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Hybrid Feature and Adaptive Particle Filter for

Robust Object Tracking

Abstract—A hybrid feature based adaptive particle filter algorithm
is presented for object tracking in real scenarios with static cam-
era. The hybrid feature is combined by two effective features: the
Grayscale Arranging Pairs (GAP) feature and the color histogram
feature. The GAP feature has high discriminative ability even under
conditions of severe illumination variation and dynamic background
elements, while the color histogram feature has high reliability to
identify the detected objects. The combination of two features covers
the shortage of single feature. Furthermore, we adopt an updating
target model so that some external problems such as visual angles can
be overcame well. An automatic initialization algorithm is introduced
which provides precise initial positions of objects. The experimental
results show the good performance of the proposed method.

Keywords—Hybrid feature, adaptive Particle Filter, robust Object
Tracking, Grayscale Arranging Pairs (GAP) feature.

I. INTRODUCTION

Object tracking is of great pertinence to the emerging

applications such as visual surveillance, and intelligent traffic

navigation etc. Tracking real-world objects is a challenging

task due to the presence of noise, occlusion, clutter, dynamic

background elements and confusing background colors. Par-

ticle filter based tracking has attracted considerable atten-

tion in recent years because of its powerful ability to deal

with general non-linear and non-Gaussian problems. In the

framework of particle filter, one of the most important parts

is the observation model. The commonly used observation

models built for particle filtering tracking are edge-based [1],

color-based [3][2], and contour-based features [4]. However,

algorithms relying on only one feature are less robust and

suffer from various limitations in complex scenarios. The color

feature is robust to noise and partial occlusion but suffers

from illumination changes and the presence of confusing

background colors. The edge and contour features are more

robust to illumination variation compared to the color feature

but are much sensitive to background clutter .

To overcome these problems, we introduce an adaptive hy-

brid observation model which integrates the Grayscale Arrang-

ing Pairs (GAP) feature [5][6] and color histogram feature in

a static camera environment. The GAP feature was originally

proposed for background subtraction. In this study, we improve

the GAP feature to make it suitable for object tracking.

Because of the outstanding performance of the GAP feature

in extracting the foreground from the background, it has high
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sensitivity in distinguishing objects from the background, even

in a complex environment (such as conditions with severe

illumination changes and dynamic backgrounds). It makes use

of both temporal information and global spatial information by

considering stable relationships of intensity among multiple

point pairs. Moreover, it represents the relative properties

between objects and environment, which varies according to

the positions of objects. Thus, the GAP feature provides better

discrimination in many situations where a simple feature (such

as the color feature) may fail, for example, under similar

background conditions. Together with the GAP feature, we

also utilize the color histogram feature [2], which has been

widely utilized and is good at realizing performance to identify

objects.

The hybrid model produces a good representation of the dis-

crimination capabilities between objects and the background,

and discernment capabilities on an object itself. Furthermore,

we adopt an updating target model so that some external

problems such as visual angles can be overcame well. An

automatic initialization algorithm is also introduced which

provides precise initial positions of objects.

The remainder of the paper is structured as follows: Section

2 discusses the function of particle filter. Section 3 introduces

a hybrid features based adaptive particle filter algorithm for

tracking. Section 4 describes experiments used to validate the

algorithm. Section 5 discusses the selection of parameters.

Section 6 contains concluding remarks.

II. PARTICLE FILTER FOR OBJECT TRACKING

A. Basic concept

Let xt−1 denote the state of a tracked object at time t− 1,

zt−1 be an observation at t − 1, and z1:t−1 denote a set

of all observations upto t − 1. From a Bayesian viewpoint,

all interesting information about the target’s state xt−1 is

encompassed by its posterior p(xt−1|z1:t−1). During tracking,

this posterior is recursively estimated as the new observation

zt arrives, which is realized in two major stages: prediction

(1) and update (2):

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (1)

p(xt|z1:t) ∝ p(zt|xt)p(xt|z1:t−1). (2)

Recursions (1) and (2) for the posterior require a specification

of a dynamic motion model that describes the state evolution

p(xt|xt−1) and a model that evaluates the likelihood of any

state given the observation p(zt|xt).
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Fig. 1. The procedure of calculating the GAP feature. L+ shows the relative brighter parts in objects compared to the background and L− shows the relative
darker parts. L+ and L− act together to distinguish objects from the background.

