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Abstract—To learn about China’s future energy demand, this 

paper first proposed GM(1,1) model group based on recursive 
solutions of parameters estimation, setting up a general 
solving-algorithm of the model group. This method avoided the 
problems occurred on the past researches that remodeling, loss of 
information and large amount of calculation. This paper established 
respectively all-data-GM(1,1), metabolic GM(1,1) and new 
information GM (1,1)model according to the historical data of energy 
consumption in China in the year 2005-2010 and the added data of 
2011, then modeling, simulating and comparison of accuracies we got 
the optimal models and to predict. Results showed that the total energy 
demand of China will be 37.2221 billion tons of equivalent coal in 
2012 and 39.7973 billion tons of equivalent coal in 2013, which are as 
the same as the overall planning of energy demand in The 12th 
Five-Year Plan. 

 
Keywords—energy demands, GM(1, 1) model group, least square 

estimation, prediction 

I. INTRODUCTION 
N the era of economic globalization, rapid economic 
growth and high population growth in size, as well as 

speeding up the process of urbanization, are the main features 
of China's current economic and important factors to boost 
energy consumption growth. However, large rise in the 
manufacturing sector brought more energy consumption 
continuing to increase, therefore to forecast energy demand 
becomes urgent and more meaningful in China. Studies have 
shown that using traditional forecasting methods cannot reflect 
the impact brought about by disturbance factors from external 
system, as well as the uncertainty brought about by the 
international environmental and domestic policies. Dr Deng 
Julong proposed grey systems theory to head with the problems 
which are uncertainty and a small amount of data for the first 
time in 1982[1]-[3]. Reference[4] has been first to come up with 
the concept of GM (1, 1) model group, including three 
subsidiaries: all-data-GM(1,1)built on the entire 
sequence (0) (0) (0) (0)( (1), (2), , ( ))X x x x n= L , metabolic GM(1,1) built 
on the new sequence obtained by inserting (0)( 1)x n +  and 
deleting (0) (1)x , new information GM(1,1) built by inserting 

(0)( 1)x n+  into the sequence (0)X . Its application is very extensive 
[5]-[6].  
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Through the study of literature in the past, we can know that 

applications of GM(1,1) model are required to insert new 
information and to get the solution by remodeling, which will 
result in loss of information and increasing the amount of 
calculation. Faced with this problem, by approaching the 
organic link between the subsidiaries of GM(1,1) model group, 
this article is the first to set up the general solving-algorithm of 
GM(1,1) model group based on the recursive solution of 
parameter estimation. Articles gave a detailed description for 
its modeling steps and applied this model group to forecast the 
energy demand in China.  

II. RECURSIVE-SOLUTION OF LEAST SQUARES ESTIMATION OF 
NEW INFORMATION GM (1,1) MODEL 

If established GM (1, 1) model by using initial sequence of 
non-negative data (0) (0) (0) (0)( (1), (2), , ( ))X x x x n= L , then the least 
square estimate of the sequence of parameters is recorded as 

nnnn YBBBna TT 1)()(ˆ −=  

If we record 1( )n n
TB B −  as ( )P n , thus 

nn YBnPna T)()(ˆ =  

Assuming that we establish a new  (n+ 1)- equation that is 
bnaznx =+++ )1()1( )1()0(  

The following theorem gives the generated based on the 
added-value of the new information GM(1,1) model’s least 
square estimation of parameters. 

Theorem 2.1.Assuming initial sequence of non-negative as 
following 

))1(),(,),2(),1(( )0()0()0()0()0( += nxnxxxX L  
And G is the once-added-mean generated ( )1n n+ × -order 

matrix of the sequence )0(X . 
Then a new information GM (1, 1) model is 

bkazkx =+ )()( )1()0( , 1,,,3,2 += nnk L  
The model’s least square estimation of parameters is  

1111
1)()1(ˆ ++++

−=+ nnnn YBBBna TT          (1) 

Where                          

1
T

nB G M+ =− ⋅  
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Proof: From [4] we can know that 
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TG M= − ⋅  

Finally taking
1

T
nB G M+ = − ⋅  into least square estimation of 

parameters of GM (1, 1) model bkazkx =+ )()( )1()0( , that 

is 1111
1)()1(ˆ ++++

−=+ nnnn YBBBna TT .Conclusion certificated. 

For new information GM(1,1) model inserted the latest 
information (0) ( 1)x n + , equation (1) is model parameters 
solution obtained through re-modeling. But solving inverse 
operation 1)( 11

−
++ nn BBT  will take a lot of time. In the study of mode 

group of GM(1,1),we hope to improve model information of a 
new information GM(1,1) by using the information of 
all-data-GM(1,1), that is to preserve existing model 
information. The following using a recursive algorithm, makes 
the new GM(1,1) least squares estimation of model parameters 
are constantly refreshed. 

