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Abstract—In this paper, the modified optimal sliding mode 

control with a proposed method to design a sliding surface is 

presented. Because of the inability of the previous approach of the 

sliding mode method to design a bounded and suitable input, the 

new variation is proposed in the sliding manifold to obviate 

problems in a structural system. Although the sliding mode control 

is a powerful method to reject disturbances and noises, the 

chattering problem is not good for actuators. To decrease the 

chattering phenomena, the optimal control is added to the sliding 

mode control. Not only the proposed method can decline the 

intense variations in the inputs of the system but also it can 

produce the efficient responses respect to the sliding mode control 

and optimal control that are shown by performing some numerical 

simulations. 
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I.  INTRODUCTION  

URING decades, development of the technology has led 

to higher accurate control systems to overcome 

nonlinearity and uncertainty of the systems. Moreover, 

reliability is a main character of a control system. So, to 

increase such properties, new methods should be employed 

to design a controller. Structural systems are vulnerable 

against wind and earthquake if no reliable control systems is 

used in the structures. Structures with inappropriate control 

systems have performed poorly in the recent earthquake.  

The semi-active control using a variable friction damper 

was proposed by [1]. The friction damper provides a 

structure with the damping effect in response to the 

displacement. Conventional PID controller is a simple and 

reliable method to control different systems but it could not 

produce desirable responses in the presence of intense 

variations. [2] proposed a sliding mode control for a 

structural control system and compares the sliding mode and 

PID controller to show the efficient performance of the 

sliding mode control. 
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Tuned mass damper, consisting of mass, damping and a 

spring, is an effective structural vibration control device  

that commonly attached to a system. Different methods 

were proposed to tune the coefficients [3, 4]. A maximum 

principle was proposed by [5]. A robust method to control a 

structure against earthquake was proposed by [6]. The 4-

story structure was considered where for each floor one 

controller was used. But, the main problem of its robust 

method is that the maximum domain of the inputs is too 

large that is very hard to produce in practice. Also, [7] 

proposed the applications of the LQR, H2 and H ∞ in a 

structural system then compared the performances of the 

methods.  

To improve the performance of the optimal method, this 

method was combined with the sliding surface [8]. Also, 

stability of the closed loop system and an application of the 

conventional optimal sliding mode control for a nonlinear 

system was proposed by [9]. Because of the method that 

used to design sliding surface, the proposed optimal sliding 

mode control can not be employed in the structural system.  

 In this paper, we propose a new sliding surface and then 

solely employ it to control the structural system and also 

combine it with the optimal control to produce the optimal 

control signal that can mitigate the variations of the 

structure in the presence of the earthquake. To show the 

performance of the proposed method some simulations are 

done. Results show that the proposed method has an 

outperformance respect to the other methods.   

II. SYSTEM MODEL 

The structural system can be described by Laugrange’s 

equations. The dynamics of a linear structural system is as 

follow [6, 7]: 

 

                     Mq Cq Kq f+ + =&& &                                          (1) 

 

Where q is a displacement vector, M is a mass matrix, C is a 

damping coefficient matrix, K is a stiffness coefficient 

matrix and f is a vector of external fore that includes 

earthquake and control forces. Defining [ , ]TX q q= & and 

doing some manipulation, Eq (1) in state space model is as 

follow: 

 

                               X AX BU= +&                                      (2) 
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Fig. 1 Structural System 

 

 

Where 
 

 

1 1 1

0 0
,

I
A B

M K M C M− − −

   
= =   

− −      
                 (3) 

 

The system consists of a controller in each floor. Fig (1) 

shows the model of the structure.  

 

III. OPTIMAL CONTROLLER 

By using LQR method, the feedback gain can be obtained 

as: 

 

                                
1

fk R BP−= −                                     (4) 

 

Where R is an arbitrary positive definite matrix and P is 

computed from following equation: 

 

                0T TPA A P PBB P Q+ − + =                                (5) 

 

Where Q is an arbitrary positive definite matrix. At result, 

the input of the system can be written as: 

 

                                    fU K= − e                                        (6) 

 

Where X= −e r . As far as the desired response for the 

outputs of the system is zero we have 0 X= ⇒ = −r e . In 

this paper, for simulation part, 8 8200Q I ×=  and 10
4 410R I ×=  

are chosen. 

 

 

IV. SLIDING MODE CONTROL 

Before we proposed our method, we consider the 

conventional method to design sliding surface. From Eq(2), 

following switching surface can be designed: 

 

                
{ }8, ( ) 0S X R S X HX= ∈ = =                              (7) 

 

Where H is chosen to make 0HB ≠ [8]. We define u1 that 

can be computed by imposing 0S =&  as: 

 

                      
1

1

0

( )

S HX HAX HBU

u HB HAX−

= = + =

⇒ = −

& &

                          (8) 

 

By using Eq (8), the switching control us is designed as: 

 

                             
1( ) sgn( )s su HB M S−= −                          (9) 

 

Where Ms > 0 is a constant diagonal matrix. The whole 

control law is: 

 

                                     1 sU u u= +                                   (10) 

 

But, to use this control law for the system (2), there are 

two problems: 

1) We have one free parameter C to design u1 while 

both H and H
-1
 exist in the equation. So, a time 

consuming process should be done till the good 

value of H is chosen. 