B. Dynamic motion model
The state of our tracker is defined as

xt = {ut, vt, Ut, Vt, u̇t, v̇t, ċt}, (3)

where (ut, vt) are the locations, (Ut, Vt) are lengths of half

axes of particles, (u̇t, v̇t) are velocities, and ċt is the scale

change factor. Hence the dynamic motion model is denoted as

xt = Axt−1 +Wt−1, (4)

where A defines the deterministic component of the model

and Wt−1 is a multivariate Gaussian random variable.

C. Likelihood function

The posterior p(xt−1|z1:t−1) ≈ {x(m)
t−1, w

(m)
t−1}m=1,···,M at

time t − 1 is estimated by a cloud of M weighted parti-

cles with the state x
(m)
t−1 and the respective weight w

(m)
t−1 .

At time t, the particles are first re-sampled according to

their weights. Then, they are propagated according to the

dynamic model to obtain a representation of the prediction

p(xt|z1:t−1). Finally, a weight is assigned to each particle

according to the likelihood function w
(m)
t ∝ p(zt|x(m)

t ).
All weights are normalized to sum to one, and the posterior

at time t is approximated by a new weighted particle set

p(xt|z1:t) ≈ {x(m)
t , w

(m)
t }m=1,···,M . The procedure of deter-

mining likelihood is based on feature similarity. The features

of the target region are compared with those of other candidate

particle regions extracted in the last frame. In this paper, we

will introduce a hybrid feature for determining likelihood. The

details of the likelihood function will be introduced in Section

3.

D. State estimation
From the set of weighted samples, the current state x̂t can

be estimated as

x̂t =

M∑
m=1

w
(m)
t x

(m)
t . (5)

III. PROPOSED TRACKING ALGORITHM

A. GAP feature

The GAP feature denotes the probability of one pixel

belonging to the foreground. In our framework, unlike many

traditional methods which consider the history states of a pixel

to decide whether it belongs to the foreground, we do this by

considering the relationship between this pixel and several sta-

tistically chosen reference pixels. For a target pixel P , suppose

we have N positive reference pixels which statistically have

higher intensity than P , and N negative reference pixels which

statistically have lower intensity than P (refer to [6] for the

details of statistically choosing the reference pixels). In a new

frame, P is classified as the background when its intensity is

normal: lower than those of the positive reference pixels and

higher than those of the negative reference pixels; contrarily, P
is classified as the foreground when its intensity is abnormal:

higher than those of the positive reference pixels or lower

than those of the negative reference pixels. In details, two

probabilities that concern whether P belongs to the foreground

are calculated as follows: positive probability ξ+ = n+/N
(n+ denotes the number of positive reference pixels whose

intensities are lower than that of P ) and negative probability

ξ− = n−/N (n− denotes the number of negative reference

pixels whose intensities are higher than that of P ). These two

probabilities compose the GAP feature, and 0 ≤ ξ± ≤ 1.

In this paper, we define L± for the convenience of expla-

nation as follows

L± =

{ ±�(1− ξ±) · U� (ξ± < 1),
±1 (ξ± = 1),

(6)

where we use the top integral function for easy of calculation.

Histograms provide a simple and efficient summary of data

distribution and are widely used in describing the character-

istics of different features. Here we adopt a histogram with

the u-bin (u ∈ {−U, · · · ,−1, 1, · · · , U}, and 2U is the total
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Fig. 2. The likelihood of the GAP feature between the target model and the candidate model is measured by the Bhattacharyya distance. Candidate models
which are in the same location as the target object have the similar shapes with the target model. It shows that the GAP feature is robust at distinguish
foreground objects from background.

number of bins) to represent the GAP feature. In Eq. 6, U is

the half number of bins in the histogram.

L+ shows the relative brighter parts in objects compared

to the background and L− shows the relative darker parts.

L+ and L− act together to distinguish objects from the

background. The histograms of L± in the region of a particle

are denoted as h(L±). In our experiments, the histograms are

typically calculated in the GAP space using 16 bins (from -8

to 8 without 0).