Lemma2.1  If the non-singular square matrices A and A+BD 
are the same order, then 

1 1 1 1 1 1( ) ( )A BD A A B I DA B DA− − − − − −+ = − +         (2) 
On the basis of all-data-GM(1,1) model, if (0) ( 1)x n +  is the 

most current information, the n+1 equations of a new 
information GM(1,1) are:  

(0) (1)(2) (2)x az b+ =  
(0) (1)(3) (3)x az b+ =  

    
bnaznx =+++ )1()1( )1()0(

M  

That is, the matrix equation of a new GM(1,1) is 
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According to the block matrix multiplication, we have 
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If we record 1)()1( 11
−

++=+ nn BBnP T , then on the ground of 

lemma 2.1, the following lemma recursive conclusion is 
established. 

Lemma2.2  Let ( ) 1

1 1 11 ( ) T
n n nZ P n Zγ

−

+ + += + , then  

1 1 1( 1) ( ) ( ) ( )T
n n nP n P n P n Z Z P nγ + + ++ = −        (3) 
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Theorem2.2 The information of GM(1,1) model established 
by using all data is 1)()( −= nn BBnP T ，

nnnn YBBBna TT 1)()(ˆ −= . There is the most current 

information (0) ( 1)x n + , then the least square parameter 
estimation sequence of the new information GM(1,1) 

bkazkx =+ )()( )1()0( , 1,,,3,2 += nnk L  is 

1ˆ ˆ( 1) ( ) ( 1)na n a n nω ε++ = + ⋅ +                      (4) 
Where  
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Proof: According to (1), the least square parameter 
estimation sequence of the new information GM(1,1) is  
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From  ( ) (0)
1 1 1 1 ˆ( ) , 1 ( 1) ( ),T

n n n nP n Z n x n Z a nω γ ε+ + + += + = + −  

Therefore                

1ˆ ˆ( 1) ( ) ( 1)na n a n nω ε++ = + ⋅ +  
Because formula (4) establishes the relationships between 

parameters estimation of the subsidiaries of  GM(1,1) model 
group, it is not necessary to remodel and solve the least square 
parameter estimation of the new information GM(1,1) for us. 
We can get the solution just by refreshing all-data-GM(1,1) 
model’s parameter estimation, that is, adding correction items  

1 ( 1)n nω ε+ ⋅ +  to the least square parameter estimation 
sequence of all-data-GM(1,1) ˆ( )a n  which we can get 

it ˆ( 1)a n + . ( )P n  in 1 1 1( ) T
n n nP n Zω γ+ + += can be updated on 

the ground of recursive formula (3). It’s easy to know that 1nγ +  
is a scalar, solving inverse matrix has completely avoided in (3) 
and (4). Thus computational efficiency for solving a new 
information GM(1,1) model’s parameters is greatly improved. 
Besides, equation (4) gives a very intuitive forms that 
ˆ ( 1)a n +  is proportional to the amended 

(0)
1 ˆ( 1) ( 1) ( )nn x n Z a nε ++ = + − which may indicate the fitting errors 

between the new information  

(0) ( 1)x n + as well
1nZ +

 and estimation of ˆ( )a n  before 

updating. Correction coefficients 1 1 1( ) T
n n nP n Zω γ+ + +=  decide 

the weight value on the fitting error when amending ˆ( )a n .  

III. GM (1, 1) MODEL GROUP’S MODELING-STEPS BASED ON 
RECURSIVE SOLUTION OF PARAMETER ESTIMATION 

By approaching the organic link between the subsidiaries of 
GM(1,1) model when modeling, this article has set up a general 
algorithm in the research of least squares parameters estimation 
of subsidiaries in GM(1,1) model group. First, we got the 
parameters values through solving the all-data-GM(1,1) model. 
Then, we obtained the parameters values of metabolic GM(1,1) 
by using the added-mean value generated matrix of 
all-data-GM(1,1) model. Last, using all-data-GM(1,1) model 
parameter estimated to plus an amendment items (scalar) that 
are new information GM(1,1) model parameter. The specific 
modeling-steps of GM(1,1) model group based on recursive 
solution of parameter estimation are as follow: 

1) Solving the data-matrixes Y, G, M (expressions can be 
given in theorem2.1) determined by the original 
sequence (0) (0) (0) (0)( (1), (2), , ( ))X x x x n= L ;  

2) According to (6.6) and (6.7) in [7], we can 
get ˆ, , (n), ( )F C P a n .Where     
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So that we can obtain the time response sequence of the 
all-data-GM (1, 1) model: 

nk
a
be

a
bxkx ak ,,2,1;))1(()1(ˆ )0()1( L=+−=+ −  

3) We can obtain a new modeling-sequence by inserting 
(0) ( 1)x n +  and deleting the old one (0) (1)x . Then we can get 

the time response sequence of metabolic GM(1,1) model 
following method 2);  

4) The data sequence of new information GM(1,1) model 
can be obtained through adding the new information (0) ( 1)x n + .  

