
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2357

Abstract—In this paper, we introduce GODYS-PC software

package for modeling, simulating and analyzing dynamic systems.
To illustrate the use of GODYS-PC we present a few examples
which concern modeling and simulating of engineering systems. In
order to compare GODYS-PC with widely used in academia and
industry Simulink®, the same examples are provided both in
GODYS-PC and Simulink®.

Keywords—Modeling, simulating and analyzing dynamic
systems.

I. INTRODUCTION
HE purpose of this paper is to present GODYS-PC
software package for modeling, simulating and analyzing

dynamic systems. Typical areas in which GODYS-PC may be
successful applied come from a wide diversity of realistic
situations in engineering, control system design, economics,
biology and so on.
 There are a number of continuous simulation languages
currently in use in applied science and engineering, for
example Simulink®, which is widely used in academia and
industry. Simulink® provides a graphical user interface (GUI)
for building models as block diagrams, using
click-and-drag mouse operations ([1]). This is far from
describing models by mathematical expressions like in
GODYS-PC. A description and comparison of some of the
most popular continuous simulation languages has been
presented, for example, in [2]. A discussion on evolution of
continuous modeling and simulation has been presented, for
example, in [3].

II. SIMULATION OF DYNAMIC SYSTEMS USING
GODYS-PC

 The basic structure of GODYS-PC follows the CSSL
standard presented in [4]. GODYS-PC (abbreviated from
Graph Oriented Dynamic System Simulation for Personal
Computers) is a new version of GODYS continuous
simulation language. GODYS was originally developed at the
Institute of Computer Science, Jagiellonian University,
Kraków in the mid-1970s and has been implemented on
Honeywell, ICL 1900 and IBM 360 computers respectively
([5], [6], [7], [8], [9]). It has been developed in recent years
and has been implemented on Personal Computers.

Manuscript received August 31, 2005.
Authors are with the Institute of Computer Science, Jagiellonian

University, Kraków, Poland.

 Using the same basic approach as GODYS, GODYS-PC
provides an interactive simulation facility and a number of
advanced features. One of these features is parameter
optimization. In the case of parameter optimization a finite
number of parameters has to be determined such that a cost
function of these parameters is minimal ([10]). GODYS-PC
provides four algorithms for parameter optimization in a cost
functions. At most eight parameters may be optimized in
a cost function in GODYS-PC.
 GODYS-PC provides a set of standard functions like, for
example, INTEG (integration function), DERIVT (derivation
function), STEP (step input function) and so on. GODYS-PC
provides over fifty standard functions. The user can define his
own functions (in FORTRAN).
 GODYS-PC statements may be placed anywhere on the line.
Any source model or runtime commands may be continued
onto another line by ending the first line with the symbol @.
All text after the symbol # to the end of the line is considered
as a comment. Equations describing a model may be written in
any order. This is because GODYS-PC provides an algorithm
for automatic sorting of equations of a model. The sorting
algorithm is based on the theory of functional graphs ([7],
[8]).
 After describing a model one can simulate it, using a choice
of integration method. GODYS-PC provides five fixed step
integration methods and a one variable step integration
method. GODYS-PC provides a set of statements for
generating a graphic representation of calculated results.
 A model described in GODYS-PC consists of the following
two parts: a model description and a runtime commands.
The model description defines a model of a system being
modeled. The model description must be written in a file
whose name ends in .mod. The runtime commands exercise
this model (for example, they change parameters, execute
runs, specify plots and so on). Runtime commands may be
entered interactively or in a batch process. In the case of
a batch process the runtime commands must be written in a
file whose name ends in .sim. Runtime commands are read,
decoded and executed in sequence.
 GODYS-PC is written in FORTRAN and consists of two
modules. One of them is a syntax-directed translator, which
generates an object program in a language of an abstract
machine. This machine is implemented by an effective
interpreter, which is the main part of the second module ([9]).
 In order to illustrate the use of GODYS-PC let us consider
the following classical model of the spring-mass-damper
system shown in Fig. 1, where M is the mass, F is the force,
K is the spring constant and D is the damping constant.

GODYS-PC: a Software Package for Modeling,
Simulating and Analyzing Dynamic Systems

Jacek Kuraś, Jacek Lembas, and Marek Skomorowski

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2358

Fig. 1 The classical spring-mass-damper system

The mathematical model of the classical spring-mass-damper
system, shown in Fig. 1, may be written by the following
state-space differential equations:

 (1)

where x is the position of the mass M and v is the velocity of
the mass. Further, let us assume that the initial conditions are
the following:

0)0(,0)0(== vx

Further, let us assume that force F is the step input shown in
Fig. 2 (step time = 10, initial value = 0, final value = 1).

Fig. 2 The step input F

 The program for the classical spring-mass-damper system
(Fig. 1) written in GODYS-PC based on the state-space
differential equations (1) is shown in Fig. 3.

