logics can be distributed on the Internet (the
latter needs special runtime environment support where scripts
are situated). Although most X3D applications involve only a
static assembly of dynamic scene data from one or several file
servers on the Internet, the existence of scripts and dedicated
runtime environment on both client and server makes it
possible to construct active virtual environment spanning the

network.
Thus, networked 3D content or virtual world is, in fact, a

composition of the computing result of many distributed active
entities on the Internet. Like current HTML browsers, the next
generation web browsers must be able to (1) locally simulate
and present 2D and 3D visualizations to its user (2) reconfigure
or interact with any downloaded entities in its local
environment (3) simultaneously communicate with other
computing entities on the network to keep them up-to-date and
alive. As the relationship between computing and visualization
becomes more complex in future applications, human computer
interface design will become a hot issue. One way to think of its
complexity is through designing 3D computer game engines
based on this framework.

In [1], we have proposed and implemented a game engine
framework called ParaEngine for developing games based on
distributed game world data and logic. I.e. game data and logic
are contained in neuron files which are distributed on the
Internet. Neuron files are program codes written in Neural
Parallel Language (NPL) and deployed to its language runtimes.
One can compare a neuron file to a light-weight web service
modeled as an abstract neuron and simulated in a special
runtime environment.

A screen shot of the game is shown in Figure 3. All text,
buttons, graphics and sounds in it are mental elicitations of a
neural network constructed by NPL. Players might walk
around, talking with other NPCs (None-player characters),
complete complex tasks all in a continuous infinitely-large
distributed game world. It is like browsing 3D web pages [5],
however, it is more interactive, purposeful and fun. We will see
later how the HCI template can be used in this framework.

Figure 3. Screen shots from Parallel World game

C. Neural Parallel Language or NPL

NPL is the programming language used in constructing the
game in Section II.B.

In our viewpoint, the compiling of code (that targets
distributed environment) may also be carried out in a
distributed manner (from command-line compiler to rich HCI
enabled ones with network capabilities); the next generation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1584

high-level language may be able to express adaptive and
distributed behaviors with its own language primitives; its
compiler may be able to generate low-level code that runs on
any part of the network; and its development environment may
allow visualized design of any parallel code and deployment
scheme. In other words, the coding and compiling process may
both be carried out in a distributed manner and environment.
This calls for a new language dedicated to this task and a new
human-computer interface (HCI) adopted by its compiler and
runtime environment.

With this vision, we had proposed a neural network based
programming paradigm called Neural Parallel Language
(NPL). An informal description of the language can be found in
section 3 of [1].

III. THE HCI TEMPLATE

In previous sections, we have described three representative
domains of computing and their visualizations. Although their
HCI differs greatly in both functions and appearance, there is a
set of HCI concepts that is common to all of them. These
concepts are described in abstract terms in this section. We
hope they will help designers to define their software systems at
an early stage.

A. Related works of HCI template

Some related works are dedicated to the requirement,
analysis and design phase of a distributed application, such as
some agent development platform [7, 8] and UML extensions
(like AUML [9]). They are focusing on the internal hierarchy of
an agent framework. There are also tools and interface models
to provide assistance to interface developers [10, 11]. Many
methodologies have been developed to support the design
phase of Multi-Agent Systems (MAS). Among them are
AUML, Gaia and MAS-CommonKADS. These methodologies
offer a set of diagrams to help conceptualize and represent the
system under development. And there are also tools and
network computer games that automatically generate the
presence of agent networks over the Internet.

Our purposed HCI template is not a concrete implementation
to the above helper software, nor is it a substitute for these
proposed visual tools; instead, we aim to suggest to application
developers that much work can be refined and new important
functionalities may be needed in future software applications.

B. HCI Template Overview

Some common requirements of distributed HCI are (1) a
naming convention for distributed object references, (2) using
multiple references of the same object in different places, (3) a
network transparent reconfiguration of the topology of objects,
(4) a mechanism to remember visited objects and their
activation topology, (5) a certification mechanism for runtime
environments as well as for each individual action that is
performable by an object.

To visualize the aforementioned requirements, the following
top-level interface objects are defined in the HCI template:
- DNode: an entity prototype defined on the network

- DNodeInstance: an instance of DNode(s) with a unique
address on the network.

- DNodeReference: A reference of DNodeInstance, which is
used in off-line presentation in an activation map.

- ActivationMap: a collection of DNodeReference organized in
a directed graph.

- History: A historical record of all the above HCI objects.
- Owner: An authorized entity which owns a collection of

DNodeInstance.
- Runtime: An environment where a set of activation maps are

managed. Both client and server are regarded as runtimes.

C. The HCI Template

1) DNode object

DNode := < , In, Out, URI>
:= alphabet in the DNode’s top-level communication

language.
In:= All possible input, which can be further defined as a

language(
*

) acceptable by this DNode.

Out := All possible output, which can be further defined as a

language(
*

) used in its outgoing message.