In the next step, histograms of L± are attached together and

normalized. The histogram of the GAP feature in the state xt

is calculated as

F
(u)
GAP = γ ·

( −1∑
L−=−U

h(L−)
A

δ(L− − u)

+

U∑
L+=1

h(L+)

A
δ(L+ − u)

)
, (7)

where A is the number of pixels in each region for normal-

ization, δ is the Kronecker delta function, and γ is used to

ensure that
∑U

u=−U F
(u)
GAP = 1. The procedure of calculating

the GAP feature is shown in Fig. 1.

B. Color feature

Color provides many cues and it achieves robustness to non-

rigidity, rotation and partial occlusion of objects. We utilize

the HSV color space to make the algorithm less sensitive

to illumination changes, which is more robust than the RGB

representation. The bin index b(yi) assigns the color at the

location yi to the corresponding bin. To increase the reliability

when boundary pixels of an object are occluded, we use a

weighting function k(r) in which pixels that are far from the

region center are assigned smaller weights. Then, the color

feature Fcolor = {F (v)
color}v=1···V at the center point y of state

xt is calculated as

F
(v)
color = f

A∑
i=1

k

( |y − yi|
A

)
δ

(
b(yi)− v

)
, (8)

where A is the number of pixels in the region, and f is a

normalization constant ensuring
∑V

v=1 F
(v)
color = 1.

C. Target model update

The tracking performance is influenced by lots of external

factors, such as the visual angle, large geometric deformation

of object, and environmental fluctuations. To deal with these

difficulties, we adopt an updating target model in our method.

The update of the target model is implemented by the equation

F
�(u)
t = (1− α) · F �(u)

t−1 + α · F �(u)
Et

, (9)

where F �
t is the target model at time t, F �

Et
is the histogram

of estimated state for each bin u, and α is the update factor.

The target models of GAP feature and color feature are

both calculated according to Eq. 4. Then, in the case with

M particles, at time t, The likelihood ρGAP (x
(m)
t ) between

adaptive target GAP feature model and candidate GAP feature

model can be measured by the Bhattacharyya distance which is

shown in Fig. 2. Candidate models which are in the same loca-

tion as object have the similar shapes with the target model. It

shows that the GAP feature is robust at distinguish foreground

objects and background. As the same, the similarity of color

histograms between the template and the current frame is also

computed using the Bhattacharyya distance. The likelihood of

the color feature can be denoted as ρcolor(x
(m)
t ).

D. Feature integration

In our approach, we use the properties of both color his-

togram feature and GAP feature mentioned above. The overall

likelihood is shown as

ρ(x
(m)
t ) = (1− β) · ρcolor(x(m)

t ) + β · ρGAP (x
(m)
t ), (10)
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Sequence S1 Sequence S2 Sequence S3

Fig. 3. Test sequences.

where β is a parameter to adjust the proportion between two

features.

E. Automatic Initialization

For the initialization of the particle filter, the prior knowl-

edge of the target is necessary. Manual initialization was

effective and accurate previously, but can not satisfy the real-

time surveillance system any more. Here, we propose an

automatic initialization algorithm which can provide accurate

information for particle filter.

As introduced in the above sections, the GAP feature is

different from other common features, and it uses the spatial

information which make itself strongly good at discriminating

background and foreground. Because of this special property

of the GAP feature, we can lock the moving object in the initial

frame. The two probabilities ξ+ and ξ− of the GAP feature

are used together to classify the character of each pixel. A

preselected threshold Tw is used. In the case of ξ+ < Tw

and ξ− < Tw, the pixel is considered background, otherwise,

the pixel is considered foreground. Then after the simple

morphological image processing such as dilation and erosion,

we can remove the noises and get connected components. Each

component represents for a single moving object and is labeled

differently. Then for each of them, its object properties will

be extracted together with its location information. Particle

filter will be initialized for each of single objects within

the component. If the number of components is larger than

the number of particle filter, a new object identifier will be

assigned to current object. Likewise, the opposite condition is

used to determine if an object is lost during the tracking.