Fig. 3 The program for the classical spring-mass-damper

 system (Fig. 1) in GODYS-PC

 Now for some explanation about program itself. Elements
shown in upper case can be written in lower case and vice
versa. The statement MODEL identifies the model. The
statement PREPARE specifies which variables are to be
collected for latter printing or plotting. The statement
PARAMT declares identifiers parameters of the model. The
statement DYNAMIC identifies the beginning of the dynamic
section. The dynamic section comprises a set of equations
defining the model. The statement DYNAMIC must be
accompanied the matching statement END. In the example
used here the dynamic section contains standard functions
INTEG and STEP.
 The statement LOAD identifies the beginning of runtime
commands. The statement LOAD must be accompanied the
matching statement FINISH. The statement DATA is used to
assign values to parameters of the model. The statement
EXECUTE initiates the run. The parameter DT is the
integration step size. The parameter METHOD specifies the
name for the integration algorithm The parameter TMAX
specifies the end of the simulation. The parameter COMDEL
is the interval size for printing and plotting simulation results.
The statement PLOTXY(t, F) creates a plot of the force F
versus time t. Similarly, the statement PLOTXY(t, x) creates a
plot of the position x of the mass M, versus time t. The outputs
of the PLOTXY(t, F) and PLOTXY(t, x) statements are
shown in Fig. 4 and in Fig. 5 respectively.
 For comparison the use of GODYS-PC with the use of
Simulink®, a model for the same classical spring-mass-
damper system (Fig. 1) described in Simulink® is shown in
Fig. 6. Fig. 7 shows a plot of the force F versus time t
generated by Simulink® for the model shown in Fig. 6.
Similarly, Fig. 8 shows a plot of the position x of the mass M,
versus time t generated by Simulink® for the model shown in
Fig. 6.

MODEL SPRING
PREPARE F, x
PARAMT K, D, M, t0, A
DYNAMIC
x = INTEG(v; 0)
v = INTEG(– (K/M) * x – (D/M) * v + (F/M); 0)
F = A * STEP(t – t0)
END

LOAD SPRING
DATA K = 1, D = 0.3, M = 1, A = -1, t0 = 10
EXECUTE(DT = 0.1, METHOD = TRAPEZ, @
 TMAX = 50, COMDEL = 0.2)
PLOTXY(t, F)
PLOTXY(t, x)
FINISH

M

F

K D

F

t T0

1

M
Fv

M
Dx

M
K

dt
dv

v
dt
dx

+⋅−⋅−=

=

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2359

Fig. 4 The output of the PLOTXY(t, F) statement

Fig. 5 The output of the PLOTXY(t, x) statement

Fig. 6 A model for the classical spring-mass-damper
 system (Fig. 1) described in Simulink®

 Now, let us consider the following classical electrical circuit
RLC shown in Fig. 9, where R is the resistance, L is the
inductance, C is the capacitance and E is the voltage. Further,
let us assume that the voltage E is the step input.

Fig. 7 The plot of F versus time t generated by Simulink®

Fig. 8 The plot of x versus time t generated by Simulink®

Fig. 9 The classical electrical circuit RLC

 The mathematical model of the classical electrical RLC
circuit shown in Fig. 9 may be written by following state-
space differential equations :

 (2)

where i is the current. Further, let us assume that the initial
conditions are the following:

0)0(,0)0(== iq

R L

C

L
Eq

C
i

L
R

dt
di

i
dt
dq

+⋅−⋅−=

=

1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2360

The program for the classical electrical circuit RLC system
(Fig. 7) written in GODYS-PC based on the state-space
differential equations (2) is shown in Fig. 10.

Fig. 10 The program for the classical electrical circuit

RLC (Fig. 7) in GODYS-PC

 The output of the PLOTXY(t = (0, 50), E = (0, 2)) shown
in Fig. 11 creates a plot of the voltage E versus time t.
Similarly, the output of the PLOTXY(t, i) shown in Fig. 12
creates a plot of the current i versus time t.

Fig. 11 The output of the PLOTXY(t = (0, 50), E = (0, 2))
statement

 For comparison the use of GODYS-PC with the use of
Simulink®, a model for the same classical electrical circuit
RLC (Fig. 9) described in Simulink® is shown in Fig. 13. Fig.
14 shows a plot of the current i versus time t generated
by Simulink® for the model shown in Fig. 13.
 Now, let us consider a control loop block diagram shown in
Fig. 15 ([11]).

Fig. 12 The output of the PLOTXY(t, i) statement

Fig. 13 A model for the classic electrical circuit

 RLC (Fig. 9) described in Simulink®

Fig. 14 The plot of i versus time t generated by Simulink®

MODEL RLC
PREPARE E, i
PARAMT t0, R, i, C
DYNAMIC
E = STEP(t - t0)
q = INTEG(i; 0)
i = INTEG((E/L) - (R/L)*i - (1/(L*C)*q); 0)
END

LOAD RLC
DATA t0 = 20, R = 1, L = 1, C = 1
EXECUTE(DT = 0.1, TMAX = 50, COMDEL = 0.1)
PLOTXY(t = (0, 50), E = (0, 2))
PLOTXY(t, i)
FINISH

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2361

Fig. 15 A control loop block diagram

Further let us assume that the parameter k ∈ (5, 25) has to be
determined such that the following cost function:

dteF ∫
∞

=
0

2

 is minimal.
 The description of a model of the control loop block
diagram (Fig. 15) in GODYS-PC is shown in Fig. 16.