URI := A resource identifier where the DNode is defined
2) DNodeInstance

DNodeInstance := < DNode, address, state, actions, , lock>
address := <namespace, local path>
state := <PublicState, ProtectedState>

PublicState: = public data or state that is accessible by other
DNodeInstance

ProtectedState:= protected information which can be either
static or dynamic.

actions := <visualization, lock>
visualization := an imagery that is reported to the user or fed

to the (possibly virtual) environment
 := A transition function from ()state In to ()state Out

Service:= {<name, IOPairs>}, where IOPairs In Out AND

(,) { 1, 2 [(1,) (2,)]}i o IOPairs s s state s i s o .

lock := require keys to open it
3) DNodeReference

DNodeReference := <DNodeInstance, visibility>
visibility := A customized appearance of DNodeInstance that

is used to display DNodeReference
4) ActivationMap

ActivationMap := <name, nodes, edges>
nodes := {DNodeReference}
edges := {< in , out>}

in := DNodeReference
out := DNodeReference

5) History

History := {< keywords, object, data>}
keywords := {time | name | address | …}
object := DNodeInstance | ActivationMap

6) Owner

Owner := <UserID, keys, privileges, {DNodeInstance}>
keys := {key}
privileges := {create | delete | modify | …}

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:6, 2007

1585

7) Runtime

Runtime := <address, {ActivationMap}, {Owner}>

D. Explanation and application

We will now map these HCI concepts to the first two

representative applications in Section II. The metaphors that
underlie this mapping as well as their relationships will provide
useful insights to both user interface design and software
system’s function specifications. Please see TABLE I.

TABLE I.
MAPPING FROM HCI TEMPLATE TO WAF AND PARALLEL WORLD GAME

HCI concepts Web Agent Framework Parallel World game

DNode Agent prototype which defines its communication language
and schema.

Neuron file prototype and its message transfer protocol.

DNodeInstance A unique agent situated in its runtime with a set of services
and a set of actions it will perform whenever an internal state
is reached. Both the agent and its actions are protected with
locks.

A unique neuron file that is situated in its runtime with certain transfer
functions and a set of multimedia elicitations that will be fed to the
environment (game engine) whenever an internal state is reached.

DNodeReference The same agent can be referenced at many different places in
both client and server runtimes

A neuron file can be referenced by any game engine runtime, without its
logic (code) being downloaded.

ActivationMap When navigating through the agent network, users will
automatically produce a map file comprised of any visited
agent. Agent references in a map file can be reorganized to
form a new computing topology.

Game world logics are scripted in many neural networks (the maps) which
are distributed on the Internet. Client and server neural networks exchange
messages between runtimes to synchronize their visualizations.

History Any visited agent and navigation map files can be recollected
in an offline mode by the Runtime.

Even though the game client is disconnected from servers, users could still
play in the networked virtual environment in an off-line manner.

Owner A master of agents who owns privileges to their protected
data and actions.

A host player or a visitor.

Runtime Agent platform or runtime environment where computing
and visualization of each agent occurs.

NPL runtime (embedded in a game engine) where activation and execution
of local neurons occurs and messages to external neurons are routed via
network.

IV. CONCLUSIONS

We proposed an HCI template for economic use of
distributed resources. New computing frameworks such as
multi-agent system, distributed neural network based
computing require new HCI concepts designed for their
efficient manipulation in both development and application
stage. The proposed HCI concepts are summarized from three
representative applications we have previously implemented.
We hope it could provide some useful insights and read-to-use
HCI patterns in the design of future distributed applications.

REFERENCES

[1] Xizhi Li, “Using Neural Parallel Language in Distributed Game World
Composing,” in Conf. Proc. IEEE Distributed Framework of

Multimedia Applications. 2005.
[2] Xizhi Li, Qinming He. "WAF: an Interface Web Agent Framework." IJIT.

International Conference on Information Technology 2004.
[3] Web3D Consortium. http://www.web3d.org
[4] Singhal, S., and Zyda, M. (1999). Networked Virtual Environments:

Design and Implementation, ACM Press.
[5] Jed Hartman and Josie. The VRML 2.0 Handbook: Building Moving

Worlds on the Web Wernecke (1996) Addison-Wesley. ISBN
0-201-47944-3.

[6] Bowman, D. A., and Hodges, L. F. (1999). “Formalizing the Design,
Evaluation, and Application of Interaction Techniques for Immersive
Virtual Environments.” Journal of Visual Languages and Computing, 10,
37-53.

[7] Bauer., B. “UML Class Diagrams Revisited in the Context of
Agent-Based Systems.” In the econd International Workshop on
Agent-Oriented Software Engineering (AOSE-2001), Montreal, Canada,
May 28- June 01. 2001. pp 1-8.

[8] Bernon., C., Gleizes., G., Peyruqueou., S., Picard., G. ADELF, “a
Methodology for Adaptive Multi-Agent Systems Engineering.”
Workshop Notes of the Third International Workshop Engineering
Societies in the agents world, 16-17 septembre 2002, madrid, spain, pp.
21-34.

[9] Odell., J., Van Dyke Parunak., H., and Bauer., Bernhard. “Extending
UML for Agents.” Proceedings of the Agent-Oriented Information
Systems Workshop at the 17th National Conference on Artificial
Intelligence, Gerd Wagner, Yves Lesperance and Eric Yu eds., Austin,
Tx, pp 3-17, AOIS Workshop at AAAI 2000.

[10] Puerta, A.R. “State-of-the-Art in Intelligent User Interfaces”
Knowledge-Based Systems, 10(5), 1998, pp. 263-264.

[11] Puerta, A.R. “A Model-Based Interface Development Environment.”
IEEE Software, 14(4), July/August 1997, pp. 41-47.

[12] David Benyon, “The new HCI? Navigation of information space,”
Elsevier. Knowledge-Based System (2001).