2) In a structural system, the elements of A matrix are 

big while elements of B matrix are small that result 

an input with large domain. In practice such an 

input cannot be produced. 

To solve the problems, a new sliding surface is 

proposed as follow: 

 

                          0
( )

t

S HX H L A X dt= + − ∫                       (11) 

 

Where L is a matrix that is chosen by designer. By 

employing the method (8) into Eq(11) we have: 

 

      
1

1

0

( )n

S HAX HBU HLX HAX HBU HLX

u HB HLX−

= + + − = + =

⇒ = −

&

   (12) 

 

Combining Eq(12) with Eq(9), we have: 

 

                                   1n sU u u= +                                    (13) 
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Fig. 2 Response of the closed loop system 

 

This new controller will be used in the simulations. In 

the new method, we have L matrix instead of A matrix. L is 

adjustable and is chosen by designer. In this case, we are 

able to tune the maximum domain of the inputs. To prove 

the stability of the closed loop system, following Lyapunov 

function is selected: 

 

                                   
T

V S S=                                         (14) 

 

Derivation along  Eq(4) results: 

 

                         
( )T TV S S S HBU HLX= = +&&                    (15) 

 

By using Eq(13), (12) and (9) into Eq(15) we have: 

 

                       

1( )

sgn( ) | | 0

T
n s

T
s s

V S HBu HBu HLX

V S M S M S

= + +

= − = − ≤

&

&
              (16) 

 

To design the sliding mode controller, 8 82L I ×= , 

4 4sM I ×=  and 4 4 4 410[ , ]H I I× ×=  are chosen. 

V. OPTIMAL SLIDING MODE CONTROL 

To design the optimal sliding mode control, following 

equation is used as the main input: 

 

                              op sU V MV= −                                     (17) 

 

Where Vop is the optimal control that is produced based on 

Eq (6) and sgn( )sV S= . Sliding surface is designed as: 

 

                                     oS S ϕ= +                                    (18) 

 

Where So is the sliding surface that is defined by Eq(11) and 

ϕ  is auxiliary variable that is the solution of the differential 

 
Fig. 3 Focus in the response of the closed loop system 

 

equation: 

                                  
( )opH LX BVϕ = − +&                       (19) 

To prove the stability of the closed loop system, 

consider following lyapunov function 

 

                                     
T

V S S=                                      (20) 

 

Derivation along Eq(20), we have 

 

                               
( )T T
oV S S S S ϕ= = +& && &                        (21) 

 

By substituting Eq (19) into Eq (21) and computing oS
&  

 

  

( )

( )

T
op

T
op

V S HAX HBU HLX HAX HLX HBV

S HBU HBV

= + + − − −

= −

&

   (22) 

 

By using Eq(17) 

 

                 

( )

sgn( ) | | 0

T
op s s op

T
ss ss

V S HBV HBM V HBV

S M S M S

= − −

= − = − ≤

&

              (23) 

 

Where ss sM CBM= . The values of the parameters for this 

part are chosen as  

 

                   

8 8 8 8 8 8

5
4 4

0.01 , 1000[ , ]

5 10s

L A I H I I

M I

× × ×

×

= + =

= ×
 

VI. SIMULATION 

 The data for simulating the system was gained from [6]. 

To simulate the closed loop system with three controllers, 

following notice is considered: 

• We chosen the above parameters values till the 

inputs of the closed loop system in all cases for 

three controllers approximately have same 
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maximum domain. In this way, the comparison of 

the results is more valuable. 

Fig. 2 shows the response of the three controllers. As the 

figure shows, the LQR and sliding mode control 

approximately have same response. The response of the 

combined optimal sliding mode control is suitable and 

smaller than the two other controllers. For a better 

consideration, the focus in time span [5, 31] was shown in 

Fig 3. The domain of the output variations for response of 

the optimal sliding mode controller is less that 0.1 mm in 

time span [17, 27]. The maximum domain for the LQR 

controller is 5
8.8 10× , for the sliding mode control is 

57.5 10× and for  the optimal sliding mode control is 
59.4 10× . The domains show that with the same constraint 

on the input of the system, the optimal sliding mode control 

has a better performance. Also, if we compare this result 

with [6], our proposed method has outperformance while in 

[6] the domain of the controller is 619 10× that is too much 

large. In next simulation, we consider the response of the 

proposed controller in the presence of the uncertainty. 

Suppose that 0.5M M M= + .  Fig 4 demonstrates the 

response of the closed loop system for the three controllers. 

Fig 5 shows the responses more precisely. Although the 

response of the optimal sliding mode control has some 

fluctuations the maximum domain in time span [17, 27]s is 

less than 0.5 mm. The figures show that the proposed 

method can be reliable and produce an optimum output. 

VII. CONSLUSION 

Optimal sliding mode control was the main controller that 

was employed in this paper. But, there was a problem to 

design the sliding surface for the structural system. To 

obviate this issue the new sliding surface was proposed and 

the stability of the closed loop system was proved by using 

lyapunov method. The proposed sliding surface was 

combined with the optimal control and employed in the 

closed loop system. The simulations were shown that the 

proposed method is stable and powerful enough to reject the 

earthquake disturbance and overcome on the uncertainty in 

the dynamic of the system.   

 
Fig. 4 Response of the closed loop system in the presence of 

uncertainty 

 

 
Fig. 5 Focus in the response of the closed loop system in the 

presence of the uncertainty 
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