TABLE I  
2005-2010 YEAR'S ANNUAL TOTAL ENERGY CONSUMPTION IN CHINA 

                                                 Unit: millions of tons of equivalent coal 
           Years                                        Energy consumption 

2005 
2006 
2007 
2008 
2009 
2010 

20.3227 
24.627 

26.5583 
28.5 

30.6647 
32.4939 

Data from the database of China National Statistics
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According to the (4) 1ˆ ˆ( 1) ( ) ( 1)na n a n nω ε++ = + ⋅ +  we 
have ˆ( 1)a n + . Therefore, the time response sequence of new 
information GM(1,1) model can be solved. 

IV. APPLICATION  
In the stage of industrialization and rapid development in 

China currently, energy demand used to develop economy is 
much higher than that of developed countries. Economic 
development almost depends on manufacturing in China so that 
energy demand intensity more so is expected to continue to 
rise. According to the historical data of energy consumption in 
China in the year 2005-2010, the paper will modeling, 
forecasting as well as comparative analysis of each model’s 
accuracy. The information of 2005-2010 year's annual total 
energy consumption is as shown in Table I. The total energy 
consumption is 34.8 millions of tons of equivalent coal in 2011.  

Solution: 1) All-data-GM(1,1) model. The original sequence 
is (20.3227,24.627,26.5583,28.5,30.6647,32.4939) . According to 
the above section of modeling steps, we can obtain the time 
response sequence of the GM(1,1) model. 

(1) 0.06933

(0) (1) (1)

ˆ ( 1) 344.601849 324.27915
ˆ ˆ ˆ( 1) ( 1) ( )

kx k e
x k x k x k

⎧ + = −⎪
⎨

+ = + −⎪⎩
 

2) Metabolic GM(1,1) model. We can obtain the modeling 
sequence as following by inserting (0) (7) 34.8x =  ,The new 
sequence is (24.627, 26.5583, 28.5,30.6647,32.4939,34.8) . 

Then following the calculation method of all-data-GM, we 
can get the GM(1,1) time response sequence is 

(1) 0.06689

(0) (1) (1)

ˆ ( 1) 385.07435 360.4473
ˆ ˆ ˆ( 1) ( 1) ( )

kx k e
x k x k x k

⎧ + = −⎪
⎨

+ = + −⎪⎩
 

3) A new information GM(1,1) model. This sequence is 
(20.3227,24.627,26.5583,28.5,30.6647,32.4939,34.8) . 

According to (4) and the results of 1), the GM(1,1) time 
response sequence is 

(1) 0.06831

(0) (1) (1)

ˆ ( 1) 350.4806 330.158
ˆ ˆ ˆ( 1) ( 1) ( )

kx k e
x k x k x k

⎧ + = −⎪
⎨

+ = + −⎪⎩
 

4) Comparison of accuracies. As shown in the Table II. 
In the Table II, we can conclude that metabolic GM(1,1) 

model is superior to the new information GM(1,1) model  

which is superior to all-data-GM(1,1) model. More information 
on new, higher the simulation precision of metabolic model are. 
So we can use the metabolic GM(1,1) model to forecast the 
total energy demand in China in 2012 and 2013. We can predict 
that the total energy demand of China is 37.2221 billion tons of 
coal equivalent in 2012 and 39.797 billion tons of coal 
equivalent in 2013 on the ground of the time response sequence 
of metabolic model. Faced with continued rapid growth in 
energy demand, China should strengthen its efforts to promote 
the transformation of economic growth mode in China. The 
planning of energy development in The 12th Five-Year Plan of 
China have put forward to change the mode of energy 
development, vigorously adjust the energy structure, 
reasonably control energy consumption as the guiding 
ideology, promoting the production and use of energy changes. 
Therefore, at the same time taking appropriate measures to 
increase the production, the government should encourage 
energy saving and emission reduction, implement overall 
development of energy, economy and the environment in The 
12th Five-Year Plan.  

V. CONCLUSION  
Faced with the problem of loss of information and increasing 

the amount of calculation resulted from remodeling when 
applying GM(1,1) model group to predict, this article is the first 
to set up the general solving-algorithm of GM(1,1) model 
group based on the recursive solution of parameter estimation 
by approaching the organic link between the subsidiaries. Not 
only is using this method able to significantly reduce the 
amount of calculation, but also strengthen the organic link 
between subsidiaries and the analysis of the group as a whole to 
explain. Through comparing accuracies of three models and 
then selecting optimal model used for forecasting, application 
displayed the results was the same as the overall planning of 
energy demand in The 12th Five-Year Plan. 
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TABLE II 
    COMPARISON OF ACCURACIES  

 All-data-GM(1,1) Metabolic GM(1,1) New information 
GM(1,1) 

Years Simulation 
value 

Relative    
 error 

Simulation  
value 

Relative 
error  

Simulation
value 

Relative 
error 

2005 20.32    20.32  
2006 24.74 0.46 24.63  24.78 0.62 
2007 26.52 0.16 26.64 0.31 26.53 0.10 
2008 28.42 0.28 28.48 0.06 28.41 0.33 
2009 30.46 0.67 30.45 0.69 30.42 0.81 
2010 32.65 0.47 32.56 0.21 32.57 0.22 
2011 34.99 0.55 34.81 0.04 34.87 0.20 

Average 
relative 

error 
0.43 0.26 0.38 