Fig. 16 The program for the control loop block diagram

(Fig. 15) in GODYS-PC

In the example used here the dynamic section contains the
following standard function:

y = REALPL(x; a, y0)

which produces the first order lag, where output y is related to
input x through the following transfer function:

1
1

+⋅
=

say
x

where y0 = y(0). The parameter opt in the statement
EXECUTE initiates parameter optimization. The parameter
alg specifies a method for a cost function minimization
algorithm. Each a cost function evaluation involves
a simulation run. The parameter lim specifies a number of

runs during parameter optimization. The minimal value 9.958
of the cost function F has been found for k = 17.36. The
outputs of the PLOTXY(t, y), PLOTXY(t, e) and
PLOTXY(t, F) statements are shown in Fig. 17, Fig. 18 and
Fig. 21 respectively.

Fig. 17 The output of the PLOTXY(t, y) statement

Fig. 18 The output of the PLOTXY(t, e) statement

Fig. 19 The output of the PLOTXY(t, F) statement

 For comparison the use of GODYS-PC with the use of
Simulink®, a model for the same control loop block diagram
(Fig. 15) described in Simulink® is shown in Fig. 20.

MODEL CONTROL
PREPARE x, y, e, F
PARAMT k, t0
DYNAMIC
x = STEP(t – t0)
e = x – y
u = k*REALPL(e; 8, 0)
y = REALPL(0.01*INTEG(u; 0); 2, 0)
f = INTEG(e*e; 0)
END

LOAD CONTROL
DATA t0 = 20
EXECUTE(tmax = 175, dt = 0.1, comdel = 0.1, @
 opt = (F(k = (5, 25)), alg = mgs, lim = 10))
PLOTXY(t, x)
PLOTXY(t, y)
PLOTXY(t, e)
PLOTXY(t, F)
FINISH

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:1, No:8, 2007

2362

Fig. 20 A model for the control loop block diagram
 (Fig. 15) described in Simulink®

The plots of y, e and F versus time t generated by

Simulink® for the model of the control loop block diagram
(Fig. 20) are shown in Fig. 21, Fig. 22 and Fig. 23
respectively.

Fig. 21 The plot of y versus time t generated by Simulink®

Fig. 22 The plot of e versus time t generated by Simulink®

Fig. 23 The plot of F versus time t generated by Simulink®

III. CONCLUSION

 In this paper we have presented GODYS-PC software
package for modeling, simulating and analyzing dynamic
systems. The basic structure of GODYS-PC follows the CSSL
standard. GODYS-PC meets requirements needed for a good
continuous simulation language. Typical areas in which
GODYS-PC may be applied come from a wide diversity of
realistic situations in engineering, control system design,
economics, biology and so on. GODYS-PC is easy to learn
even for somebody who is not an experienced programmer. In
order to compare GODYS-PC with widely used in academia
and industry Simulink®, the same examples has been
provided both in GODYS-PC and Simulink®.

REFERENCES
[1] Simulink® Model-Based and System-Based Design, Using Simulink,

Version 5, The MathWorks, Inc., 2003.
[2] M. Rimvall, F. Cellier, Evolution and perspectives of simulation

languages following the CSSL standard, Modeling, Identification and
Control, 6,, no. 4, 1985.

[3] K. J. Astrom, H. Elmqvist, S. E. Mattsson, Evolution of continuous-time
modeling and simulation, Proceedings of the 12th European Simulation
Multiconference, Manchester, United Kingdom, June 16-19, 9-18, 1998.

[4] J. C. Strauss, D. C. Augustine, B. B. Johnson, R. N. Linebarger, F. J.
Sanson, The SCi continuous system simulation language (CSSL),
Simulation 9, no. 6, 1967, 281-303.

[5] R. Jakubowski, An algorithm for the simulation of dynamical systems by
means of digital computers, based on signal-flow graphs, Journal of
Mathematical Analysis and Applications, 22, no. 1, 1968.

[6] R. Jakubowski, J. Król, Implementation of the simulation language
based on functional graphs, Podstawy sterowania, 2, no. 2, 1972.

[7] R. Jakubowski, J. Król, General algorithm of complex dynamic systems
simulation, System Science, 1, no. 1, 1975.

[8] R. Jakubowski, J. Król, Extended functional graphs in modeling and
simulation of systems, Podstawy sterowania, 9, no. 2, 1979.

[9] J. Król, J. Kuraś, J. Lembas, M. Ślusarek, Implementation of the
language for the simulation of continuous systems with discontinuities,
Podstawy sterowania, 10, no. 1, 1980.

[10] J. R. Amyot, G. Blokland, Parameter optimization with ACSL models,
Simulation, 9, 1987.

[11] K. Amborski, A. Marusak, Control theory in exercises (in Polish),
Państwowe Wydawnictwa Naukowe, 1978.