IV. EXPERIMENTAL RESULTS

In order to evaluate our proposed method, we have done

the experiments in different environments. They are taken

from both indoor and outdoor scenes and vary with respect

to viewpoint, illumination condition, and type of occlusion,

demonstrating the robustness of our approach. The proposed

method has been implemented in MATLAB and tested on a 3.2

GHz PC with 6 GB memory. The number of particle samples

processed in the experiments is 100.
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Fig. 4. The comparison of object tracking with and without target model
update.

Fig. 4 shows the comparison of object tracking with and

without target model update. As shown in Fig. 4, using adap-

tive model the scale of object appearance is getting adapted

correctly compare to without using adaptive model.

The tracking result is presented in Fig. 5. Initially, we use

the automatic method to get the initial position of the object.

The object moves from the center of lobby under strong partial

illumination. Large changes in body size and shape are also

challenges in this database. We successfully tracked the object

from the initial position until the end of the scene. Fig. 6

shows the comparison between true and estimated position of

the tracked object.

We also compare the proposed method with color based

tracking method using three different sequences shown in

Fig. 3. The tracking results of the position error curve are

shown in Fig. 7. It can be seen that the position error of

the proposed method is smaller than that of the color-based

tracking throughout almost the entire tracking process.
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Fig. 7. Position error curves: (a) Results in S1; (b) Results in S2; (c) Results in S3.
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Fig. 5. Tracking results in automatic initial position.
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Fig. 6. True and estimate positions in Fig. 5.

TABLE I
MEAN AND VARIANCE OF POSITION ERRORS FOR DIFFERENT β .

β=0.3 β=0.5 β=0.7 β=0.9 β=0.95 β=1

Mean 7.04 6.83 6.27 5.09 6.19 7.44

Variance 19.77 16.84 9.05 5.14 7.48 18.38

V. DISCUSSION OF PARAMETERS

There are mainly two parameters in the method: the update

factor α and the integrating factor β. The decision of optimal

value of each parameter is difficult. In this section, we will

discuss the chosen of parameters.

The update factor α controls the rate of feature adaptation

of the target model to the candidate model. The larger update

rate shows the larger environmental fluctuations, while smaller

update rate denotes fewer changes of environment. Experi-

mental results show that setting α = 0.01 is already efficient

in different complex environments. So in this paper,we set

α = 0.01.

The integrating factor β is a parameter to adjust the pro-
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Fig. 8. β discussion in sequence S1.

portion between two features which has the range from 0 to

1. Value of β is set according to different databases. Large

β shows the high reliability of the GAP feature, while small

β shows the high reliability of the color feature. We test the

performance using different values of β in sequence S1, and

the results are shown in Fig. 8. To compare results easily, we

calculate the mean and variance of position errors in Table

I and also show the relationship between them in Fig. 9.

It is shown that the larger the β is, the smaller the mean

and variance of position error are. But if β is too large (for

example, β = 1), high mean position error (7.44) and high

variance of position error (18.38 ) are caused. In this sequence,

the optimal value of β is 0.9. This demonstrates that the

GAP feature is more appropriate than the color one in this

particular sequence. When one feature is undoubtedly more

appropriate than the other one in a particular setting, it is better

to attribute to it a larger weight in the weighted summation. For

instance, in the case with confusing background or changing

illumination, the GAP feature is more reliable than the color

feature, so that the large β is set. On the other hand, in the

case with crowded moving objects, the GAP feature is less

reliable, so β is better to be set small. However, in most of

the situations, it is difficult to determine which feature is more

reliable since the real environment is complex, so we suggest

β = 0.5 to obtain the equal weight.
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Fig. 9. The relations among β, Mean and Variance of position errors.

VI. CONCLUSIONS

We proposed a hybrid feature based adaptive particle filter

algorithm for tracking. The observation model in particle

filtering framework is built including two different types of

features: the color histogram feature, which has high ability

to accurately identify the detected object, and the GAP feature,

which has high sensitivity in discriminating between the

background and the objects. In addition, an updating target

model is proposed to make the algorithm more robust. Mean-

while, different from the common algorithms, an automatic

initialization algorithm is introduced which provides precise

initial positions of objects. Experimental results show the good

performance of the algorithm.
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